Coorong Outfall. Three Assemblage Types Are Identified at a Bray-Curtis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Marine Ecology
Appendix T Appendix T Marine ecology January 2020 Roads and Maritime Services Western Harbour Tunnel and Warringah Freeway Upgrade Technical working paper: Marine ecology January 2020 Prepared for Roads and Maritime Prepared by Cardno (NSW/ACT) Pty Ltd © Roads and Maritime The concepts and information contained in this document are the property of Roads and Maritime Services. You must not reproduce any part of this document without the prior written approval of Roads and Maritime Services. Table of Contents Executive Summary 1 1 Introduction 11 1.1 Overview 11 1.2 The project 11 1.3 Key construction activities 16 1.4 Project location 19 1.5 Purpose of this report 19 1.6 Secretary’s environmental assessment requirements 19 1.7 Avoid and minimise 19 1.8 Legislative context 20 1.9 Previous investigations for the project 21 1.10 Other project investigations 21 1.11 Definitions 22 2 Methods 24 2.1 Overview 24 2.2 Personnel 25 2.3 Background research 26 2.4 Field survey 26 2.5 Data analyses 31 2.6 Limitations 32 2.7 Impact assessment (including risk analysis) 33 3 Existing environment overview 36 3.1 Geology and socio-economics 36 3.2 Coastal processes and hydrology 36 3.3 Sediment properties 36 3.4 Water quality 38 3.5 Marine habitat types and communities 39 3.6 Threatened ecological communities 67 3.7 Critical habitat 67 3.8 Threatened marine species and endangered populations 67 3.9 Protected marine species 72 3.10 Matters of National Environmental Significance (MNES) 74 3.11 Wetlands and conservation areas 75 3.12 Key threatening processes -
Wallaroo Common User Export Facility Marine Ecological Assessment
Wallaroo Common User Export Facility Marine Ecological Assessment Report for T-Ports Pty Ltd J Diversity Pty Ltd Rev 0, October 2020 Wallaroo Marine Ecological Assessment, October 2020 Cover photo: seagrass swimmer crab Nectocarcinus integrifrons in Posidonia sinuosa seagrass habitat. Photo: J. Brook, June 2020. Disclaimer The findings and opinions expressed in this publication are those of the author and do not necessarily reflect those of T-Ports Pty Ltd. While reasonable efforts have been made to ensure the contents of this report are factually correct, the author does not accept responsibility for the accuracy and completeness of the contents. The author does not accept liability for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report. Revision history Rev Date Comment Author Reviewed A 19/08/2020 Initial Draft J. Brook M. Richardson B 10/09/2020 Modified according to review J. Brook M. Richardson C 21/09/2020 Modified according to review J. Brook M. Richardson and new information D 2/10/2020 Issued to client for circulation J. Brook 2 Wallaroo Marine Ecological Assessment, October 2020 Table of Contents 1 Introduction ....................................................................................................................................7 2 Methods..........................................................................................................................................8 2.1 Habitat mapping .....................................................................................................................8 -
Targeted Fauna Assessment.Pdf
APPENDIX H BORR North and Central Section Targeted Fauna Assessment (Biota, 2019) Bunbury Outer Ring Road Northern and Central Section Targeted Fauna Assessment Prepared for GHD December 2019 BORR Northern and Central Section Fauna © Biota Environmental Sciences Pty Ltd 2020 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 1463 Prepared by: V. Ford, R. Teale J. Keen, J. King Document Quality Checking History Version: Rev A Peer review: S. Ford Director review: M. Maier Format review: S. Schmidt, M. Maier Approved for issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx 3 BORR Northern and Central Section Fauna 4 Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx BORR Northern and Central Section Fauna BORR Northern and Central Section Fauna Contents 1.0 Executive Summary 9 1.1 Introduction 9 1.2 Methods -
(TAIL-POUCH) GENERA SYNGNATHUS, LEPTONOTUS and HISTIOGAMPHELUS by C
https://doi.org/10.24199/j.mmv.1984.45.05 30 September 1984 SYNOPSIS OF AUSTRALIAN PIPEFISHES USUALLY REFERRED TO THE SYNGNATHINE (TAIL-POUCH) GENERA SYNGNATHUS, LEPTONOTUS AND HISTIOGAMPHELUS By C. E. Dawson Gulf Coast Research Laboratory Museum, Ocean Springs, MS 39564 U.S.A. Abstract Twelve Australian species, usually referred to the syngnathine genera Syngnathus and Leptonotus, are referred to five genera (Parasyngnathus, Vanacampus, Pugnaso, Kaupus, Mitotichthys), and two species are recognized in the genus Histiogamphelus. Representatives of Leptonotus and Syngnathus are presently unknown from Australia. Treated taxa share the same configuration of principal body ridges (discontinuous lateral trunk and tail ridges, confluent inferior trunk and tail ridges), but differ in the mor- phology of the brood pouch, in the development of certain ridges on the head and in other features. Parasyngnathus Duncker (with opercular ridge, pouch plates, everted pouch closure) includes the type- species, P. penicillus (Cantor), a senior synonym of P. argyrostictus (Kaup), and P. parvicarinatus (Dawson). Vanacampus Whitley (with opercular ridge and semi pouch closure, without pouch plates) in- cludes the type-species, V. vercoi (Waite and Hale), and three congeners, V. margarilifer (Peters), V. phillipi (Lucas) and V. poecilolaemus (Peters). The monotypic Pugnaso Whitley [type-species: P. cur- tirostris (Castelnau)] lacks the opercular ridge and pouch plates and has the semi pouch closure. Kaupus Whitley, also monotypic [type-species: K. costatus (Waite and Hale)], has an opercular ridge, pouch plates, everted pouch closure and a trunk that is exceptionally deep in adult females. Mitotichthys Whitley (without opercular ridge, with elevated dorsal-fin base, with or without vestigial pouch plates, with everted pouch closure) includes the type-species, M. -
Canning Estuary
DDeevveellooppmmeenntt ooff bbiioottiicc iinnddiicceess ffoorr eessttaabblliisshhiinngg aanndd mmoonniittoorriinngg eeccoossyysstteemm hheeaalltthh ooff tthhee SSwwaann-- CCaannnniinngg EEssttuuaarryy FINAL TECHNICAL REPORT May 2011 Valesini, F.J., Hallett, C.S., Cottingham, A., Hesp, S.A., Hoeksema, S.D., Hall, N.G., Linke, T.E., Buckland, A.J. Prepared for the Swan River Trust, Department of Water and Department of Fisheries 1 2 Development of biotic indices for establishing and monitoring ecosystem health of the Swan- Canning Estuary FINAL TECHNICAL REPORT May 2011 Valesini, F.J., Hallett, C.S., Cottingham, A., Hesp, S.A., Hoeksema, S.D., Hall, N.G., Linke, T.E., Buckland, A.J. Prepared for the Swan River Trust, Department of Water and Department of Fisheries 3 4 Disclaimer The authors have prepared this report in accordance with the usual care and thoroughness of the Centre for Fish and Fisheries Research (CFFR) for the use by the Swan River Trust (SRT), Department of Water (DoW) and Department of Fisheries (DoF) and only those third parties who have been authorised in writing by the CFFR to rely on the report. It is based on generally accepted practices and standards at the time it was prepared. No other warranty, expressed or implied, is made as to the professional advice included in this report. It is prepared in accordance with the scope of work and for the purpose required by the SRT, DoW and DoF. The methodology adopted and sources of information used by the authors are outlined in this report. The authors have made no independent verification of this information beyond the agreed scope of works, and they assume no responsibility for any inaccuracies or omissions. -
Marine Ecology Progress Series 587:17
The following supplements accompany the article Short food chains, high connectance and a high rate of cannibalism in food web networks of small intermittent estuaries Vanessa Mendonça, Catarina Vinagre* *Corresponding author: [email protected] Marine Ecology Progress Series 587: 17–30 (2018) Supplement 1 Table S1 – List of all taxa identified in the estuaries. Taxa Portugal - Aljezur Chlorophyta Ochrophyta Rhodophyta Neosabellides sp. Alkmaria romijni Capitella capitata Pygospio elegans Streblospio shrubsolii Hediste diversicolor Eteone sp. Oligochaeta Peringia ulvae Ecrobia ventrosa Semelidae Scrobicularia plana Moerella donacina Corophium orientale Gammarus chevreuxi Cyathura carinata Gnathiidae Paragnathia formica Lekanesphaera hookeri Carcinus maenas Phoronida Anguilla anguilla Atherina boyeri Atherina presbyter Engraulis encrasicolus Chelon labrosus Liza aurata Liza ramada Dicentrarchus labrax Diplodus sargus Sparus aurata 1 Taxa Gobius niger Pomatoschistus microps Solea senegalensis Solea solea Syngnathus acus Portugal - Bensafrim Chlorophyta Ochrophyta Rhodophyta Nematoda Alkmaria romijni Capitellidae Capitella capitata Pygospio elegans Streblospio shrubsolii Polydora sp. Magelona papillicornis Hediste diversicolor Mysta picta Oligochaeta Peringia ulvae Hydrobia acuta Cerastoderma sp. Scrobicularia plana Heterotanais oerstedii Cyathura carinata Paragnathia formica Palaemon elegans Ostracoda Insecta Atherina boyeri Chelon labrosus Liza aurata Liza ramada Liza spp. Dicentrarchus labrax Diplodus bellottii Diplodus sargus Diplodus -
The Dynamics of Male Brooding, Mating Patterns, and Sex Roles in Pipefishes and Seahorses (Family Syngnathidae)
Evolution, 57(6), 2003, pp. 1374±1386 THE DYNAMICS OF MALE BROODING, MATING PATTERNS, AND SEX ROLES IN PIPEFISHES AND SEAHORSES (FAMILY SYNGNATHIDAE) ANTHONY B. WILSON,1,2 INGRID AHNESJOÈ ,3 AMANDA C. J. VINCENT,4,5 AND AXEL MEYER1,6 1Department of Biology, University of Konstanz, 78457 Konstanz, Germany 3Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, NorbyvaÈgen 18D, S-752 36 Uppsala, Sweden 4Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada 6E-mail: [email protected] Abstract. Modern theory predicts that relative parental investment of the sexes in their young is a key factor responsible for sexual selection. Seahorses and pipe®shes (family Syngnathidae) are extraordinary among ®shes in their remarkable adaptations for paternal care and frequent occurrences of sex-role reversals (i.e., female-female competition for mates), offering exceptional opportunities to test predictions of sexual selection theory. During mating, the female transfers eggs into or onto specialized egg-brooding structures that are located on either the male's abdomen or its tail, where they are osmoregulated, aerated, and nourished by specially adapted structures. All syngnathid males exhibit this form of parental care but the brooding structures vary, ranging from the simple ventral gluing areas of some pipe®shes to the completely enclosed pouches found in seahorses. We present a molecular phylogeny that indicates that the di- versi®cation of pouch types is positively correlated with the major evolutionary radiation of the group, suggesting that this extreme development and diversi®cation of paternal care may have been an important evolutionary innovation of the Syngnathidae. -
Downloaded on 23 August 2010
EVOLUTIONARY MORPHOLOGY OF THE EXTREMELY SPECIALIZED FEEDING APPARATUS IN SEAHORSES AND PIPEFISHES (SYNGNATHIDAE) Part l - Text Thesis submitted to obtain the degree Academiejaar 2010-2011 of Doctor in Sciences (Biology) Proefschrift voorgedragen tot het Rector: Prof. Dr. Paul van Cauwenberge bekomen van de graad van Doctor Decaan: Prof. Dr. Herwig Dejonghe in de Wetenschappen (Biologie) Promotor: Prof. Dr. Dominique Adriaens EVOLUTIONARY MORPHOLOGY OF THE EXTREMELY SPECIALIZED FEEDING APPARATUS IN SEAHORSES AND PIPEFISHES (SYNGNATHIDAE) Part l - Text Heleen Leysen Thesis submitted to obtain the degree Academiejaar 2010-2011 of Doctor in Sciences (Biology) Proefschrift voorgedragen tot het Rector: Prof. Dr. Paul van Cauwenberge bekomen van de graad van Doctor Decaan: Prof. Dr. Herwig Dejonghe in de Wetenschappen (Biologie) Promotor: Prof. Dr. Dominique Adriaens R e a d in g * a n d examination c o m m it t e e Prof. Dr. Luc Lens, voorzitter (Universiteit Gent, BE) Prof. Dr. Dominique Adriaens, promotor (Universiteit Gent, BE) Prof. Dr. Peter Aerts (Universiteit Antwerpen & Universiteit Gent, BE)* Prof. Dr. Patricia Hernandez (George Washington University, USA)* Dr. Anthony Herrei (Centre National de la Recherche Scientifique, FR)* Dr. Bruno Frédérich (Université de Liège, BE) Dr. Tom Geerinckx (Universiteit Gent, BE) Dankwoord Het schrijven van dit doctoraat was me niet gelukt zonder de hulp, raad en steun van een aantal mensen. Een woord van dank is hier dan ook gepast. Allereerst wil ik Prof. Dr. Dominique Adriaens bedanken voor alles wat hij de afgelopen jaren voor mij heeft gedaan. Er zijn veel zaken die het goede verloop van een doctoraat bepalen en de invloed van de promotor is volgens mij een niet te onderschatten factor. -
Bayesian Node Dating Based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes
Supporting Information Bayesian Node Dating based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes Michael Matschiner,1,2y Zuzana Musilov´a,2,3 Julia M. I. Barth,1 Zuzana Starostov´a,3 Walter Salzburger,1,2 Mike Steel,4 and Remco Bouckaert5,6y Addresses: 1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 2Zoological Institute, University of Basel, Basel, Switzerland 3Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic 4Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand 5Department of Computer Science, University of Auckland, Auckland, New Zealand 6Computational Evolution Group, University of Auckland, Auckland, New Zealand yCorresponding author: E-mail: [email protected], [email protected] 1 Supplementary Text 1 1 Supplementary Text Supplementary Text S1: Sequencing protocols. Mitochondrial genomes of 26 cichlid species were amplified by long-range PCR followed by the 454 pyrosequencing on a GS Roche Junior platform. The primers for long-range PCR were designed specifically in the mitogenomic regions with low interspecific variability. The whole mitogenome of most species was amplified as three fragments using the following primer sets: for the region between position 2 500 bp and 7 300 bp (of mitogenome starting with tRNA-Phe), we used forward primers ZM2500F (5'-ACG ACC TCG ATG TTG GAT CAG GAC ATC C-3'), L2508KAW (Kawaguchi et al. 2001) or S-LA-16SF (Miya & Nishida 2000) and reverse primer ZM7350R (5'-TTA AGG CGT GGT CGT GGA AGT GAA GAA G-3'). The region between 7 300 bp and 12 300 bp was amplified using primers ZM7300F (5'-GCA CAT CCC TCC CAA CTA GGW TTT CAA GAT GC-3') and ZM12300R (5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3'). -
BORR Northern and Central Section Targeted Fauna Assessment (Biota 2019A) – Part 3 (Part 7 of 7) BORR Northern and Central Section Fauna
APPENDIX E BORR Northern and Central Section Targeted Fauna Assessment (Biota 2019a) – Part 3 (part 7 of 7) BORR Northern and Central Section Fauna 6.0 Conservation Significant Species This section provides an assessment of the likelihood of occurrence of the target species and other conservation significant vertebrate fauna species returned from the desktop review; that is, those species protected by the EPBC Act, BC Act or listed as DBCA Priority species. Appendix 1 details categories of conservation significance recognised under these three frameworks. As detailed in Section 4.2, the assessment of likelihood of occurrence for each species has been made based on availability of suitable habitat, whether it is core or secondary, as well as records of the species during the current or past studies included in the desktop review. Table 6.1 details the likelihood assessment for each conservation significant species. For those species recorded or assessed as having the potential to occur within the study area, further species information is provided in Sections 6.1 and 6.2. 72 Cube:Current:1406a (BORR Alternate Alignments North and Central):Documents:1406a Northern and Central Fauna Rev0.docx BORR Northern and Central Section Fauna This page is intentionally left blank. Cube:Current:1406a (BORR Alternate Alignments North and Central):Documents:1406a Northern and Central Fauna Rev0.docx 73 BORR Northern and Central Section Fauna Table 6.1: Conservation significant fauna returned from the desktop review and their likelihood of occurrence within the study area. ) ) ) 2014 2013 ( ( Marri/Eucalyp Melaleuca 2015 ( Listing ap tus in woodland and M 2012) No. -
Referral of Proposed Action Form
Referral of proposed action Proposed Kangaroo Island Plantation Timbers Ltd action title: Smith Bay Wharf Development 1 Summary of proposed action 1.1 Short description Following a recently-announced acquisition, Kangaroo Island Plantation Timbers Ltd (KIPT) will own and manage approximately 19,500 ha of timber plantations on Kangaroo Island, much of which is either already mature or is approaching maturity. In order to export harvested plantation timber to overseas markets KIPT proposes to build a deep-water wharf at Smith Bay on the north coast of Kangaroo Island (Figure 1). There is no such facility on the island at present. The facility will consist of a hardstand causeway extending approximately 200 m into the sea to a floating pontoon berth whose outer edge will be positioned at the 10 m depth contour (i.e. approximately 230 m from shore). It is not anticipated that specialised equipment will be required at the wharf as logs will be loaded by ships’ cranes. Timber will be stockpiled on-shore adjacent to the wharf facilities over an area of approximately 5.6 ha. Ancillary services will include power, water, septic/sewerage facilities, telecommunications and security. Harvested timber will be transported to the wharf via public roads using semi-trailer trucks. KIPT is committed to developing the wharf as a multi-user, multi-cargo facility. Other freight, which is likely to be containerised and/or carried as deck cargo, will also be loaded using ships’ cranes. It is anticipated that log ships would use the wharf for about 50 to 75 days a year and would have priority over other vessels. -
Syngnathiformes) Using Ultraconserved Elements ⇑ S.J
Molecular Phylogenetics and Evolution 113 (2017) 33–48 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements ⇑ S.J. Longo a, , B.C. Faircloth b, A. Meyer c, M.W. Westneat d, M.E. Alfaro e, P.C. Wainwright a a Department of Evolution and Ecology, University of California, Davis, CA 95616, USA b Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA c Department of Biology, University of Konstanz, D-78457 Konstanz, Germany d Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA e Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA article info abstract Article history: Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeat- Received 12 December 2016 able rearrangements of clades that were previously thought to be disparate lineages. One of the most Revised 3 May 2017 unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Accepted 4 May 2017 Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Available online 6 May 2017 Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic- associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed Keywords: across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies Phylogenomics utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Ultraconserved elements Syngnathiformes Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued Syngnathidae by low support at deep divergences between the major lineages.