18: Focal Group: Syngnathid Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Does Plant Morphology Influence Fish Fauna Associated with Seagrass Meadows?
Edith Cowan University Research Online Theses : Honours Theses 2002 Does plant morphology influence fish fauna associated with seagrass meadows? Michael C. Burt Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Marine Biology Commons Recommended Citation Burt, M. C. (2002). Does plant morphology influence fish fauna associated with seagrass meadows?. https://ro.ecu.edu.au/theses_hons/568 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/568 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. -
A New Pipefish from Queensland
A NEW PIPEFISH FROM QUEENSLAND. By A. FRASER-BRUNNER, F.Z.S., British Museum (Natural History), and G. P. WHITLEY, F.R.Z.S., Curator of Fishes, Australian Museum. (Figures 1-2.) When drawing some types of Australian fishes in the British Museum, the senior author found a specimen of a Queensland Pipefish which did not agree with Gunther's , type (from Suez) of the species (Acentronura tentaculata) with which it had been previously ~ssociated .(Duncker, 1915; McCulloch and Whitley, 1925; Dollfus and Petit, 1938). He prepared a description and figure of the specimen, and sent them to the junior author, who studied the fish in relation to the literature and made taxonomic comparisons with its congeners. The specimen is considered to belong to a new species. Family SYNGNATHIDAE. Genus ACENTRONURA Kaup, 1853. Acentronura breviperula, sp. novo (Figure 1.) Length of head contained 2!! times in head plus trunk. Snout equal to diameter of eye, half as long as postorbital part of head. Tail about 1~ times length of combined head and trunk. Thirteen body rings; 42 tail rings, the first seven of which form the brood-pouch. Dorsal fin on 4!! rings, two of which are caudal. Dorsal rays 16; pectoral 15. Dermal filaments as shown in figure 1; larger filaments generally on each fourth ring. General characters of the genus as defined by the authors Q.uoted in the list of references below, and as figured. Figure l.-Acentronura breviperula Fraser-Brunner and Whitley. Holoty'pe from Mabuiag, Torres Strait, Queensland. A. Fraser-Brunner, del. Described and figured from the holotype, a specimen about 35 mm. -
Download Complete Work
AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Fraser-Brunner, A., and Gilbert P. Whitley, 1949. A new pipefish from Queensland. Records of the Australian Museum 22(2): 148–150. [18 January 1949]. doi:10.3853/j.0067-1975.22.1949.595 ISSN 0067-1975 Published by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia A NEW PIPEFISH FROM QUEENSLAND. By A. FRASER-BRUNNER, F.Z.S., British Museum (Natural History), and G. P. WHITLEY, F.R.Z.S., Curator of Fishes, Australian Museum. (Figures 1-2.) When drawing some types of Australian fishes in the British Museum, the senior author found a specimen of a Queensland Pipefish which did not agree with Gunther's , type (from Suez) of the species (Acentronura tentaculata) with which it had been previously ~ssociated .(Duncker, 1915; McCulloch and Whitley, 1925; Dollfus and Petit, 1938). He prepared a description and figure of the specimen, and sent them to the junior author, who studied the fish in relation to the literature and made taxonomic comparisons with its congeners. The specimen is considered to belong to a new species. Family SYNGNATHIDAE. Genus ACENTRONURA Kaup, 1853. Acentronura breviperula, sp. novo (Figure 1.) Length of head contained 2!! times in head plus trunk. Snout equal to diameter of eye, half as long as postorbital part of head. Tail about 1~ times length of combined head and trunk. Thirteen body rings; 42 tail rings, the first seven of which form the brood-pouch. Dorsal fin on 4!! rings, two of which are caudal. -
Observations on Some Tasmanian Fishes: Part Ix
PAPERS AND PROCEEDINGS OF THE ROYAL SOCIETY OF TASMANIA, VOLUME 94 OBSERVATIONS ON SOME TASMANIAN FISHES: PART IX By E. O. G. SCOTT One text figure ABSTRACT West Coast '. Again, Bridport, Lat. 41 0 01' S., Long. A case of mass mortality in Navodon setosus 147 0 23' E., and st. Helens, Lat. 41 0 20' S., Long. (Waite), 1899 [Aluteridae], a species now first 148 0 14' E., are approximately equidistant-west formally recorded from Tasmania, is reported: ward, southward, respectively-from Cape Port land; yet the former is a 'North East Coast', the some features of two juveniles are described and 0 figured. Taxonomic data on Mitotichthys tuckeri latter an 'East Coast " town: Stanley, Lat. 40 (Scott), 1942 [Syngnathidae], hitherto known 47' S., Long. 145 0 19' E., which stands in about the only from the holotype, are extended by an account same relation to Cape Grim as Bridport does to of two virtual topotypes. Miscellaneous observations Cape Portland, belongs to the' Far North West '. are made on Stigmatopora argus (Richardson), Entries in tables of synonymy, particularly 1840 [Syngnathidae] (status of several species citations from the earlier authors, are not neces commonly reduced to synonymy); Lampris regius sarily identical with the originals in point of typo (Bonnaterre), 1788 [Lampridae] (third Tasmanian graphical detail (earlier employment of initial record; dimensions) ; Dactylosargus arctidens capitals for some trivial names; no general, cr (Richardson), 1839 [Aplodactylidae] (differences indescriminate use of parentheses; and so on); from published accounts and figures; general being rendered in a standard pattern in accord observations); Lepidopus caudatus Euphrasen), with contemporary conventions. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night. -
Environment Plan Appendices
ENVIRONMENT PLAN APPENDICES NON-PRODUCTION WELL OPERATIONS ENVIRONMENT PLAN (WHITE IBIS-1, TREFOIL-1 AND YOLLA-1) Table of Contents Title 1 Assessment of the activity against the aims of marine park management plans 2 Assessment of the activity against the aims of threatened species’ management plans 3 Project information sheet 4 Stakeholder communications 5 AHO Notice to Mariners 6 EPBC Act Protected Matters Search Tool results Appendix 1 Assessment of the activity against the management aims of marine park management plans Assessment of the activity against the aims of protected area management plans COMMONWEALTH 1a South-east Commonwealth Marine Reserves Network 1b The National Light Pollution Guidelines for Wildlife Assessment of the activity against the stated management strategies and actions of the South-east Commonwealth Marine Reserves Network Management Plan 2013-2023 (DNP, 2013) The table below provides an assessment of the routine and non-routine operations against the IUCN objectives outlined in the Australian IUCN Reserve Management Principles for Commonwealth Marine Protected Areas (Environment Australia, 2002). Zonation of relevant AMP based on IUCN categories IUCN Ia IUCN Ib IUCN II IUCN III IUCN IV IUCN V IUCN VI Boags - - - - - - Note: Only Category IUCN VI AMPs are relevant to the activity. As such, only the Category IUCN VI management principles are assessed. Category IUCN 1994 IUCN 1994 primary Australian IUCN reserve management Predicted consequences from routine activities or a category objective principles (Schedule 8 of the EPBC worst-case hydrocarbon spill description Regulations 2000) IUCN VI Area containing To protect natural The reserve or zone should be managed Routine discharges from the vessel will not impact on the Managed predominantly ecosystems and use mainly for the sustainable use of natural AMPs. -
Great Australian Bight BP Oil Drilling Project
Submission to Senate Inquiry: Great Australian Bight BP Oil Drilling Project: Potential Impacts on Matters of National Environmental Significance within Modelled Oil Spill Impact Areas (Summer and Winter 2A Model Scenarios) Prepared by Dr David Ellis (BSc Hons PhD; Ecologist, Environmental Consultant and Founder at Stepping Stones Ecological Services) March 27, 2016 Table of Contents Table of Contents ..................................................................................................... 2 Executive Summary ................................................................................................ 4 Summer Oil Spill Scenario Key Findings ................................................................. 5 Winter Oil Spill Scenario Key Findings ................................................................... 7 Threatened Species Conservation Status Summary ........................................... 8 International Migratory Bird Agreements ............................................................. 8 Introduction ............................................................................................................ 11 Methods .................................................................................................................... 12 Protected Matters Search Tool Database Search and Criteria for Oil-Spill Model Selection ............................................................................................................. 12 Criteria for Inclusion/Exclusion of Threatened, Migratory and Marine -
2219573-REP-Marine Assessment Report AR
Appendix L – Marine Assessment GHD | Report for Hunter Water Corporation - Belmont Drought Response Desalination Plant, 2219573 Hunter Water Corporation Belmont Drought Response Desalination Plant Marine Environment Assessment Amendment Report July 2020 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose and structure of this report .................................................................................... 2 2. Project changes ............................................................................................................................. 4 2.1 Overview .............................................................................................................................. 4 2.2 Key features of the amended Project .................................................................................. 4 3. Methodology ................................................................................................................................... 7 3.1 Review of relevant legislation .............................................................................................. 7 3.2 Review of databases and searches ..................................................................................... 7 3.3 Review of previous marine ecology reports ........................................................................ -
Assessment of Inshore Habitats Around Tasmania for Life History
National Library of Australia Cataloguing-in-Publication Entry Jordan, Alan Richard, 1964- Assessment of inshore habitats around Tasmania for life-history stages of commercial finfish species Bibliography ISBN 0 646 36875 3. 1. Marine fishes - Tasmania - Habitat. 2. Marine fishes - Tasmania - Development. I. Jordan, Alan, 1964 - . II. Tasmania Aquaculture and Fisheries Institute. 597.5609946 Published by the Marine Research Laboratories - Tasmanian Aquaculture and Fisheries Institute, University of Tasmania 1998 Tasmanian Aquaculture and Fisheries Institute Marine Research Laboratories Taroona, Tasmania 7053 Phone: (03) 6227 7277 Fax: (03) 62 27 8035 The opinions expressed in this report are those of the author and are not necessarily those of the Marine Research Laboratories or the Tasmanian Aquaculture and Fisheries Institute. ASSESSMENT OF INSHORE HABITATS AROUND TASMANIA FOR LIFE-HISTORY STAGES OF COMMERCIAL FINFISH SPECIES A.R. Jordan, D.M. Mills, G. Ewing and J.M. Lyle December 1998 FRDC Project No. 94/037 Tasmanian Aquaculture and Fisheries Institute Marine Research Laboratories Assessment of inshore habitats for finfish in Tasmania 94/037 Assessment of inshore habitats around Tasmania for life-history stages of commercial finfish species. PRINCIPAL INVESTIGATORS: Dr A. R. Jordan and Dr J. M. Lyle ADDRESS: Tasmanian Aquaculture and Fisheries Institute Marine Research Laboratories Taroona, Tasmania 7053 Phone: (03) 62 277 277 Fax: (03) 62 278 035 Email: [email protected] OBJECTIVES: 1. To determine the abundance and distribution of commercial fish species associated with selected inshore soft-bottom habitats around Tasmania. 2. To categorise the habitat types in these areas and determine the size/age structure of commercial fish species by habitat as a means of assessing the critical habitat requirements of such species. -
Trade in Seahorses and Other Syngnathids in Countries Outside Asia (1998-2001)
ISSN 1198-6727 Fisheries Centre Research Reports 2011 Volume 19 Number 1 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) Fisheries Centre, University of British Columbia, Canada Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) 1 Edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster Fisheries Centre Research Reports 19(1) 181 pages © published 2011 by The Fisheries Centre, University of British Columbia 2202 Main Mall Vancouver, B.C., Canada, V6T 1Z4 ISSN 1198-6727 1 Cite as: Vincent, A.C.J., Giles, B.G., Czembor, C.A., and Foster, S.J. (eds). 2011. Trade in seahorses and other syngnathids in countries outside Asia (1998-2001). Fisheries Centre Research Reports 19(1). Fisheries Centre, University of British Columbia [ISSN 1198-6727]. Fisheries Centre Research Reports 19(1) 2011 Trade in seahorses and other syngnathids in countries outside Asia (1998-2001) edited by Amanda C.J. Vincent, Brian G. Giles, Christina A. Czembor and Sarah J. Foster CONTENTS DIRECTOR ’S FOREWORD ......................................................................................................................................... 1 EXECUTIVE SUMMARY ............................................................................................................................................. 2 Introduction ..................................................................................................................................................... 2 Methods ........................................................................................................................................................... -
Marine Ecology
Appendix T Appendix T Marine ecology January 2020 Roads and Maritime Services Western Harbour Tunnel and Warringah Freeway Upgrade Technical working paper: Marine ecology January 2020 Prepared for Roads and Maritime Prepared by Cardno (NSW/ACT) Pty Ltd © Roads and Maritime The concepts and information contained in this document are the property of Roads and Maritime Services. You must not reproduce any part of this document without the prior written approval of Roads and Maritime Services. Table of Contents Executive Summary 1 1 Introduction 11 1.1 Overview 11 1.2 The project 11 1.3 Key construction activities 16 1.4 Project location 19 1.5 Purpose of this report 19 1.6 Secretary’s environmental assessment requirements 19 1.7 Avoid and minimise 19 1.8 Legislative context 20 1.9 Previous investigations for the project 21 1.10 Other project investigations 21 1.11 Definitions 22 2 Methods 24 2.1 Overview 24 2.2 Personnel 25 2.3 Background research 26 2.4 Field survey 26 2.5 Data analyses 31 2.6 Limitations 32 2.7 Impact assessment (including risk analysis) 33 3 Existing environment overview 36 3.1 Geology and socio-economics 36 3.2 Coastal processes and hydrology 36 3.3 Sediment properties 36 3.4 Water quality 38 3.5 Marine habitat types and communities 39 3.6 Threatened ecological communities 67 3.7 Critical habitat 67 3.8 Threatened marine species and endangered populations 67 3.9 Protected marine species 72 3.10 Matters of National Environmental Significance (MNES) 74 3.11 Wetlands and conservation areas 75 3.12 Key threatening processes -
An Examination of the Population Dynamics of Syngnathid Fishes Within Tampa Bay, Florida, USA
Current Zoology 56 (1): 118−133, 2010 An examination of the population dynamics of syngnathid fishes within Tampa Bay, Florida, USA Heather D. MASONJONES1*, Emily ROSE1,2, Lori Benson McRAE1, Danielle L. DIXSON1,3 1 Biology Department, University of Tampa, Tampa, FL 33606, USA 2 Biology Department, Texas A & M University, College Station, TX 77843, USA 3 School of Marine and Tropical Biology, James Cook University, Townsville QLD 4811, AU Abstract Seagrass ecosystems worldwide have been declining, leading to a decrease in associated fish populations, especially those with low mobility such as syngnathids (pipefish and seahorses). This two-year pilot study investigated seasonal patterns in density, growth, site fidelity, and population dynamics of Tampa Bay (FL) syngnathid fishes at a site adjacent to two marinas un- der construction. Using a modified mark-recapture technique, fish were collected periodically from three closely located sites that varied in seagrass species (Thalassia spp., Syringodium spp., and mixed-grass sites) and their distance from open water, but had consistent physical/chemical environmental characteristics. Fish were marked, photographed for body size and gender measure- ments, and released the same day at the capture site. Of the 5695 individuals surveyed, 49 individuals were recaptured, indicating a large, flexible population. Population density peaks were observed in July of both years, with low densities in late winter and late summer. Spatially, syngnathid densities were highest closest to the mouth of the bay and lowest near the shoreline. Seven species of syngnathid fishes were observed, and species-specific patterns of seagrass use emerged during the study. However, only two species, Syngnathus scovelli and Hippocampus zosterae, were observed at high frequencies.