South-East Marine Region Profile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. -
LOCAL PROVISIONS SCHEDULE SUPPORTING REPORT April 2019
LOCAL PROVISIONS SCHEDULE SUPPORTING REPORT April 2019 Cover photograph: Coastal Vegetation Killiecrankie Bay Flinders Local Provisions Schedule Supporting Report Page 2 of 201 Agenda Attachments-Draft LPS (Tasmanian Planning Scheme) Contents 1.0 Introduction………………………………………………………………………………………6 2.0 LPS Criteria –LUPAA Section 34…………………………………………………………………..8 2.1 State Planning Provisions………………………………………………………………..8 2.2 Contents of LPSs-Section 32 of LUPAA…………………………………………………..9 2.2.1 Municipal Area……………………………………………………………...9 2.2.2 Mandatory requirements…………………………………………………..9 2.2.3 Spatial Application of the State Planning Provisions……………………… 9 2.2.4 Matters a Planning scheme may or may not regulate……………………10 2.2.5 Use of Overlays and Lists………………………………………………… 10 2.2.6 Land Reserved for Public Purposes……………………………………… 10 2.2.7 Application of the Detail of the SPP to a Particular Place……………… 10 2.2.8 Overriding Provisions…………………………………………………… 10 2.2.9 Modification of Application of SPPs……………………………………….11 2.2.10 Limitations of LPS………………………………………………………… 11 2.2.11 LPS may include……………………………………………………………11 2.3 LUPAA Schedule 1 Objectives………………………………………………………… 12 2.4 State Policies…………………………………………………………………………… 19 2.4.1 Tasmanian State Coastal Policy 1996………………………………………19 2.4.2 State Policy on the Protection of Agricultural Land 2009………………….22 2.4.3 State Policy on Water Quality Management 1997……………………… 23 2.4.4 National Environment Protection Measures……………………………….24 2.5 Northern Tasmania Regional Land Use Strategy……………………………………… 24 2.6 Flinders Council -
SPECIAL Victoria Government Gazette
Victoria Government Gazette No. S 279 Friday 18 August 2017 By Authority of Victorian Government Printer Fisheries Act 1995 FISHERIES NOTICE 2017 I, Travis Dowling, Chief Executive Officer of the Victorian Fisheries Authority, as delegate of the Minister for Agriculture and having undertaken consultation in accordance with section 3A of the Fisheries Act 1995 (the Act), make the following Fisheries Notice under sections 67, 68A, 114 and 152 of the Act: Dated 17 August 2017 TRAVIS DOWLING Chief Executive Officer FISHERIES (CENTRAL ABALONE ZONE – REVISED) NOTICE 2017 1. Title This Notice may be cited as the Fisheries (Central Abalone Zone – Revised) Notice 2017 2. Objectives The objective of this Notice is to: a. fix minimum size limits for blacklip abalone and greenlip abalone taken under an Abalone Fishery Access Licence in the central abalone zone. b. address sustainability concerns for Victorian Central Abalone Zone abalone stocks and related management issues by closing specified marine waters to commercial abalone harvest. 3. Authorising provision This Notice is made under sections 67, 68A, 114 and 152 of the Act. 4. Commencement This Notice comes into operation at the time it is published in the Victoria Government Gazette and the VFA website. 5. Revocation The Fisheries (Central Abalone Zone) Notice 2017 is revoked. 6. Definitions In this fisheries notice – ‘AFAL’ means an Abalone Fishery (Central Zone) Access Licence; ‘central abalone zone’ means all Victorian waters between longitude 142° 31ʹ East and longitude 148° East; ‘CEO’ -
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
1 Australian Tidal Currents – Assessment of a Barotropic Model
https://doi.org/10.5194/gmd-2021-51 Preprint. Discussion started: 14 April 2021 c Author(s) 2021. CC BY 4.0 License. Australian tidal currents – assessment of a barotropic model (COMPAS v1.3.0 rev6631) with an unstructured grid. David A. Griffin1, Mike Herzfeld1, Mark Hemer1 and Darren Engwirda2 1Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia 2Center for Climate Systems Research, Columbia University, New York City, NY, USA and NASA Goddard Institute for 5 Space Studies, New York City, NY, USA Correspondence to: David Griffin ([email protected]) Abstract. While the variations of tidal range are large and fairly well known across Australia (less than 1 m near Perth but more than 14 m in King Sound), the properties of the tidal currents are not. We describe a new regional model of Australian 10 tides and assess it against a validation dataset comprising tidal height and velocity constituents at 615 tide gauge sites and 95 current meter sites. The model is a barotropic implementation of COMPAS, an unstructured-grid primitive-equation model that is forced at the open boundaries by TPXO9v1. The Mean Absolute value of the Error (MAE) of the modelled M2 height amplitude is 8.8 cm, or 12 % of the 73 cm mean observed amplitude. The MAE of phase (10°), however, is significant, so the M2 Mean Magnitude of Vector Error (MMVE, 18.2 cm) is significantly greater. The Root Sum Square over the 8 major 15 constituents is 26% of the observed amplitude.. We conclude that while the model has skill at height in all regions, there is definitely room for improvement (especially at some specific locations). -
Rodondo Island
BIODIVERSITY & OIL SPILL RESPONSE SURVEY January 2015 NATURE CONSERVATION REPORT SERIES 15/04 RODONDO ISLAND BASS STRAIT NATURAL AND CULTURAL HERITAGE DIVISION DEPARTMENT OF PRIMARY INDUSTRIES, PARKS, WATER AND ENVIRONMENT RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 RODONDO ISLAND BASS STRAIT Biodiversity & Oil Spill Response Survey, January 2015 NATURE CONSERVATION REPORT SERIES 15/04 Natural and Cultural Heritage Division, DPIPWE, Tasmania. © Department of Primary Industries, Parks, Water and Environment ISBN: 978-1-74380-006-5 (Electronic publication only) ISSN: 1838-7403 Cite as: Carlyon, K., Visoiu, M., Hawkins, C., Richards, K. and Alderman, R. (2015) Rodondo Island, Bass Strait: Biodiversity & Oil Spill Response Survey, January 2015. Natural and Cultural Heritage Division, DPIPWE, Hobart. Nature Conservation Report Series 15/04. Main cover photo: Micah Visoiu Inside cover: Clare Hawkins Unless otherwise credited, the copyright of all images remains with the Department of Primary Industries, Parks, Water and Environment. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgement of the source and no commercial use or sale. Requests and enquiries concerning reproduction and rights should be addressed to the Branch Manager, Wildlife Management Branch, DPIPWE. Page | 2 RODONDO ISLAND – Oil Spill & Biodiversity Survey, January 2015 SUMMARY Rodondo Island was surveyed in January 2015 by staff from the Natural and Cultural Heritage Division of the Department of Primary Industries, Parks, Water and Environment (DPIPWE) to evaluate potential response and mitigation options should an oil spill occur in the region that had the potential to impact on the island’s natural values. Spatial information relevant to species that may be vulnerable in the event of an oil spill in the area has been added to the Australian Maritime Safety Authority’s Oil Spill Response Atlas and all species records added to the DPIPWE Natural Values Atlas. -
Variability in Ocean Currents Around Australia
State and Trends of Australia’s Oceans Report 1.4 Variability in ocean currents around Australia Charitha B. Pattiaratchi1,2 and Prescilla Siji1,2 1 Oceans Graduate School, The University of Western Australia, Perth, WA, Australia 2 UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia Summary Ocean currents also have a strong influence on marine ecosystems, through the transport of heat, nutrients, phytoplankton, zooplankton and larvae of most marine animals. We used geostrophic currents derived satellite altimetry measurements between 1993 and 2019 to examine the Kinetic Energy (KE, measure of current intensity) and Eddy Kinetic Energy (EKE, variability of the currents relative to a mean) around Australia. The East Australian (EAC) and Leeuwin (LC) current systems along the east and west coasts demonstrated strong seasonal and inter-annual variability linked to El Niño and La Niña events. The variability in the LC system was larger than for the EAC. All major boundary currents around Australia were enhanced during the 2011 La Niña event. Key Data Streams State and Trends of Australia’s Ocean Report www.imosoceanreport.org.au Satellite Remote Time-Series published Sensing 10 January 2020 doi: 10.26198/5e16a2ae49e76 1.4 I Cuirrent variability during winter (Wijeratne et al., 2018), with decadal ENSO Rationale variations affecting the EAC transport variability (Holbrook, Ocean currents play a key role in determining the distribution Goodwin, McGregor, Molina, & Power, 2011). Variability of heat across the planet, not only regulating and stabilising associated with ENSO along east coast of Australia appears climate, but also contributing to climate variability. Ocean to be weaker than along the west coast. -
National Recovery Plan for Threatened Albatrosses and Giant Petrels 2011-2016
National recovery plan for threatened albatrosses and giant petrels 2011-2016 National recovery plan for threatened albatrosses and giant petrels 2011-2016 © Commonwealth Department of Sustainability, Environment, Water, Population and Communities This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources but no commercial usage or sale. Requests and enquiries concerning reproduction and rights should be addressed to: Strategies Branch Australian Antarctic Division Department of Sustainability, Environment, Water, Population and Communities 203 Channel Highway KINGSTON TAS 7050 Citation Department of Sustainability, Environment, Water, Population and Communities (2011), National recovery plan for threatened albatrosses and giant petrels 2011-2016, Commonwealth of Australia, Hobart Acknowledgements This Plan was developed by the Australian Antarctic Division (AAD) of the Department of Sustainability, Environment, Water, Population and Communities. The AAD is grateful for the support of a wide range of organisations and individuals, who provided valuable information and assistance during the preparation of this Plan. Particular thanks to: - Ms Rachael Alderman and Dr Rosemary Gales from the Department of Primary Industries, Water and Environment, Tasmania; and - Mr Ian Hay, Ms Tara Hewitt, Dr Graham Robertson and Dr Mike Double of the AAD. Cover photograph: Light mantled albatross and chick, North Head, Macquarie Island, 2010; photographer Sarah Way, Tasmanian Department of Primary Industry, Parks, Water and Environment. i Introduction The first Recovery Plan for albatrosses and giant petrels was released in October 2001 in recognition of the need to develop a co-ordinated conservation strategy for albatrosses and giant petrels listed threatened under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act). -
Special Issue3.7 MB
Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird -
PETROLEUM SYSTEM of the GIPPSLAND BASIN, AUSTRALIA by Michele G
uses science for a changing world PETROLEUM SYSTEM OF THE GIPPSLAND BASIN, AUSTRALIA by Michele G. Bishop1 Open-File Report 99-50-Q 2000 This report is preliminary and has not been reviewed for conformity with the U. S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade names is for descriptive purposes only and does not imply endorsements by the U. S. government. U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Consultant, Wyoming PG-783, contracted to USGS, Denver, Colorado FOREWORD This report was prepared as part of the World Energy Project of the U.S. Geological Survey. In the project, the world was divided into 8 regions and 937 geologic provinces. The provinces have been ranked according to the discovered oil and gas volumes within each (Klett and others, 1997). Then, 76 "priority" provinces (exclusive of the U.S. and chosen for their high ranking) and 26 "boutique" provinces (exclusive of the U.S. and chosen for their anticipated petroleum richness or special regional economic importance) were selected for appraisal of oil and gas resources. The petroleum geology of these priority and boutique provinces is described in this series of reports. The purpose of this effort is to aid in assessing the quantities of oil, gas, and natural gas liquids that have the potential to be added to reserves within the next 30 years. These volumes either reside in undiscovered fields whose sizes exceed the stated minimum- field-size cutoff value for the assessment unit (variable, but must be at least 1 million barrels of oil equivalent) or occur as reserve growth of fields already discovered. -
Impact of Sea Level Rise on Coastal Natural Values in Tasmania
Impact of sea level rise on coastal natural values in Tasmania JUNE 2016 Department of Primary Industries, Parks, Water and Environment Acknowledgements Thanks to the support we received in particular from Clarissa Murphy who gave six months as a volunteer in the first phase of the sea level rise risk assessment work. We also had considerable technical input from a range of people on various aspects of the work, including Hans and Annie Wapstra, Richard Schahinger, Tim Rudman, John Church, and Anni McCuaig. We acknowledge the hard work over a number of years from the Sea Level Rise Impacts Working Group: Oberon Carter, Louise Gilfedder, Felicity Faulkner, Lynne Sparrow (DPIPWE), Eric Woehler (BirdLife Tasmania) and Chris Sharples (University of Tasmania). This report was compiled by Oberon Carter, Felicity Faulkner, Louise Gilfedder and Peter Voller from the Natural Values Conservation Branch. Citation DPIPWE (2016) Impact of sea level rise on coastal natural values in Tasmania. Natural and Cultural Heritage Division, Department of Primary Industries, Parks, Water and Environment, Hobart. www.dpipwe.tas.gov.au ISBN: 978-1-74380-009-6 Cover View to Mount Cameron West by Oberon Carter. Pied Oystercatcher by Mick Brown. The Pied Oystercatcher is considered to have a very high exposure to sea level rise under both a national assessment and Tasmanian assessment. Its preferred habitat is mudflats, sandbanks and sandy ocean beaches, all vulnerable to inundation and erosion. Round-leaved Pigface (Disphyma australe) in flower in saltmarsh at Lauderdale by Iona Mitchell. Three saltmarsh communities are associated with the coastal zone and are considered at risk from sea level rise. -
Newsletter 16 Xmas 2016
FRIENDSFRIENDS OFOF TASMAN ISLAND NEWSLETTERNEWSLETTER No. 1416 December,MAY, 2015 2016 Written & Compiled by Erika Shankley November has been a busy month for FoTI - read AWBF 2017 all about it in the following pages! FoTI, FoMI & FoDI will have a presence at next year’s Australian 2 Light between Oceans Wooden Boat Festival: 10—13 3 Tasman Landing February 2017. Keep these dates 4 24th Working bee free—more details as they come to 6 Tasmanian Lighthouse Conference hand. Carol’s story 8 Karl’s story SEE US ON THE WILDCARE WEB SITE 9 Pennicott Iron Pot cruise http://wildcaretas.org.au/ 10 Custodians of lighthouse paraphernalia Check out the latest news on the 11 Merchandise for sale Home page or click on Branches to 12 Parting Shot see FoTI’s Tasman Island web page. We wish everyone a happy and safe holiday FACEBOOK season and look forward to a productive year on A fantastic collection of anecdotes, Tasman Island in 2017. historical and up-to-date information and photos about Tasman and other lighthouses around the world. Have you got something to contribute, add Erika a comment or just click to like us! FoTI shares with David & Trauti Reynolds & their son Mark, much sadness in the death of their son Gavin after a long illness. Gavin’s memory is perpetuated in the design of FoTI’s logo. FILM: Light between Oceans Page 2 Early in November a few FoTI supporters joined members of the public at the State Cinema for the Hobart launch of the film Light between Oceans, a dramatisation of the book of the same name by ML Steadman.