Characteristics of Genome Evolution in Obligate Insect Symbionts, Including The

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Genome Evolution in Obligate Insect Symbionts, Including The Characteristics of genome evolution in obligate insect symbionts, including the description of a recently identified obligate extracellular symbiont. Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Laura Jean Kenyon, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2015 Thesis Committee: Norman Johnson Andy Michel Kelly Wrighton Zakee L. Sabree, Advisor Copyright by Laura Jean Kenyon 2015 Abstract Animal-bacterial symbioses have shaped the evolution of all eukaryotic organisms. All symbioses have in common a long-term association and therefore provide valuable insight into the evolution and diversification of both partners. Insect-bacterial mutualisms represent the most extreme natural partnerships known, showing evidence of coevolution and obligate interdependence between the partners. Early investigations of plant sap-feeding insects, in particular, revealed tissues of unknown function inhabited by bacteria and insects void of their symbionts revealed reduced host fitness compared to symbiotic insects. Due to the obligate nature of the relationships, endosymbiotic bacteria are uncultivable, but complete genome sequencing suggests bacterial mutualists metabolic capabilities and likely contribution to the mutualisms, typically nutrient provisioning. A well-supported pattern of bacterial genome evolution for obligate mutualists is extreme genome reduction, likely due to relaxed selection upon genes that are not required in the stable environment of the host, leading to an accumulation of deleterious mutations in these genes, and eventually to their complete loss, leaving only those genes that are required for the relatively-stable life-style and for maintenance of the symbiosis. Furthering these studies, this work includes a comprehensive study of protein length evolution in obligate insect endosymbionts compared to their free-living relatives, ii testing the long-held assumption that size reductions in individual genes due to small- scale deletions have impacted genome reduction. This was tested using orthologous protein sets from the Flavobacteriaceae (phylum: Bacteroidetes) and Enterobacteriaceae (subphylum: Gammaproteobacteria) families, each of which includes some of the smallest known genomes. Upon examination of protein lengths, we found that proteins were not uniformly shrinking with genome reduction, but instead increased in length variability. Additionally, as complete gene loss also contributes to overall genome shrinkage, we found that the largest proteins in the proteomes of non-host-restricted bacteroidetial and gammaproteobacterial species often were inferred to be involved in secondary metabolic processes, extracellular sensing, or of unknown function. These proteins were absent in the proteomes of obligate insect endosymbionts. Therefore, loss of large proteins not required for host-restricted lifestyles in obligate endosymbiont proteomes likely contributes to extreme genome reduction to a greater degree than protein shrinkage. To further test these conserved patterns of genome evolution in insect mutualists and to gain insight into a newly described insect-bacterial symbiosis, we sequenced the complete genome of the obligate bacterial symbiont of Halyomorpha halys, an invasive pest of the US. Many phytophagous stink bugs, including H. halys, harbor gammaproteobacterial symbionts necessary for host development. "Candidatus Pantoea carbekii" is the primary occupant of gastric caeca lumina flanking the distal midgut of H. halys insects and is vertically transmitted. To infer contributions of “Ca. P. carbekii" to H. halys, the complete genome was sequenced and annotated from a North American H. iii halys population. Overall, the “Ca. P. carbekii" chromosome is nearly one-fourth (1.2 Mb) that of free-living congenerics, yet retains genes encoding many functions that are potentially host-supportive, including nutrient provisioning genes, similar to other mutualists of plant-feeding insects. These genomic resources aid in the continued exploration of animal-bacterial mutualisms. iv This document is dedicated to my family and significant other. v Acknowledgments In addition to the helpful anonymous reviewers of the published work presented here, I would like to thank Franklin Sun and Rafah Asadi for developing Java programs and Python scripts, respectively, used in analyses described in Chapter 1. I am extremely grateful the time and effort dedicatd by my vibrant, inspiring, and supportive committee including Andy Michel, Kelly Wrighton, Normon Johnson, and my advisor, Zakee Sabree. Zakee is an outstanding mentor that is constantly excited about science, encourages me to excel in my field, is exceptionally creative, and dedicated to his mentorship. I am proud to have been Zakee’s student and will continue to emulate his intelligence and enthuisam for science. vi Vita 2010................................................................B.S. Zoology, University of Florida 2011 to present ..............................................Graduate Student, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University Publications LJ Kenyon, T Meulia, and ZL Sabree. “Habitat visualization and genomic analysis of "Candidatus Pantoea carbekii", the primary symbiont of the brown marmorated stink bug.” Genome Biology and Evolution (in revision). LJ Kenyon and ZL Sabree. "Obligate insect endosymbionts exhibit increased ortholog length variation and loss of large accessory proteins concurrent with genome shrinkage." Genome Biology and Evolution 6.4 (2014): 763-775. RD Denton, LJ Kenyon, KR Greenwald, and HL Gibbs. "Evolutionary basis of mitonuclear discordance between sister species of mole salamanders (Ambystoma sp.)." Molecular Ecology 23.11 (2014): 2811-2824. F Michonneau, K Netchy, J Starmer, S McPherson, CA Campbell, SG Katz, L Kenyon et al. "Mitochondrial markers reveal many species complexes and non-monophyly vii in aspidochirotid holothurians." Echinoderms in a Changing World: Proceedings of the 13th International Echinoderm Conference, January 5-9 2009, University of Tasmania, Hobart Tasmania, Australia. CRC Press, 2012. Fields of Study Major Field: Evolution, Ecology, and Organismal Biology viii Table of Contents Abstract……………………………………………………………………………………ii Dedication………………………………………………………………………………....v Acknowledgments………………………………………………………………………..vi Vita…………………………………………………………………………………...….vii Publications……………………………………………………………………………...vii Fields of Study………………………………………………………………………..…viii Table of Contents………………………………………………………………………....ix List of Tables……………………………………………………………………………xiv List of Figures………………………………………………………………………...….xv Chapter 1: Obligate insect endosymbionts exhibit increased ortholog length variation and loss of large accessory proteins concurrent with genome shrinkage……………………...1 I. Introduction.…………………………………………………………………….1 II. Methods ………………………………………………………………………..4 A. Selection of taxa used in study ………………………………………...4 B. Detection of orthologous proteins and domain regions.……………….5 C. Calculating gap frequencies in orthologous protein alignments.………6 D. Evaluation of the maximum protein length in Gammaproteobacteria and Bacteroidetes proteomes ……………………………………………..6 III. Results…………………………………………………………………………7 ix A. Orthologous proteins and bacterial lineages used in this study……..…7 B. Obligate insect endosymbiont orthologs exhibit increased protein length variation …………………………………………………...………7 C. Indel mutations at protein terminuses.…………………………..……18 D. Large proteins invovled in secondary cellular processes are absent in OIE proteomes………………………………………………………...18 IV. Discussion……………………………………………………………………21 A. Increased length variability, and not uniform shrinkage, typifies endosymbiont orthologs.…………………………………………………21 B. No sacred ground: functional domains and linker regions of OIE proteins both exhibit elevated length variability.………………………...25 C. Use it or lose it: the loss of genes encoding large, non-essential proteins contributes to genome shrinkage in endosymbiotic lineages.……………27 V. Concluding Remarks.…………………………………………………………30 Chapter 2: Habitat visualization and genomic analysis of "Candidatus Pantoea carbekii", the primary symbiont of the brown marmorated stink bug………………………………32 I. Introduction……………………………………………………………………32 II. Methods…………………………………………………………………….…35 A. Genome sequencing and annotation……………………………….…35 B. Comparative analysis…………………………………………………40 C. Molecular and phylogenetic reconstruction…………………………..41 D. SNP and genomic synteny analysis………………………………..…41 x E. H. halys gut microbiome analysis………………………………….…42 F. Fluorescence in situ hybridization and electron microscopy…………43 G. Protein analysis of egg lavage………………………………………..46 III. Results……………………………………………………………….………47 A. P. carbekii dominates the H. halys crypt-bearing midgut and is abundant on egg surfaces…………….………………………………….47 B. P. carbekii exhibits genome shrinkage and other consequences of host restriction……………………………………………………………..….51 C. P. carbekii metabolism and putative role in H. halys physiology……55 D. P. carbekii plasmids encode genes important for nitrogen assimilation and thiamine biosynthesis……………………………….………………58 E. Degradation of DNA replication and repair mechanisms and abundant SNPs between P. carbekii strains………………………….……….……61 F. Degraded cell division genes may contribute to elongated cell morphology………………………………………………………………64 G. Stress tolerance in
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • 2019 ASEAN-FEN 9Th International Fisheries Symposium BOOK of ABSTRACTS
    2019 ASEAN-FEN 9th International Fisheries Symposium BOOK OF ABSTRACTS A New Horizon in Fisheries and Aquaculture Through Education, Research and Innovation 18-21 November 2019 Seri Pacific Hotel Kuala Lumpur Malaysia Contents Oral Session Location… .................................................................... 1 Poster Session ...................................................................................... 2 Special Session… ................................................................................ 3 Special Session 1: ....................................................................... 4 Special Session 2: ..................................................................... 10 Special Session 3: ..................................................................... 16 Oral Presentation… ......................................................................... 26 Session 1: Fisheries Biology and Resource Management 1 ………………………………………………………………….…...27 Session 2: Fisheries Biology and Resource Management 2 …………………………………………………………...........….…62 Session 3: Nutrition and Feed........................................................ 107 Session 4: Aquatic Animal Health ................................................ 146 Session 5: Fisheries Socio-economies, Gender, Extension and Education… ..................................................................................... 196 Session 6: Information Technology and Engineering .................. 213 Session 7: Postharvest, Fish Products and Food Safety… ......... 219 Session
    [Show full text]
  • High Quality Permanent Draft Genome Sequence of Chryseobacterium Bovis DSM 19482T, Isolated from Raw Cow Milk
    Lawrence Berkeley National Laboratory Recent Work Title High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk. Permalink https://escholarship.org/uc/item/4b48v7v8 Journal Standards in genomic sciences, 12(1) ISSN 1944-3277 Authors Laviad-Shitrit, Sivan Göker, Markus Huntemann, Marcel et al. Publication Date 2017 DOI 10.1186/s40793-017-0242-6 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Laviad-Shitrit et al. Standards in Genomic Sciences (2017) 12:31 DOI 10.1186/s40793-017-0242-6 SHORT GENOME REPORT Open Access High quality permanent draft genome sequence of Chryseobacterium bovis DSM 19482T, isolated from raw cow milk Sivan Laviad-Shitrit1, Markus Göker2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, T. B. K. Reddy3, Chris Daum3, Nicole Shapiro3, Victor Markowitz3, Natalia Ivanova3, Tanja Woyke3, Hans-Peter Klenk4, Nikos C. Kyrpides3 and Malka Halpern1,5* Abstract Chryseobacterium bovis DSM 19482T (Hantsis-Zacharov et al., Int J Syst Evol Microbiol 58:1024-1028, 2008) is a Gram-negative, rod shaped, non-motile, facultative anaerobe, chemoorganotroph bacterium. C. bovis is a member of the Flavobacteriaceae, a family within the phylum Bacteroidetes. It was isolated when psychrotolerant bacterial communities in raw milk and their proteolytic and lipolytic traits were studied. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA G + C content is 38.19%. The chromosome length is 3,346,045 bp. It encodes 3236 proteins and 105 RNA genes. The C. bovis genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.
    [Show full text]
  • Respiratory Disorders of Fish
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.
    [Show full text]
  • Bacterial Microbiome of the Nose of Healthy Dogs and Dogs with Nasal Disease
    RESEARCH ARTICLE Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease Barbara Tress1, Elisabeth S. Dorn1, Jan S. Suchodolski2, Tariq Nisar2, Prajesh Ravindran2, Karin Weber1, Katrin Hartmann1, Bianka S. Schulz1* 1 Clinic of Small Animal Medicine, LMU Munich, Munich, Germany, 2 Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America * [email protected] Abstract a1111111111 The role of bacterial communities in canine nasal disease has not been studied so far a1111111111 a1111111111 using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has a1111111111 revealed that the canine upper respiratory tract harbors a diverse microbial community; a1111111111 however, changes in the composition of nasal bacterial communities in dogs with nasal dis- ease have not been described so far. Aim of the study was to characterize the nasal micro- biome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs OPEN ACCESS with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were Citation: Tress B, Dorn ES, Suchodolski JS, Nisar T, Ravindran P, Weber K, et al. (2017) Bacterial analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Opera- microbiome of the nose of healthy dogs and dogs tional Taxonomic Units out of 26 bacterial phyla were detected.
    [Show full text]
  • Muricauda Ruestringensis Type Strain (B1T)
    Standards in Genomic Sciences (2012) 6:185-193 DOI:10.4056/sigs.2786069 Complete genome sequence of the facultatively anaerobic, appendaged bacterium Muricauda T ruestringensis type strain (B1 ) Marcel Huntemann1, Hazuki Teshima1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Nancy Hammon1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4 Loren Hauser1,4, Chongle Pan1,4, Evelyne-Marie Brambilla5, Manfred Rohde6, Stefan Spring5, Markus Göker5, John C. Detter1,2, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Tanja Woyke1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA 5 Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany 6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany 7 University of California Davis Genome Center, Davis, California, USA 8 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia *Corresponding author: Hans-Peter Klenk ([email protected]) Keywords: facultatively anaerobic, non-motile, Gram-negative, mesophilic, marine, chemo- heterotrophic, Flavobacteriaceae, GEBA Muricauda ruestringensis Bruns et al. 2001 is the type species of the genus Muricauda, which belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The species is of inter- est because of its isolated position in the genomically unexplored genus Muricauda, which is located in a part of the tree of life containing not many organisms with sequenced genomes.
    [Show full text]
  • Effect of Curcumin, Mixture of Curcumin and Piperine and Curcum (Turmeric) on Lipid Profile of Normal and Hyperlipidemic Rats
    The Egyptian Journal of Hospital Medicine Vol., 21: 145 – 161 December 2005 I.S.S.N: 12084 2002–1687 Effect of Curcumin, Mixture of Curcumin and Piperine and Curcum (Turmeric) on Lipid Profile of Normal and Hyperlipidemic Rats GHADA, Z. A. Soliman Lecturer of Biochemistry, Biochemistry Department, National Nutrition Institute, Cairo Abstract Curcumin is a polyphenolic, yellow pigment obtained from rhizomes of Curcuma longa (curcum), used as a spice and food colouring. The extracts have several pharmacological effects. We evaluated the effect of curcum, curcumin, and mixture of curcumin and piperine on plasma lipids in normal and hypercholesterolemic rats. A total of 270 rats, divided into 27 groups, were used. G1, G11: control, G2-G11: normal rats fed control diet supplemented with different levels of curcumin and curcum (G2-G6: 0.1%, 0.25%, 0.5%, 1.0%, 2.0% respectively, G7-G11: 1.67%, 4.167%, 8.34%, 16.67%, and 33.34). G12-G26: at first fed control diet supplemented with 2% cholesterol then G13-17, 21-25 fed a control diet supplemented with different levels of curcumin, and curcum [the same levels as G2-G11; G18-20 fed control diet supplemented with mixture of curcumin (0.1, 0.25, 0.5%) and piperine (20 mg/kg BW)], G12 was sacrificed before addition of studied materials, G26 were fed control diet. Lipid profile, triacylglycerol and phospholipids of plasma and organs as liver and heart were measured. Serum cholesterol (total, LDL-C, VLDL-C), triacylglycerol and phospholipids contents were elevated in cholesterol-fed rats, while HDL-C were decreased.
    [Show full text]
  • Mechanistic Study of Physicochemical and Biochemical Processes
    Mechanistic study of physicochemical and biochemical processes affecting intestinal absorption of the sesquiterpene lactone nobilin from multi-component systems in the Caco-2 model. Inauguraldissertation zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel von URSULA STEPHANIE THORMANN aus Bern (BE) Basel, 2015 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/eingesehen werden. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. G. Imanidis und Prof. Dr. H. E. U. Meyer zu Schwabedissen Basel, den 18. Februar 2014 Prof. Dr. J. Schibler Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz (CC BY-NC-ND 3.0 CH) Sie dürfen: Teilen — den Inhalt kopieren, verbreiten und zugänglich machen Unter den folgenden Bedingungen: Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen. Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für kommerzielle Zwecke nutzen. Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten, abwandeln oder in anderer Weise verändern. Wobei gilt: Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Chapter 12. Estimating the Host Range of the Tachinid Trichopoda Giacomellii, Introduced Into Australia for Biological Control of the Green Vegetable Bug
    __________________________________ ASSESSING HOST RANGES OF PARASITOIDS AND PREDATORS CHAPTER 12. ESTIMATING THE HOST RANGE OF THE TACHINID TRICHOPODA GIACOMELLII, INTRODUCED INTO AUSTRALIA FOR BIOLOGICAL CONTROL OF THE GREEN VEGETABLE BUG M. Coombs CSIRO Entomology, 120 Meiers Road, Indooroopilly, Queensland, Australia 4068 [email protected] BACKGROUND DESCRIPTION OF PEST INVASION AND PROBLEM Nezara viridula (L.) is a cosmopolitan pest of fruit, vegetables, and field crops (Todd, 1989). The native geographic range of N. viridula is thought to include Ethiopia, southern Europe, and the Mediterranean region (Hokkanen, 1986; Jones, 1988). Other species in the genus occur in Africa and Asia (Freeman, 1940). First recorded in Australia in 1916, N. viridula soon be- came a widespread and serious pest of most legume crops, curcubits, potatoes, tomatoes, pas- sion fruit, sorghum, sunflower, tobacco, maize, crucifers, spinach, grapes, citrus, rice, and mac- adamia nuts (Hely et al., 1982; Waterhouse and Norris, 1987). In northern Victoria, central New South Wales, and southern Queensland, N. viridula is a serious pest of soybeans and pecans (Clarke, 1992; Coombs, 2000). Immature and adult bugs feed on vegetative buds, devel- oping and mature fruits, and seeds, causing reductions in crop quality and yield. The pest status of N. viridula in Australia is assumed to be partly due to the absence of parasitoids of the nymphs and adults. No native Australian tachinids have been found to parasitize N viridula effectively, although occasional oviposition and development of some species may occur (Cantrell, 1984; Coombs and Khan, 1997). Previous introductions of biological control agents to Australia for control of N. viridula include Trichopoda pennipes (Fabricius) and Trichopoda pilipes (Fabricius) (Diptera: Tachinidae), which are important parasitoids of N.
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]