Wallaroo Common User Export Facility Marine Ecological Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Wallaroo Common User Export Facility Marine Ecological Assessment Wallaroo Common User Export Facility Marine Ecological Assessment Report for T-Ports Pty Ltd J Diversity Pty Ltd Rev 0, October 2020 Wallaroo Marine Ecological Assessment, October 2020 Cover photo: seagrass swimmer crab Nectocarcinus integrifrons in Posidonia sinuosa seagrass habitat. Photo: J. Brook, June 2020. Disclaimer The findings and opinions expressed in this publication are those of the author and do not necessarily reflect those of T-Ports Pty Ltd. While reasonable efforts have been made to ensure the contents of this report are factually correct, the author does not accept responsibility for the accuracy and completeness of the contents. The author does not accept liability for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report. Revision history Rev Date Comment Author Reviewed A 19/08/2020 Initial Draft J. Brook M. Richardson B 10/09/2020 Modified according to review J. Brook M. Richardson C 21/09/2020 Modified according to review J. Brook M. Richardson and new information D 2/10/2020 Issued to client for circulation J. Brook 2 Wallaroo Marine Ecological Assessment, October 2020 Table of Contents 1 Introduction ....................................................................................................................................7 2 Methods..........................................................................................................................................8 2.1 Habitat mapping .....................................................................................................................8 2.1.1 Existing information........................................................................................................8 2.1.2 Towed camera survey .....................................................................................................8 2.1.3 Map generation.............................................................................................................12 2.2 Dive surveys ..........................................................................................................................12 2.2.1 Reef surveys ..................................................................................................................12 2.2.2 Seagrass surveys ...........................................................................................................12 2.3 Literature review...................................................................................................................12 3 Results...........................................................................................................................................13 3.1 Towed camera surveys .........................................................................................................13 3.1.1 Proposed transhipment area alternatives ....................................................................13 3.1.2 Proposed breakwater....................................................................................................14 3.2 Dive surveys ..........................................................................................................................16 3.2.1 Reef surveys ..................................................................................................................16 3.2.2 Seagrass surveys ...........................................................................................................17 3.3 Breakwater footprint habitat map........................................................................................24 3.4 Ecological values ...................................................................................................................26 3.4.1 Megafauna ....................................................................................................................26 3.4.2 Macroalgae ...................................................................................................................26 3.4.3 Invertebrates.................................................................................................................26 3.4.4 Fishes and sharks ..........................................................................................................27 3.4.5 Seabirds and shorebirds................................................................................................27 3.4.6 Marine pests .................................................................................................................27 3.5 Fisheries and Aquaculture ....................................................................................................28 3.5.1 Spencer Gulf Prawn Fishery ..........................................................................................28 3.5.2 Blue crab fishery............................................................................................................30 3.5.3 Marine Scalefish Fishery ...............................................................................................32 3.5.4 Central Zone Abalone fishery........................................................................................33 3.5.5 Aquaculture...................................................................................................................36 4 Impact Assessment .......................................................................................................................37 4.1 Direct loss of habitat from breakwater construction ...........................................................37 3 Wallaroo Marine Ecological Assessment, October 2020 4.2 Indirect impacts on habitats during breakwater construction .............................................38 4.3 Indirect impacts on habitats due to changed coastal processes ..........................................38 4.4 Impacts on seagrass from operations at the breakwater.....................................................38 4.5 Impacts on benthic habitats from transhipment point operations......................................38 4.6 Introduction of marine pests ................................................................................................39 4.7 Underwater noise .................................................................................................................39 4.8 Vessel interactions with marine megafauna ........................................................................41 4.9 Impacts on birds....................................................................................................................44 4.10 Impacts on fisheries and aquaculture...................................................................................45 5 Conclusions ...................................................................................................................................45 6 References ....................................................................................................................................46 Appendix A. Records of macroalgae within the Atlas of Living Australia search area......................51 Appendix B. Records of macroinvertebrates within the Atlas of Living Australia search area.........52 Appendix C. Records of fishes and elasmobranchs within the Atlas of Living Australia search area. .. .......................................................................................................................................54 Table of Figures Figure 1. Existing mapping at 1:100,000 (DEW 2020a, Edyvane 1999) Existing Mapping at 1:100 (DEW 2020b, c, Miller et al. 2009) ....................................................................................................................9 Figure 2. Habitat mapping 1:100 near the proposed causeway. Source: DEW 2020c, Miller et al. 2009. .....................................................................................................................................................10 Figure 3. Regional perspective of habitats surrounding the proposed breakwater. Source: DEW 2020a, c.................................................................................................................................................10 Figure 4. Water depth below lowest astronomical tide (LAT) near the proposed breakwater. Source: Flinders Ports 2020. ..............................................................................................................................11 Figure 5. Major habitat classes recorded on towed camera surveys in the proposed transhipment area alternatives. ..................................................................................................................................14 Figure 6. Towed camera habitat points over the proposed causeway footprint. State benthic habitat boundaries and habitat descriptors (DEW 2020) are shown (in red) for comparison. ........................15 Figure 7. Locations of dive transects within reef habitat (2 x 50 m) and seagrass habitat (4 x 30 m) with respect to towed camera habitat points. .....................................................................................16 Figure 8. Habitat map of the area surrounding the proposed breakwater. .........................................25 Figure 9. Spencer Gulf Prawn Fishery catch reporting blocks, prawn survey sites and bycatch survey sites near the proposed breakwater and PTAAs...................................................................................29 Figure 10. Spencer Gulf Prawn Fishery
Recommended publications
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audo
    First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audo To cite this version: Denis Audo. First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan. Journal of Systematic Palaeontology, Taylor & Francis, 2019, 17 (6), pp.533-538. 10.1080/14772019.2017.1405085. hal-02274560 HAL Id: hal-02274560 https://hal.sorbonne-universite.fr/hal-02274560 Submitted on 30 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. First occurrence of Ibacinae (Eucrustacea: Decapoda: Scyllaridae) from the Eocene of Pakistan Denis Audoa, b aUMR CNRS 6118 Géosciences, Université de Rennes I, Campus de Beaulieu, avenue du général Leclerc, 35042 Rennes cedex, France. E-mail: [email protected] bMuséum national d’Histoire naturelle, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris, France. Abstract The fossil record of slipper lobsters (Scyllaridae) is very poor, even though the earliest species of the modern slipper lobsters (Neoscyllaridae) are known from the Early Cretaceous. Among the clades “subfamilies” of slipper lobsters, perhaps the most remarkable is Ibacinae (currently monogeneric), which contains species with a very wide carapace (cephalothoracic shield) and very deep incisions.
    [Show full text]
  • The Biology and Fisheries of the Slipper Lobster
    The Biology and Fisheries of the Slipper Lobster Kari L. Lavalli College of General Studies Boston University Bo~ton, Massachusetts, U.S.A. Ehud Spanier The Leon Recanati Institute for Maritime Studies and Department of Maritime Civilizations University of Haifa Haifa, Israel 0 ~y~~F~~~~~oup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Cover image courtesy of Megan Elizabeth Stover of the College of General Studies, Boston University, Boston, Massachusetts. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-3398-9 (Hardcover) International Standard Book Number-13: 978-0-8493-3398-9 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part ofthis book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa­ tion storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Nowhere Else on Earth
    Nowhere Else on Earth: Tasmania’s Marine Natural Values Environment Tasmania is a not-for-profit conservation council dedicated to the protection, conservation and rehabilitation of Tasmania’s natural environment. Australia’s youngest conservation council, Environment Tasmania was established in 2006 and is a peak body representing over 20 Tasmanian environment groups. Prepared for Environment Tasmania by Dr Karen Parsons of Aquenal Pty Ltd. Report citation: Parsons, K. E. (2011) Nowhere Else on Earth: Tasmania’s Marine Natural Values. Report for Environment Tasmania. Aquenal, Tasmania. ISBN: 978-0-646-56647-4 Graphic Design: onetonnegraphic www.onetonnegraphic.com.au Online: Visit the Environment Tasmania website at: www.et.org.au or Ocean Planet online at www.oceanplanet.org.au Partners: With thanks to the The Wilderness Society Inc for their financial support through the WildCountry Small Grants Program, and to NRM North and NRM South. Front Cover: Gorgonian fan with diver (Photograph: © Geoff Rollins). 2 Waterfall Bay cave (Photograph: © Jon Bryan). Acknowledgements The following people are thanked for their assistance The majority of the photographs in the report were with the compilation of this report: Neville Barrett of the generously provided by Graham Edgar, while the following Institute for Marine and Antarctic Studies (IMAS) at the additional contributors are also acknowledged: Neville University of Tasmania for providing information on key Barrett, Jane Elek, Sue Wragge, Chris Black, Jon Bryan, features of Tasmania’s marine
    [Show full text]
  • Marine Ecology
    Appendix T Appendix T Marine ecology January 2020 Roads and Maritime Services Western Harbour Tunnel and Warringah Freeway Upgrade Technical working paper: Marine ecology January 2020 Prepared for Roads and Maritime Prepared by Cardno (NSW/ACT) Pty Ltd © Roads and Maritime The concepts and information contained in this document are the property of Roads and Maritime Services. You must not reproduce any part of this document without the prior written approval of Roads and Maritime Services. Table of Contents Executive Summary 1 1 Introduction 11 1.1 Overview 11 1.2 The project 11 1.3 Key construction activities 16 1.4 Project location 19 1.5 Purpose of this report 19 1.6 Secretary’s environmental assessment requirements 19 1.7 Avoid and minimise 19 1.8 Legislative context 20 1.9 Previous investigations for the project 21 1.10 Other project investigations 21 1.11 Definitions 22 2 Methods 24 2.1 Overview 24 2.2 Personnel 25 2.3 Background research 26 2.4 Field survey 26 2.5 Data analyses 31 2.6 Limitations 32 2.7 Impact assessment (including risk analysis) 33 3 Existing environment overview 36 3.1 Geology and socio-economics 36 3.2 Coastal processes and hydrology 36 3.3 Sediment properties 36 3.4 Water quality 38 3.5 Marine habitat types and communities 39 3.6 Threatened ecological communities 67 3.7 Critical habitat 67 3.8 Threatened marine species and endangered populations 67 3.9 Protected marine species 72 3.10 Matters of National Environmental Significance (MNES) 74 3.11 Wetlands and conservation areas 75 3.12 Key threatening processes
    [Show full text]
  • Slipper Lobsters (Scyllaridae) Off the Southeastern Coast of Brazil: Relative Growth, Population Structure, and Reproductive
    55 Abstract—The hooded slipper lobster Slipper lobsters (Scyllaridae) off the (Scyllarides deceptor) and Brazilian slipper lobster (S. brasiliensis) are southeastern coast of Brazil: relative growth, commonly caught by fishing fleets (with double-trawling and longline population structure, and reproductive biology pots and traps) off the southeastern coast of Brazil. Their reproductive Luis Felipe de Almeida Duarte (contact author)1 biology is poorly known and research 2 on these 2 species would benefit ef- Evandro Severino-Rodrigues forts in resource management. This Marcelo A. A. Pinheiro3 study characterized the population Maria A. Gasalla4 structure of these exploited species on the basis of sampling from May Email address for contact author: [email protected] 2006 to April 2007 off the coast of Santos, Brazil. Data for the abso- 1 Departamento de Zoologia 3 Laboratório de Biologia de Crustáceos lute fecundity, size at maturity in Ca[mpus de Rio Claro Grupo de Pesquisa em Biologia de Crustáceos females, reproductive period, and Universidade Estadual Paulista Ca[mpus Experimental do Litoral Paulista morphometric relationships of the Avenida 24 A, 1515 Universidade Estadual Paulista dominant species, the hooded slipper 13506-900, Rio Claro Praça Infante D. Henrique lobster, are presented. Significant São Paulo, Brazil s/n°11330-900, São Vicente differential growth was not observed 2 São Paulo, Brazil between juveniles and adults of each Instituto de Pesca 4 sex, although there was a small in- Agência Paulista de Tecnologia dos Laboratório de Ecossistemas Pesqueiros vestment of energy in the width and Agronegócios Departamento de Oceanográfico Biológica length of the abdomen in females Secretaria de Agricultura e Abastecimento Instituto Oceanográfico and in the carapace length for males Governo do Estado São Paulo Universidade de São Paulo in larger animals (>25 cm in total Avenida Bartolomeu de Gusmão, 192 Praça do Oceanográfico, 191 length [TL]).
    [Show full text]
  • Digging Mechanisms and Substrate Preferences of Shovel Nosed Lobsters, Ibacus Peronii (Decapoda: Scyllaridae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarworks@UTRGV Univ. of Texas RioGrande Valley University of Texas Rio Grande Valley ScholarWorks @ UTRGV Biology Faculty Publications and Presentations College of Sciences 1-2006 Digging Mechanisms and Substrate Preferences of Shovel Nosed Lobsters, Ibacus peronii (Decapoda: Scyllaridae) Zen Faulkes The University of Texas Rio Grande Valley, [email protected] Follow this and additional works at: https://scholarworks.utrgv.edu/bio_fac Part of the Biology Commons Recommended Citation Faulkes, Zen, "Digging Mechanisms and Substrate Preferences of Shovel Nosed Lobsters, Ibacus peronii (Decapoda: Scyllaridae)" (2006). Biology Faculty Publications and Presentations. 34. https://scholarworks.utrgv.edu/bio_fac/34 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Biology Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected]. JOURNAL OF CRUSTACEAN BIOLOGY, 26(1): 69–72, 2006 DIGGING MECHANISMS AND SUBSTRATE PREFERENCES OF SHOVEL NOSED LOBSTERS, IBACUS PERONII (DECAPODA: SCYLLARIDAE) Zen Faulkes Department of Zoology, University of Melbourne, Royal Parade, Parkville, Victoria, 3010, Australia; Present address: Department of Biology, University of Texas – Pan American, 1201 W. University Drive, Edinburg, Texas, 78541, U.S.A. ([email protected]) ABSTRACT Digging is a distinct form of locomotion that poses different mechanical problems than other locomotor modes that are commonly used by crustaceans, e.g., walking, swimming. I examined the mechanisms of digging by shovel nosed lobsters (Ibacus peronii), which spend most of the day underneath sand.
    [Show full text]
  • Title TWO SPECIES of the GENUS IBACUS (CRUSTACEA
    TWO SPECIES OF THE GENUS IBACUS (CRUSTACEA Title DECAPODA : REPTANTIA) FROM JAPAN Author(s) Harada, Eiji; Holthuis, L.B. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(1): 23-34 Issue Date 1965-06-30 URL http://hdl.handle.net/2433/175395 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University TWO SPECIES OF THE GENUS !BACUS (CRUSTACEA DECAPODA: REPTANTIA) FROM JAPAN') Ern HARADA Biological Laboratory, Yoshida College, Kyoto University and L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands With Plate VII and 3 Text-figures Eversince the publication of DE HAAN's (1833-1850) monograph, Ibacus ciliatus (voN SIEBOLD) has been generally regarded to be the only member of the genus Ibacus inhabiting the seas around Japan. In fact, this species is abundant in and characteristic for the level sandy and muddy bottoms of the continental shelf along the coasts of Kii Peninsula (UTINOMI and HARADA, 1957; HARADA, 1958) and southern Japan. As it has been stated by BALSS (1914, p. 80; 1924, p. 60) and by EKMAN (1953, p. 23), this species is considered to be endemic to the southern or subtropical Japanese region. However, recently KuBo (1960) referred to another species of lbacus as inhabiting Japanese waters, when he gave an illustrated description of Ibacus ciliatus, saying that "there is Ohba-utiwaebi, lbacus incisus, which is a relative of Utiwaebi, Ibacus ciliatus." Supposedly this remark by KuBo is based on a specimen in the collection of the Seto Marine Biological Laboratory, which has been labelled by him as lbacus incisus (Pf:RoN). This specimen was re­ examined by HARADA, who also studied an additional specimen preserved in the collection of the Seto Marine Biological Laboratory and two live speci­ mens trawled on the continental shelf off Minabe at a depth of approximately 100 metres.
    [Show full text]
  • ZM 72-10 (Brown) 05-01-2007 10:44 Page 113
    ZM 72-10 (Brown) 05-01-2007 10:44 Page 113 The Australian species of the genus Ibacus (Crustacea: Decapoda: Scyllaridae), with the description of a new species and addition of new records D.E. Brown & L.B. Holthuis Brown, D.E. & L.B. Holthuis. The Australian species of the genus Ibacus (Crustacea: Decapoda: Scyl- laridae), with the description of a new species and addition of new records. Zool. Med. Leiden 72 (10), 11.xii.1998: 113-141, figs 1-3, pls 1-10.— ISSN 0024-0672. Diane E. Brown, Australian Museum, 6 College Street, Sydney, 2000 Australia. L.B. Holthuis, Nationaal Natuurhistorisch Museum, Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands. Key words: Decapoda; Scyllaridae; Ibacus; new species; Australia. A new species of scyllarid lobster, Ibacus chacei, from eastern Australia is described and illustrated. The new species can be distinguished from all other known Ibacus species by the shape of the third maxilliped. Ibacus brevipes Bate, 1888 is recorded from Australia for the first time. Seven out of the eight known species of Ibacus are now recorded from Australia. Colour descriptions, and updated dis- tributions for all Australian Ibacus species are included, plus further comments on the type locality of Ibacus peronii Leach, 1815. Colour illustrations and a key to the eight known species of Ibacus are also provided. Introduction The genus Ibacus occurs only in the Indo-West Pacific region (Holthuis 1985, 1991), and until the mid 1970’s, only two species, I. peronii Leach, 1815 and I. alticrena- tus Bate, 1888 were recorded from Australian waters.
    [Show full text]
  • Coorong Outfall. Three Assemblage Types Are Identified at a Bray-Curtis
    Marine Environment and Ecology Baseline surveys of the marine environment adjacent to the proposed high salinity water discharge from the south lagoon of the Coorong SARDI Publication No. F2009/000694-1 SARDI Research Report Series No. 422 Keith Rowling, Kathryn Wiltshire and Jason Tanner SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 January 2010 Prepared for the SA Murray-Darling Basin Natural Resource Management Board Baseline surveys of the marine environment adjacent to the proposed high salinity water discharge from the south lagoon of the Coorong Keith Rowling, Kathryn Wiltshire and Jason Tanner January 2010 Prepared for the SA Murray-Darling Basin Natural Resource Management Board SARDI Publication No. F2009/000694-1 SARDI Research Report Series No. 422 This Publication may be cited as: Rowling, K.P., Wiltshire, K., and Tanner, J.E (2010) Baseline surveys of the marine environment adjacent to the proposed high salinity water discharge from the south lagoon of the Coorong. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000694-1. Cover photograph: Aerial view of Coorong adjacent to proposed outfall location (© NatureMaps; SA DEH) South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI internal review process, and has been formally approved for release by the Chief of Division. Although all reasonable efforts have been made to ensure quality, SARDI does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Targeted Fauna Assessment.Pdf
    APPENDIX H BORR North and Central Section Targeted Fauna Assessment (Biota, 2019) Bunbury Outer Ring Road Northern and Central Section Targeted Fauna Assessment Prepared for GHD December 2019 BORR Northern and Central Section Fauna © Biota Environmental Sciences Pty Ltd 2020 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 1463 Prepared by: V. Ford, R. Teale J. Keen, J. King Document Quality Checking History Version: Rev A Peer review: S. Ford Director review: M. Maier Format review: S. Schmidt, M. Maier Approved for issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx 3 BORR Northern and Central Section Fauna 4 Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx BORR Northern and Central Section Fauna BORR Northern and Central Section Fauna Contents 1.0 Executive Summary 9 1.1 Introduction 9 1.2 Methods
    [Show full text]
  • Prawn Killer (Prk) 1. Fishery Summary
    PRAWN KILLER (PRK) PRAWN KILLER (PRK) (Ibacus alticrenatus) 1. FISHERY SUMMARY 1.1 Commercial fisheries Prawn killer (Ibacus alticrenatus) was introduced to the Quota Management System on 1 October 2007, with a combined TAC of 37.4 t and TACC of 36 t. There are no allowances for customary non- commercial or recreational fisheries, and 1.4 t was allowed for other sources of mortality. PRK is almost all taken as a bycatch in the scampi target trawl fishery in SCI 1 and SCI 2. Reported catches have ranged from 0 to 24 t in PRK 1 with a maximum of 42 t in 1992–93. The greatest catch outside of PRK 1 is in PRK 2 with a maximum reported catch of 8 t in 2002–03 (Table 1). Catch and landings data are likely to be unreliable due to unreported discarding. Table 1: TACCs and reported landings (t) of Prawn killer by Fishstock from 1990–91 to 2007–08 from CELR and CLR data. FMAs are shown as defined in 2007-08. PRK 1 PRK 2 PRK 3 PRK 4A PRK 5 PRK 6A Fishstock Landings TACC Landings TACC Landings TACC Landings TACC Landings TACC Landings TACC 1990–91 11.59 – 0 – 0 – 0 – 0 – 0 – 1991–92 3.34 – 0.48 – 0 – 0 – 0 – 0 – 1992–93 42.24 – 6.86 – 0 – 0 – 0 – 0 – 1993–94 10.95 – 0.03 – 0 – 0 – 0 – 0 – 1994–95 0.52 – 0 – 0 – 0 – 0 – 0 – 1995–96 1.78 – 0 – 0 – 0 – 0 – 0 – 1996–97 23.13 – 0 – 0 – 0 – 0 – 0 – 1997–98 0 – 0 – 0 – 0 – 0 – 0 – 1998–99 0 – 0.19 – 0 – 0 – 0 – 0 – 1999–00 0.08 – 0 – 0 – 0 – 0 – 0 – 2000–01 0 – 0 – 0 – 0 – 0 – 0 – 2001–02 6.05 – 0.37 – 0 – 0 – 0 – 0 – 2002–03 20.99 – 8.09 – 0 – 0 – 0 – 0 – 2003–04 24.35 – 0.57 – 0.01 – 0.01 – 0 – 0 – 2004–05
    [Show full text]