The Role of Territorial Grazers in Coral Reef Trophic Dynamics from Microbes to Apex Predators

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Territorial Grazers in Coral Reef Trophic Dynamics from Microbes to Apex Predators ResearchOnline@JCU This file is part of the following reference: Casey, Jordan Marie (2015) The role of territorial grazers in coral reef trophic dynamics from microbes to apex predators. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/41148/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/41148/ The role of territorial grazers in coral reef trophic dynamics from microbes to apex predators Thesis submitted by Jordan Marie Casey April 2015 For the degree of Doctor of Philosophy ARC Centre of Excellence for Coral Reef Studies College of Marine and Environmental Sciences James Cook University ! Acknowledgements First and foremost, I thank my supervisory team, Sean Connolly, J. Howard Choat, and Tracy Ainsworth, for their continuous intellectual support throughout my time at James Cook University. It was invaluable to draw upon the collective insights and constructive criticisms of an ecological modeller, an ichthyologist, and a microbiologist. I am grateful to each of my supervisors for their unique contributions to this PhD thesis. I owe many thanks to all of the individuals that assisted me in the field: Kristen Anderson, Andrew Baird, Shane Blowes, Simon Brandl, Ashley Frisch, Chris Heckathorn, Mia Hoogenboom, Oona Lönnstedt, Chris Mirbach, Chiara Pisapia, Justin Rizzari, and Melanie Trapon. I also thank the directors and staff of Lizard Island Research Station and the Research Vessel James Kirby for efficiently facilitating my research trips. I appreciate laboratory help from Bill Leggat, Daisie Ogawa, and Sue Reilly, and for assistance with the microbiome analysis pipeline QIIME, I thank David Bourne, Bill Leggat, and Jean-Baptiste Reina. The Ecological Modelling Research Group at James Cook University has provided me with ample modelling support, and I am also grateful for their tolerance of my practice seminars that were full of microbiology and not much modelling. I especially thank Shane Blowes and Loic Thibaut for guidance in statistical modelling. For conceptual advice and other various help, I appreciate discussions with and feedback from Andrew Baird, Dave Bellwood, Simon Brandl, Daniela Ceccarelli, James Guest, Lindsay Harrington, Jean-Paul Hobbs, Morgan Pratchett, and Brett Taylor. Lastly, I thank my parents, Sharon and Mike Casey, for facilitating all of my educational endeavours with endless support and encouragement. I am also thankful for my Aussie sister, Kristen Anderson, for her friendship and keeping things entertaining. And of course, I have infinite gratitude for my partner, Simon Brandl, for being my greatest ally and infusing my life with birds, adventure, and perpetual smiles. ii" Statement of the Contribution of Others This thesis was funded by the ARC Centre of Excellence for Coral Reef Studies, a Graduate Research Scheme grant from James Cook University, and a Great Barrier Reef Marine Park Authority Science for Management Award. I was supported by a James Cook University International Prestige Research Scholarship, a Doctoral Completion Scheme grant from James Cook University, and a NCAA Postgraduate Scholarship. This thesis was conducted under the supervision of Sean Connolly, J. Howard Choat, and Tracy Ainsworth. For Chapter 2, I was given conceptual advice from David Bellwood, and I obtained field assistance from Kristen Anderson, Shane Blowes, and Chris Heckathorn. I received editorial assistance from Shane Blowes and Simon Brandl. Contributions of co- authors are as follows: • Jordan Casey: design of study, collection of data, performance of lab work, analysis of data, writing of manuscript • Tracy Ainsworth: design of study, writing of manuscript • J. Howard Choat: design of study, writing of manuscript • Sean Connolly: design of study, writing of manuscript For Chapter 3, I obtained field assistance from Kristen Anderson, Shane Blowes, Simon Brandl, Chris Heckathorn, and Mia Hoogenboom. Contributions of co-authors are as follows: • Jordan Casey: design of study, collection of data, performance of lab work, analysis of data, writing of manuscript • Sean Connolly: design of study, writing of manuscript • Tracy Ainsworth: design of study, writing of manuscript For Chapter 4, I was given conceptual advice from Morgan Pratchett, and I obtained field assistance from Kristen Anderson, Shane Blowes, and Melanie Trapon. Contributions of co- authors are as follows: iii" • Jordan Casey: design of study, collection of data, analysis of data, writing of manuscript • J. Howard Choat: design of study, writing of manuscript • Sean Connolly: design of study, writing of manuscript For Chapter 5, I was given conceptual advice from J. Howard Choat, and I obtained field assistance from Oona Lönnstedt. Contributions of co-authors are as follows: • Jordan Casey: design of study, collection of data (territorial damselfishes in the Ribbon and Swain Reefs), analysis of data (mixed-effects models for structural equation modelling and other analyses), writing of manuscript • Andrew Baird: design of study, collection of data (benthic composition in the Ribbon and Swain Reefs), writing of manuscript • Simon Brandl: collection of data (mesopredators and mobile herbivores in the Swain Reefs), analysis of data (R code for structural equation modelling), writing of manuscript • Mia Hoogenboom: design of study, collection of data (benthic composition in the Ribbon Reefs), writing of manuscript • Justin Rizzari: design of study, collection of data (mesopredators and mobile herbivores in the Ribbon Reefs), writing of manuscript • Ashley Frisch: design of study, collection of data (apex predators in the Ribbon Reefs), writing of manuscript • Christopher Mirbach: collection of data (apex predators in the Swain Reefs), writing of manuscript • Sean Connolly: design of study, writing of manuscript All work was carried out under the Great Barrier Reef Marine Parks Authority Permits No. G11/34774.1, No. G09/32834.1, and No. G13/36059.1. iv" Abstract Territories of grazing fishes in the family Pomacentridae have been documented to cover a substantial proportion of shallow coral reefs, and these fishes can have profound effects on benthic dynamics. By cultivating palatable filamentous algae, excluding fleshy macroalgae, and aggressively defending their resources, territorial damselfishes indirectly impact coral- algal competition and play a substantial role in shaping benthic community composition, including the recruitment and post-settlement survival of scleractinian corals. Marine microbes are known to be important drivers of environmental change, and microbial community structure on coral reefs is strongly influenced by coral-algae interactions; however, the extent to which this influence is mediated by territorial grazers is unknown. Territorial damselfishes occur in distinct behavioural guilds ranging from indeterminate territorial grazers with thin algal turfs and low rates of territorial aggression to intensive territorial grazers with thick turfs and high rates of aggression. Members of the genus Stegastes are intensive territorial grazers and are known to play a major role in coral-algal dynamics. Further, most previous studies of territorial grazer effects on corals have focused on back-reef habitats although the reef crest is a highly productive environment with elevated rates of coral recruitment and settlement. Lastly, removal of marine predators via fishing is often theorized to alter community structure through trophic cascades, but empirical evidence for this phenomenon is often circumstantial on coral reefs. Given declines of predators on the Great Barrier Reef (GBR), trophic cascade theory would predict ecosystem repercussions to lower trophic levels, but it is unknown how a predator density gradient impacts the distribution of territorial damselfishes. Thus, the overall objective of this thesis was to examine the role of territorial grazers in shaping the structure and dynamics of benthic communities and the extent to which this may be mediated by higher-level trophic interactions across a gradient of fishing pressure. v" To achieve this objective, I employed a variety of microbial sampling regimes and survey methods to reveal the role of territorial grazers in trophic dynamics on the GBR, Australia. To elucidate how Stegastes apicalis and S. nigricans may alter benthic microbial assemblages and coral health, I determined the benthic community composition (epilithic algal matrix (EAM) and prokaryotes) and coral disease prevalence inside and outside of damselfish territories. To determine the impact of territorial grazers on coral microbial assemblages, I established a coral transplant inside and outside of Stegastes’ territories. Over the course of one year, the percent mortality of transplanted corals was monitored and coral samples were collected for microbial analysis. To assess the impact of territorial grazers on the establishment of juvenile corals, I surveyed the reef crest habitat of Lizard Island using fixed transects to assess the effects of indeterminate and intensive territorial grazers on juvenile coral abundance and taxonomic composition. In addition, the turnover of territorial pomacentrids was monitored, as well as the effects of turnover on juvenile coral assemblages. To examine
Recommended publications
  • Tesis Doctoral 2014 Filogenia Y Evolución De Las Poblaciones Ambientales Y Clínicas De Pseudomonas Stutzeri Y Otras Especies
    TESIS DOCTORAL 2014 FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta TESIS DOCTORAL 2014 Programa de Doctorado de Microbiología Ambiental y Biotecnología FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta Director/a: Jorge Lalucat Jo Director/a: Margarita Gomila Ribas Director/a: Antonio Bennasar Figueras Doctor/a por la Universitat de les Illes Balears Index Index ……………………………………………………………………………..... 5 Acknowledgments ………………………………………………………………... 7 Abstract/Resumen/Resum ……………………………………………………….. 9 Introduction ………………………………………………………………………. 15 I.1. The genus Pseudomonas ………………………………………………….. 17 I.2. The species P. stutzeri ………………………………………………......... 23 I.2.1. Definition of the species …………………………………………… 23 I.2.2. Phenotypic properties ………………………………………………. 23 I.2.3. Genomic characterization and phylogeny ………………………….. 24 I.2.4. Polyphasic identification …………………………………………… 25 I.2.5. Natural transformation ……………………………………………... 26 I.2.6. Pathogenicity and antibiotic resistance …………………………….. 26 I.3. Habitats and ecological relevance ………………………………………… 28 I.3.1. Role of mobile genetic elements …………………………………… 28 I.4. Methods for studying Pseudomonas taxonomy …………………………... 29 I.4.1. Biochemical test-based identification ……………………………… 30 I.4.2. Gas Chromatography of Cellular Fatty Acids ................................ 32 I.4.3. Matrix Assisted Laser-Desorption Ionization Time-Of-Flight
    [Show full text]
  • CHAPTER 1: General Introduction and Aims 1.1 the Genus Cronobacter: an Introduction
    Diversity and virulence of the genus Cronobacter revealed by multilocus sequence typing (MLST) and comparative genomic analysis Susan Manju Joseph A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy July 2013 Experimental work contained in this thesis is original research carried out by the author, unless otherwise stated, in the School of Science and Technology at the Nottingham Trent University. No material contained herein has been submitted for any other degree, or at any other institution. This work is the intellectual property of the author. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner(s) of the Intellectual Property Rights. Susan Manju Joseph ACKNOWLEDGEMENTS I would like to express my immense gratitude to my supervisor Prof. Stephen Forsythe for having offered me the opportunity to work on this very exciting project and for having been a motivating and inspiring mentor as well as friend through every stage of this PhD. His constant encouragement and availability for frequent meetings have played a very key role in the progress of this research project. I would also like to thank my co-supervisors, Dr. Alan McNally and Prof. Graham Ball for all the useful advice, guidance and participation they provided during the course of this PhD study.
    [Show full text]
  • Muricauda Ruestringensis Type Strain (B1T)
    Standards in Genomic Sciences (2012) 6:185-193 DOI:10.4056/sigs.2786069 Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda T ruestringensis type strain (B1 ) Marcel Huntemann1, Hazuki Teshima1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4 Loren Hauser1,4, Chongle Pan1,4, Evelyne-Marie Brambilla5, Manfred Rohde6, Stefan Spring5, Markus Göker5, John C. Detter1,2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA 8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia *Corresponding author: Hans-Peter Klenk ([email protected]) Keywords: facultatively anaerobic, non-motile, Gram-negative, mesophilic, marine, chemo- heterotrophic, Flavobacteriaceae, GEBA Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of inter- est because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes.
    [Show full text]
  • Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile
    microorganisms Article Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile Constanza Herrera 1, Ruben Moraga 2,*, Brian Bustamante 1, Claudia Vilo 1, Paulina Aguayo 1,3,4, Cristian Valenzuela 1, Carlos T. Smith 1 , Jorge Yáñez 5, Victor Guzmán-Fierro 6, Marlene Roeckel 6 and Víctor L. Campos 1,* 1 Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; [email protected] (C.H.); [email protected] (B.B.); [email protected] (C.V.); [email protected] (P.A.); [email protected] (C.V.); [email protected] (C.T.S.) 2 Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile 3 Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile 4 Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N◦1160, Concepcion 4090940, Chile 5 Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile; [email protected] 6 Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; victorguzmanfi[email protected] (V.G.-F.); [email protected] (M.R.) * Correspondence: [email protected] (R.M.); [email protected] (V.L.C.) Abstract: Arsenic (As), a semimetal toxic for humans, is commonly associated
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Fictibacillus Phosphorivorans Gen. Nov., Sp. Nov. and Proposal to Reclassify
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 2934–2944 DOI 10.1099/ijs.0.049171-0 Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus Stefanie P. Glaeser,1 Wolfgang Dott,2 Hans-Ju¨rgen Busse3 and Peter Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Germany Peter Ka¨mpfer 2Institut fu¨r Hygiene und Umweltmedizin, RWTH Aachen, Germany peter.kaempfer 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, @umwelt.uni-giessen.de Austria A Gram-positive-staining, aerobic, endospore-forming bacterium (Ca7T) was isolated from a bioreactor showing extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strain Ca7T was grouped in the genus Bacillus, most closely related to Bacillus nanhaiensis JSM 082006T (100 %), Bacillus barbaricus V2-BIII-A2T (99.2 %) and Bacillus arsenicus Con a/3T (97.7 %). Moderate 16S rRNA gene sequence similarities were found to the type strains of the species Bacillus gelatini and Bacillus rigui (96.4 %), Bacillus macauensis (95.1 %) and Bacillus solisalsi (96.1 %). All these species were grouped into a monophyletic cluster and showed very low sequence similarities (,94 %) to the type species of the genus Bacillus, Bacillus subtilis.Thequinonesystemof strain Ca7T consists predominantly of menaquinone MK-7. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor compounds of an unidentified phospholipid and an aminophospholipid were detected. No glycolipids were found in strain Ca7T, which was consistent with the lipid profiles of B.
    [Show full text]
  • Cephalopoda: Loliginidae and Idiosepiidae)
    Marine Biology (2005) 147: 1323–1332 DOI 10.1007/s00227-005-0014-5 RESEARCH ARTICLE Delphine Pichon Æ Valeria Gaia Æ Mark D. Norman Renata Boucher-Rodoni Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae) Received: 25 August 2004 / Accepted: 14 April 2005 / Published online: 30 July 2005 Ó Springer-Verlag 2005 Abstract Bacterial communities were identified from the ginids) are associated with Silicibacter-related strains, accessory nidamental glands (ANGs) of European and suggesting a biogeographic clustering for the Agrobac- Western Pacific squids of the families Loliginidae terium-like strains. and Idiosepiidae, as also in the egg capsules, embryo and yolk of two loliginid squid species, and in the entire egg of one idiosepiid squid species. The results of phyloge- netic analyses of 16S RNA gene (rDNA) confirmed that Introduction several phylotypes of a-proteobacteria, c-proteobacteria and Cytophaga-Flavobacteria-Bacteroides phylum were The female reproductive systems of certain cephalopod present as potential symbiotic associations within the taxa possess a paired organ associated with egg laying ANGs. Several identified clones were related to reference that contains dense bacterial communities (Bloodgood strains, while others had no known close relatives. Gram 1977). Known as the ‘‘accessory nidamental glands’’ positive strains were rare in loliginid squids. Several (ANGs), these organs are present in pencil and reef squids bacterial groups may play important roles in the func- (family Loliginidae), cuttlefishes (family Sepiidae), bob- tion of the ANGs, such as production of the toxic tail squids (family Sepiolidae), bottletail squids (family compounds involved in egg protection and carotenoid Sepiadariidae) and pygmy squids (family Idiosepiidae).
    [Show full text]
  • Bacterial Oxygen Production in the Dark
    HYPOTHESIS AND THEORY ARTICLE published: 07 August 2012 doi: 10.3389/fmicb.2012.00273 Bacterial oxygen production in the dark Katharina F. Ettwig*, Daan R. Speth, Joachim Reimann, Ming L. Wu, Mike S. M. Jetten and JanT. Keltjens Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands Edited by: Nitric oxide (NO) and nitrous oxide (N2O) are among nature’s most powerful electron Boran Kartal, Radboud University, acceptors. In recent years it became clear that microorganisms can take advantage of Netherlands the oxidizing power of these compounds to degrade aliphatic and aromatic hydrocar- Reviewed by: bons. For two unrelated bacterial species, the “NC10” phylum bacterium “Candidatus Natalia Ivanova, Lawrence Berkeley National Laboratory, USA Methylomirabilis oxyfera” and the γ-proteobacterial strain HdN1 it has been suggested Carl James Yeoman, Montana State that under anoxic conditions with nitrate and/or nitrite, monooxygenases are used for University, USA methane and hexadecane oxidation, respectively. No degradation was observed with *Correspondence: nitrous oxide only. Similarly, “aerobic” pathways for hydrocarbon degradation are employed − Katharina F.Ettwig, Department of by (per)chlorate-reducing bacteria, which are known to produce oxygen from chlorite (ClO ). Microbiology, Institute for Water and 2 Wetland Research, Radboud In the anaerobic methanotroph M. oxyfera, which lacks identifiable enzymes for nitrogen University Nijmegen, formation, substrate activation in the presence of nitrite was directly associated with both Heyendaalseweg 135, 6525 AJ oxygen and nitrogen formation. These findings strongly argue for the role of NO, or an Nijmegen, Netherlands. e-mail: [email protected] oxygen species derived from it, in the activation reaction of methane.
    [Show full text]
  • Sphingopyxis Italica, Sp. Nov., Isolated from Roman Catacombs 1 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE IJSEM Papers in Press. Published December 21, 2012 as doi:10.1099/ijs.0.046573-0 provided by Digital.CSIC 1 Sphingopyxis italica, sp. nov., isolated from Roman catacombs 2 3 Cynthia Alias-Villegasª, Valme Jurado*ª, Leonila Laiz, Cesareo Saiz-Jimenez 4 5 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC, 6 Apartado 1052, 41080 Sevilla, Spain 7 8 * Corresponding author: 9 Valme Jurado 10 Instituto de Recursos Naturales y Agrobiologia, IRNAS-CSIC 11 Apartado 1052, 41080 Sevilla, Spain 12 Tel. +34 95 462 4711, Fax +34 95 462 4002 13 E-mail: [email protected] 14 15 ª These authors contributed equally to this work. 16 17 Keywords: Sphingopyxis italica, Roman catacombs, rRNA, sequence 18 19 The sequence of the 16S rRNA gene from strain SC13E-S71T can be accessed 20 at Genbank, accession number HE648058. 21 22 A Gram-negative, aerobic, motile, rod-shaped bacterium, strain SC13E- 23 S71T, was isolated from tuff, the volcanic rock where was excavated the 24 Roman Catacombs of Saint Callixtus in Rome, Italy. Analysis of 16S 25 rRNA gene sequences revealed that strain SC13E-S71T belongs to the 26 genus Sphingopyxis, and that it shows the greatest sequence similarity 27 with Sphingopyxis chilensis DSMZ 14889T (98.72%), Sphingopyxis 28 taejonensis DSMZ 15583T (98.65%), Sphingopyxis ginsengisoli LMG 29 23390T (98.16%), Sphingopyxis panaciterrae KCTC12580T (98.09%), 30 Sphingopyxis alaskensis DSM 13593T (98.09%), Sphingopyxis 31 witflariensis DSM 14551T (98.09%), Sphingopyxis bauzanensis DSM 32 22271T (98.02%), Sphingopyxis granuli KCTC12209T (97.73%), 33 Sphingopyxis macrogoltabida KACC 10927T (97.49%), Sphingopyxis 34 ummariensis DSM 24316T (97.37%) and Sphingopyxis panaciterrulae T 35 KCTC 22112 (97.09%).
    [Show full text]
  • Biodiversité Microbienne Dans Les Milieux Extrêmes Salés Du Nord-Est Algérien
    اﻟﺟﻣﮭورﯾﺔ اﻟﺟزاﺋرﯾﺔ اﻟدﯾﻣﻘراطﯾﺔ اﻟﺷﻌﺑﯾﺔ République Algérienne Démocratique et Populaire وزارة اﻟتــﻋﻠﯾم اﻟﻊــــاﻟﻲ و اﻟبـــﺣث اﻟﻊـــﻟﻣﻲ Ministère de l’Enseignement Supérieur et de la Recherche Scientifique جـــاﻣﻌﺔ ﺑـﺎﺗـﻧـــــــــــــــﺔ Université Mustapha Ben Boulaid- Batna 2 2 كــــﻟﯾــــــﺔ عـــــﻟوم اﻟطــﺑﯾﻌـــــــﺔ ـوالحــــﯾﺎة Faculté des Sciences de la Nature et de la Vie ﻗـــﺳم اﻟﻣﯾﻛروﺑﯾوﻟوﺟﯾـــــــﺎ و اﻟﺑﯾوﻛﯾﻣﯾـــــــﺎء Département de Microbiologie et Biochimie Réf : …………………………… اﻟﻣـرﺟﻊ :………………….…… Thèse présentée par Taha MENASRIA En vue de l’obtention du diplôme de Doctorat en ScienceS Filière : Sciences Biologiques Spécialité : Microbiologie Appliquée Thème Biodiversité microbienne dans les milieux extrêmes salés du Nord-Est Algérien Devant le jury composé de : Président : Dr. Kamel AISSAT (Professeur) Univ. de Batna 2 Directeur de thèse : Dr. Hocine HACÈNE (Professeur) Univ. d’Alger (USTHB) Co-directeur de thèse : Dr. Abdelkrim SI BACHIR (Professeur) Univ. de Batna 2 Examinateur : Dr. Yacine BENHIZIA (Professeur) Univ. de Constantine 1 Examinateur : Dr. Mahmoud KITOUNI (Professeur) Univ. de Constantine 1 Examinateur : Dr. Lotfi LOUCIF (Maître de conférences ‘A’) Univ. de Batna 2 Membre invité : Dr. Ammar AYACHI (Professeur) Univ. de Batna 1 Année universitaire : 2019-2020 Remerciements C’est un devoir d’exprimer mes remerciements et reconnaissances à travers cette thèse à tous ceux qui par leurs aides, encouragements et leurs conseils ont facilité, de près ou de loin, à l’élaboration et à la réalisation de ce modeste travail. Mes remerciements vont en premier ordre et particulièrement à : Dr. Hocine HACÈNE (Professeur à l’Université d’USTHB, Alger) pour le grand honneur qu’il m’a fait en acceptant de diriger ce travail, pour ses conseils et ses encouragements durant la réalisation de cette thèse.
    [Show full text]
  • Scientific Reports 7: 11033
    www.nature.com/scientificreports Correction: Author Correction OPEN Introduced ascidians harbor highly diverse and host-specifc symbiotic microbial assemblages Received: 11 May 2017 James S. Evans1, Patrick M. Erwin 1, Noa Shenkar2 & Susanna López-Legentil1 Accepted: 22 August 2017 Many ascidian species have experienced worldwide introductions, exhibiting remarkable success Published: xx xx xxxx in crossing geographic borders and adapting to local environmental conditions. To investigate the potential role of microbial symbionts in these introductions, we examined the microbial communities of three ascidian species common in North Carolina harbors. Replicate samples of the globally introduced species Distaplia bermudensis, Polyandrocarpa anguinea, and P. zorritensis (n = 5), and ambient seawater (n = 4), were collected in Wrightsville Beach, NC. Microbial communities were characterized by next-generation (Illumina) sequencing of partial (V4) 16S rRNA gene sequences. Ascidians hosted diverse symbiont communities, consisting of 5,696 unique microbial OTUs (at 97% sequenced identity) from 44 bacterial and three archaeal phyla. Permutational multivariate analyses of variance revealed clear diferentiation of ascidian symbionts compared to seawater bacterioplankton, and distinct microbial communities inhabiting each ascidian species. 103 universal core OTUs (present in all ascidian replicates) were identifed, including taxa previously described in marine invertebrate microbiomes with possible links to ammonia-oxidization, denitrifcation, pathogenesis, and heavy-metal processing. These results suggest ascidian microbial symbionts exhibit a high degree of host-specifcity, forming intimate associations that may contribute to host adaptation to new environments via expanded tolerance thresholds and enhanced holobiont function. Modern society is founded upon the rapid transgression of people and goods across geographic borders; however, this globalization has come at an ecological cost: the introduction of nonnative species1.
    [Show full text]
  • 17-S. Prabhu Rekha.Indd
    Polish Journal of Microbiology 2014, Vol. 63, No 1, 115–119 SHORT COMMUNICATION Zeaxanthin Biosynthesis by Members of the Genus Muricauda SUDHARSHAN PRABHU, P.D. REKHA and A.B. ARUN* Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka State, India Submitted 3 March 2013, revised 3 May 2013, accepted 16 November 2013 Abstract Zeaxanthin, a C40 xanthophyll carotenoid, has potential biological applications in nutrition and human health. In this study we characterized carotenoid composition in 5 taxonomically related marine bacterial isolates from the genus Muricauda. The pigment was characterized using high performance liquid chromatography (HPLC) and mass spectrometry, which confirmed the presence of all-trans-zeaxanthin. Muricauda strains produced zeaxanthin as a predominant carotenoid. M. flavescens JCM 11812T produced highest yield (4.4 ± 0.2 mg L–1) when cultured on marine broth at 32°C for 72 h. This is the first report on the presence of zeaxanthin among the majority of species from the genus Muricauda. K e y w o r d s: Flavobacteriaceae, Muricauda, marine bacteria, zeaxanthin Zeaxanthin is a potential biomolecule having anti- duce characteristic orange-yellow pigmented colonies oxidant, anticancer properties and is known to prevent (Lee et al., 2012; Arun et al., 2009; Hwang et al., 2009; age related macular degeneration (Krinsky et al., 2003). Lee et al., 2012). M. lutaonensis CC-HSB-11T isolated Apart from plant sources, microbes have been found as from a coastal hot-spring was first reported to produce an important source of carotenoids particularly zeaxan- high amounts of zeaxanthin (Hameed et al., 2011). thin (Hameed et al., 2011).
    [Show full text]