Intelligent Traction Motor Control Techniques for Hybrid and Electric Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Intelligent Traction Motor Control Techniques for Hybrid and Electric Vehicles By Scott Cash A thesis submitted to the University of Birmingham for the degree of Doctor of Philosophy Department of Mechanical Engineering The University of Birmingham September 2018 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This thesis presents the research undertaken by the author within the field of intelligent traction motor control for Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) applications. A robust Fuzzy Logic (FL) based traction motor field-orientated control scheme is developed which can control multiple motor topologies and HEV/EV powertrain architectures without the need for re-tuning. This control scheme can aid in the development of an HEV/EV and for continuous control of the traction motor/s in the final production vehicle. An overcurrent-tolerant traction motor sizing strategy is developed to gauge if a prospective motor’s torque and thermal characteristics can fulfil a vehicle’s target dynamic and electrical objectives during the early development stages of an HEV/EV. An industrial case study is presented. An on-line reduced switching multilevel inverter control scheme is investigated which increases the inverter’s efficiency while maintaining acceptable levels of output waveform harmonic distortion. A FL based vehicle stability control system is developed that improves the controllability and stability of an HEV/EV during an emergency braking manoeuvre. This system requires minimal vehicle parameters to be used within the control system, is insensitive to variable vehicle parameters and can be tuned to meet a vehicle’s target dynamic objectives. i To Mom and Dad ii Acknowledgements I would firstly like to thank Dr. Oluremi Olatunbosun for his guidance and advice during my Masters project and my PhD. What I have learned from working with him will prove to be invaluable in the future. I would also like to thank Prof. Hongming Xu for taking over as my lead supervisor and guiding me towards the finish line. His expertise, experience and support has enabled me to conclude my PhD and research to a high level. I also appreciate Dr. Richard Hood taking over as my co-supervisor at a late stage and on short notice. I would also like to thank Quan Zhou and my other colleges for their technical knowledge and providing a good working environment at the university. But most of all, I thank my parents for their continual encouragement and support throughout my time at university. Without them I may not have gotten through the difficult and strenuous times to have reached this point. To my Mom for continuously pushing me forward, listening to my complaints and endless cups of tea. To my Dad for his support and the never ending hours of proof reading that I brought him. iii Contents Contents .................................................................................................................................... iv List of Figures ........................................................................................................................... x List of Tables .......................................................................................................................... xvi List of Abbreviations ........................................................................................................... xviii Publications ............................................................................................................................. xx 1. Chapter One - Introduction .............................................................................................. 1 Purpose of the Research ............................................................................................... 1 1.1.1 Environmental Protection ..................................................................................... 1 1.1.2 Energy and Fuel Scenario ..................................................................................... 3 1.1.3 Vehicle Safety....................................................................................................... 4 Vehicle Development Trends and Challenges ............................................................. 5 Research Objectives and Approach ............................................................................. 6 Key Contributions ........................................................................................................ 7 Thesis Outline .............................................................................................................. 8 2. Chapter Two – Literature Review.................................................................................. 11 The HEV and EV ....................................................................................................... 11 2.1.1 HEV Powertrain Architectures ........................................................................... 12 2.1.2 EV Powertrain Architectures .............................................................................. 14 Traction Motors for HEV/EV Applications ............................................................... 16 2.2.1 Background into Electric Motors ...................................................................... 16 2.2.2 Traction Motor Topology Characteristics .......................................................... 16 2.2.3 Traction Motor Modelling Techniques............................................................... 19 iv 2.2.4 Advanced Traction Motor Control Schemes ...................................................... 19 2.2.5 Optimised FOC Strategies .................................................................................. 21 2.2.6 Real World Motor Control ................................................................................. 22 2.2.7 Controller Types for FOC .................................................................................. 23 2.2.8 PI vs Fuzzy Logic for FOC ................................................................................ 24 2.2.8.1 Speed Control using FOC ........................................................................... 24 2.2.8.2 Current Control using FOC ......................................................................... 25 2.2.9 Research Gaps in the Field of Traction Motor Modelling and Control ............. 26 DC-AC Inverters for Traction Motors ....................................................................... 27 2.3.1 Inverter Topologies for HEV/EVs ...................................................................... 28 2.3.2 Inverter Modulation Methods ............................................................................. 29 2.3.3 Space Vector Pulse Width Modulation (SVPWM) ............................................ 32 2.3.4 Optimising SVPWM .......................................................................................... 34 2.3.5 On-line SVPWM Methods ................................................................................. 35 2.3.6 Research Gaps in the Field of DC-AC Inverter Control .................................... 37 Vehicle Stability Control for HEV/EVs .................................................................... 38 2.4.1 Vehicle Stability Control Techniques................................................................. 38 2.4.2 Vehicle Yaw Rate Control Methods ................................................................... 41 2.4.2.1 Implementing Yaw Rate Control ................................................................ 41 2.4.2.2 Yaw Rate Controller Types ......................................................................... 42 2.4.3 Wheel Slip Controller Schemes .......................................................................... 44 2.4.3.1 Wheel Slip Control for an HEV/EV ............................................................ 44 2.4.3.2 Wheel Slip Controller Types ....................................................................... 44 2.4.4 Vehicle Yaw Control during Braking Manoeuvres ............................................ 45 v 2.4.5 Research Gaps in the Field of Vehicle Stability Control for HEV/EVs ............. 49 Summary of Literature Gaps and Specific Research Objectives ............................... 50 3. Chapter Three – Research Methodology and Model Verification Procedures .......... 53 Research Methodology .............................................................................................. 53 Component Modelling of the HEV/EV ..................................................................... 54 3.2.1 Traction Motor Models ....................................................................................... 54 3.2.1.1 Voltage Vector Transformations ................................................................. 55 3.2.1.2 FOC Architecture ........................................................................................ 57 3.2.1.3 Analytical Model of an IM