AMAZON RIVER BASIN Integrated and Sustainable Management of Transboundary Water Resources in the Amazon River Basin

Total Page:16

File Type:pdf, Size:1020Kb

AMAZON RIVER BASIN Integrated and Sustainable Management of Transboundary Water Resources in the Amazon River Basin ORGANIZATION OF AMERICAN STATES Office for Sustainable Development & Environment WATER PROJECT SERIES, NUMBER 8 — OCTOBER 2005 AMAZON RIVER BASIN Integrated and Sustainable Management of Transboundary Water Resources in the Amazon River Basin INTEGRATED AND SUSTAINABLE MANAGEMENT OF TRANSBOUNDARY WATER RESOURCES IN THE AMAZON RIVER BASIN COUNTRIES: Bolivia, Brasil, Colombia, Ecuador, Guyana, Peru, Suriname and Venezuela IMPLEMENTING AGENCY: United Nations Environment Programme (UNEP) EXECUTING AGENCY: Organization of American States/ Office for Sustainable Development and Environment (OAS/OSDE) LOCAL EXECUTING AGENCY: Organization of the Amazon Cooperation Treaty (OTCA) PROJECT DURATION: 2005-2007 (PDF-B Phase) GEF GRANT: 0.7 US$ millions CO-FINANCING: 0.6 US$ millions UNEP/OAS: 0.15 US$ millions PROJECT COST: 1.45 US$ millions INTRODUCTION Negro, Xingú, Madeira, Tapajós, and Juruá subbasins. In terms The Amazon River Basin occupies the entire central and eastern of discharge, from a hydrological standpoint, an estimated 65% area of South America, lying to the east of the Andes mountain of the Basin’s total flows into the Atlantic Ocean comes from the range and extending from the Guyana Plateau in the north to Solimoes and Madeira river sub basins, originating in the Andes the Brazilian Plateau in the south. The Basin covers more than and comprising about 60% of the Basin’s land area. 6,100,000 km2, or 44% of the land area of the South American continent, extending into Bolivia, Brazil, Colombia, Ecuador, Most of the Basin is covered by tropical rainforest, accounting for Guyana, Peru, Suriname, and Venezuela. The Basin has widely more than 56% of all broad leaf forests in the world. Its ecosystems varying climatic and topographic characteristics, with elevations are characterized ranging from sea level at the River’s mouth, to an altitude of by great biodiver- 6,500 m in the Andes. sity, with more than 30,000 plant The Amazon River, which runs for approximately 7,100 km from species, nearly its source in Peru to the Atlantic Coast of Brazil, is the world’s 2,000 fish species, longest, widest, and deepest river. Its discharge of approximately 60 reptile species, 210,000 m_ per second exceeds the combined discharge of the 35 mammal world’s nine next largest rivers. The Amazon River system is families, and divided into 10 subbasins, the largest of which in area are the approximately 1 ORGANIZATION OF AMERICAN STATES Office for Sustainable Development & Environment 1,800 bird species. The Amazon River Basin is also an important n Water pollution and quality degradation, resulting mainly source of natural resources for human economic development. from the indiscriminate use of agricultural pesticides, control It contains some of the world’s largest known reserves of bauxite of illicit crops, dumping of solid wastes and inadequate water (nearly 15% of the world total), and industries within the use and wastewater treatment from populated areas. Basin are some of the largest suppliers of iron and steel to world markets. Wood and wood byproducts, gold, and tin are THE PROJECT other products from the Basin that are increasingly in demand The goal of this project is to strengthen the institutional frame- for export. work for planning and executing, in a coordinated and coherent manner, activities for the protection and sustainable manage- The population of the Amazon River Basin is estimated at ment of approximately 10 million, mostly concentrated in urban areas the land along the river and its main tributaries. A high percentage of and water the total population consists of indigenous communities settled resources of mainly along the banks of the river and belonging, inter alia, to the Amazon ethno–linguistic groups. In recent decades, there has been an River Basin accelerated process of immigration into, and settlement within, in the face the Amazon River Basin. Population growth rates range from of ongoing 5.2% to 7.2%, well above the national averages for the Amazon climatic countries. These factors, combined with the high levels of changes being poverty, place constant pressure on the region’s natural experienced in the Basin. The proposed project endeavors to resources, and in particular on residual native forests. realize a shared vision for the sustainable development of the region, based upon the protection and integrated management The Andean slopes are subject to severe erosion, with more than of transboundary water resources and adaptation to climatic 1,000 tons/km2/year of sediment flowing toward the Atlantic changes. This goal can be stated as seven specific objectives: Ocean. Measurements in the upper Madeira River subbasin indicate that, of the 3,200 tons/km2/year of sediment produced, 1. Make progress toward the integrated management of land up to 60% reaches no farther than the Andean foothills, at and water resources through more effective decision-making which point, the sharply reduced longitudinal gradients lower by the relevant national institutions, to determine the the stream’s carrying capacity resulting in internal sediment vulnerability of people and ecosystems to the consequent deposition within the Basin. Overall, the Amazon River changes in aquatic and terrestrial ecosystems. transports an average of 600 to 800 million tons of sediment 2. Strengthen the shared strategic vision of the Basin as the annually, with the majority of the sediment coming from the basis for integrated land and water resource planning Solimoes (62%) and Madeira (35%) river sub basins and and management. originating in the Andes. 3. Strengthen the technical-institutional structure for the ENVIRONMENTAL ISSUES AND CONCERNS identification of land and water resources at risk of The main environmental problems of a transboundary nature environmental impairment (critical areas or “hot spots”) affecting the project area can be summarized as: in order to protect and/or rehabilitate these areas. 4. Generate more knowledge about the types and sources of n Anthropogenic pressures, owing to the uncontrolled expansion water pollution in the Basin, the means to monitor them, of human activities which contribute to the destruction of and the mechanisms to attack their root causes. fragile ecosystems. 5. Assess the vulnerability of ecosystems and local communities n Deforestation and clearing of plant cover causing soil loss and to climatic variations, particularly those resulting in droughts erosion, reduced biodiversity, and sedimentation in the rivers. and floods. n Changes in the hydrologic cycle associated with changes in 6. Make progress toward the harmonization of the legal frame- the global climate and exacerbated by the alteration of the work for the sustainable development and management of Amazonian forests due to the fires and the droughts. the Basin, the development of economic instruments, the 2 AMAZON RIVER BASIN – WATER PROJECT SERIES, NUMBER 8 – OCTOBER 2005 strengthening of technical and institutional capacities, and the n A Framework Strategic Action Program (Framework SAP), promotion of public participation. agreed by the eight countries, outlining the policy, legal, and institutional reforms needed to address the critical issues within 7. Strengthen the TCA Secretariat as an effective coordination each subbasin as identified in the TDA, to be implemented agency for countries in the Basin in the short-, medium-, during subsequent phases of the project. and long-terms. n A consolidated Vision for the sustainable development of PRIORITY AREAS FOR ACTION the Basin, agreed by the eight countries, with established Detailed determination of project components and activities mechanisms and processes for its promotion and dissemination will take place during the project preparation phase, based within the region. upon the results of studies to be conducted and the public n Strategic alliances and agreements established among countries participation and involvement process. However, based on (within the framework of the TCA) and with financing preliminary consultations and the results of seminars, meetings agencies identified and briefed for the execution of priority and workshops held to discuss the conceptual underpinnings transboundary activities. of this initiative, the project has been designed around five pillars, or principal components: n Identified and jointly implemented measures, within identified “hot spots,” to combat water pollution and I. CONSOLIDATION OF A SHARED VISION FOR THE deterioration of water quality, to promote the exchange of AMAZON RIVER BASIN AND FORMULATION OF A knowledge and technologies, and to enhance mechanisms TRANSBOUNDARY DIAGNOSTIC ANALYSIS (TDA) for multinational and inter-institutional cooperation, including FOR THE AMAZON RIVER BASIN the development and/or harmonization of laws, regulations, This Component will consolidate and disseminate and operating protocols. a shared “Vision” for the Amazon River Basin to be developed and agreed by the eight countries of the II. INSTITUTIONAL STRENGTHENING Basin. Through this Component, governmental AND CAPACITY BUILDING FOR institutions responsible for land and water resources INTEGRATED WATER RESOURCE management and the environment, academic MANAGEMENT IN THE AMAZON institutions, private enterprise, nongovernmental RIVER BASIN organizations (NGOs), and civil society, in general, The strengthening of the institutional and technical will develop and share major strategic objectives capacities of Basin-wide, national, and sub-national for the Basin,
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
    BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply.
    [Show full text]
  • Floristic Composition of Phytoplankton in Madeira River
    G.J.B.A.H.S.,Vol.3(1):110-119 (January – March,2014) ISSN: 2319 – 5584 BIOLOGICAL DIVERSITY OF PHYTOPLANKTON AND PHYTOPERIPHYTON IN THE MADEIRA RIVER BASIN, AMAZON, BRAZIL Fabio Aprile1, Assad J. Darwich2, Pedro A. S. Mera2, Rosaluz Tavera3 & Karla K. do A. Serique2 1 Western of Pará Federal University - Ufopa. Av. Marechal Rondon s/n Santarém - PA 68040-070 Brazil. 2 National Institute of Research of Amazonian - Inpa. Av. André Araújo 2936 Manaus - AM 69060-001 Brazil. 3 Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF 04510 México. 4 Post-graduation Program of the National Institute of Research of Amazonian – Inpa. Abstract Floristic composition, abundance, richness and many other ecological patterns of phytoplankton and phytoperiphyton were studied in the Madeira River basin, between the Abunã River and Porto Velho City (Rondônia - Brazil), taking into account the hydrological period of the region. The results were correlated with abiotic factors, + + 2+ 2+ - 3- including the nutrients Na , K , Ca , Mg , N-NO3 , P-PO4 and chlorophyll-a. 283 taxa on the Madeira River and 327 taxa in the tributaries were identified belonging to six divisions and nine taxonomic classes. It was observed a considerable complexity in floristic composition, with a greater contribution from the division Chlorophyta, especially during the high water periods, when there was greater species richness recorded. Ecological indexes and statistical analysis confirmed strong seasonal pattern and differentiation between the species present in the white and clear waters. Keywords: floristic composition, diversity index, species richness, landscape ecology, Amazonia. 1. Introduction The Madeira River basin is located in the southwestern Amazonian region, and draining an enormous watershed frequently covered by Tropical Rain- Forest.
    [Show full text]
  • Cardinal Glass-NIE World of Wonder 11-19-20
    Opening The Windows Of Curiosity Sponsored by Sometimes called the May Flower or the Christmas Orchid, Spec Ad-NIE World Of Wonder 2019 Supporting Ed Top Colombia’s national flower Exploring the realms of history, science, nature and technology is rare and grows high in the cloud forests. The national flag has three horizontal bands of yellow, blue and red. EveryCOLOMBIA color has a different meaning: This South American country is famous for its proud Red symbolizes the blood spilled in people, coffee, emeralds, flowers and, unfortunately, the war for independence. Yellow represents the land’s gold its illegal drug traffic. Colombia is also notable as a and abundant natural riches. Blue signifies the land’s highly diverse country — it is estimated that 1 in every 10 seas, its liberty and sovereignty. Cattleya species of flora and fauna on earth can be found here. trianae orchid In a word Riohacha Just the facts The official name of Colombia Area 440,831 sq. mi. Santa Marta is the Republic of (1,141,748 sq. km) Colombia. It was named for Caribbean Barranquilla Population 50,372,424 the explorer Christopher Co- Sea Valledupar lumbus. The country’s name is Capital city Bogotá Panama pronounced koh-LOHM-bee-ah. Highest elevation City Early Spanish colonists called Montería Pico Cristóbal Colón PANAMA Colombia is the the land New Granada. VENEZUELA 18,947 ft. (5,775 m) Cauca Cúcuta only country in Atrato River South America that Lowest elevation Sea level Looking back River Arauca has coastlines on Agriculture Coffee, cut Medellín both the Pacific Before the Spanish arrived in Puerto Carreño flowers, bananas, rice, tobacco, Pacific Quibdó Ocean and the 1499, the region was inhabited Tunja Caribbean Sea.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • ENVIRONMENTAL CRIME in the AMAZON BASIN: a Typology for Research, Policy and Action
    IGARAPÉ INSTITUTE a think and do tank SP 47 STRATEGIC PAPER 47 PAPER STRATEGIC 2020 AUGUST ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Adriana Abdenur, Brodie Ferguson, Ilona Szabo de Carvalho, Melina Risso and Robert Muggah IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 Index Abstract ���������������������������������������������������������� 1 Introduction ������������������������������������������������������ 2 Threats to the Amazon Basin ���������������������������� 3 Typology of environmental crime ����������������������� 9 Conclusions ���������������������������������������������������� 16 References ����������������������������������������������������� 17 Annex 1: Dimensions of Illegality ��������������������� 17 Cover photo: Wilson Dias/Agência Brasil IGARAPÉ INSTITUTE | STRATEGIC PAPER 47 | AUGUST 2020 ENVIRONMENTAL CRIME IN THE AMAZON BASIN: A Typology for Research, Policy and Action Igarape Institute1 Abstract There is considerable conceptual and practical ambiguity around the dimensions and drivers of environmental crime in the Amazon Basin� Some issues, such as deforestation, have featured prominently in the news media as well as in academic and policy research� Yet, the literature is less developed in relation to other environmental crimes such as land invasion, small-scale clearance for agriculture and ranching, illegal mining, illegal wildlife trafficking, and the construction of informal roads and infrastructure that support these and other unlawful activities� Drawing on
    [Show full text]
  • Sustainable Landscapes in the Amazon and Congo Basin
    Sustainable Landscapes in the Amazon and Congo Basin ISSUE The Amazon and the Congo Basin are the world’s two largest remaining areas of tropical rainforests, covering 1.1 billion hectares. These forests have high levels of endemism and they harbor more than 200,000 million tons of carbon. Because they represent a large expanse of continuous forest, the Amazon and the Congo Basin exert a regional and global influence on climatic and rainfall patterns. Both ecosystems are also home to forest-dependent people (local communities and Indigenous People) with significant traditional knowledge of forests management. Sustainably managing the Amazon and the Congo Basin forests therefore remains a considerable challenge for humanity. Population growth, the extension of agriculture, energy development, mining and oil extraction, and the associated infrastructure to support this expansion are all placing increased pressures on ecosystems. Fragile governance and the absence of adequate institutions, policies, incentives, and land- use planning undermine the development of effective responses by Government and the private sector. More than 40% of the rainforest remaining on Earth Equally important, the Amazon plays a critical regional is found in the Amazon and it is home to at least 10% and global role in climate regulation. Amazon forests of the world’s known species. The Amazon River help regulate temperature and humidity, and are linked accounts for roughly 16% of the world’s total river to regional climate patterns through hydrological discharge into the oceans. The Amazon River flows cycles that depend on the forests. The Amazon for more than 6,600 km and, with its hundreds of contains 90-140 billion metric tons of carbon, the tributaries and streams, contains the largest number of release of even a portion of which could accelerate freshwater fish species in the world.
    [Show full text]
  • Russia's Boreal Forests
    Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard.
    [Show full text]
  • Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion
    REVIEWS IN FISHERIES SCIENCE 2018, VOL. 0, NO. 0, 1–21 https://doi.org/10.1080/23308249.2018.1463511 Review of Fisheries Resource Use and Status in the Madeira River Basin (Brazil, Bolivia, and Peru) Before Hydroelectric Dam Completion Carolina R. C. Doria a,b, Fabrice Duponchelleb,c, Maria Alice L. Limaa, Aurea Garciab,d, Fernando M. Carvajal-Vallejosf, Claudia Coca Mendez e, Michael Fabiano Catarinog, Carlos Edwar de Carvalho Freitasc,g, Blanca Vegae, Guido Miranda-Chumaceroh, and Paul A. Van Dammee,i aLaboratory of Ichthyology and Fisheries – Department of Biology, Federal University of Rond^onia, Porto Velho, Brazil; bLaboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne (LMI – EDIA), Iquitos (Peru), Santa Cruz (Bolivia); cInstitut de Recherche pour le Developpement (IRD), UMR BOREA (IRD-207, MNHN, CNRS-7208, Sorbonne Universite, Universite Caen Normandie, Universite des Antilles), Montpellier, France; dIIAP, AQUAREC, Iquitos, Peru; eFAUNAGUA, Institute for Applied Research on Aquatic Resources, Sacaba- Cochabamba, Plurinational State of Bolivia; fAlcide d’Orbigny Natural History Museum, ECOSINTEGRALES SRL (Ecological Studies for Integral Development and Nature Conservation), Cochabamba, Plurinational State of Bolivia; gDepartment of Fisheries Science, Federal University of Amazonas, Manaus, Brazil; hWildlife Conservation Society, Greater Madidi Tambopata Landscape Conservation Program, La Paz, Bolivia; iUnit of Limnology and Aquatic Resources (ULTRA), University of San Simon, Cochabamba, Bolivia
    [Show full text]
  • Inclusive Protected Area Management in the Amazon: the Importance of Social Networks Over Ecological Knowledge
    Sustainability 2012, 4, 3260-3278; doi:10.3390/su4123260 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article Inclusive Protected Area Management in the Amazon: The Importance of Social Networks over Ecological Knowledge Paula Ungar 1,* and Roger Strand 2 1 Alexander von Humboldt Institute for Research on Biological Resources, Avenida Paseo de Bolívar (Circunvalar) 16–20, Bogotá, Colombia 2 Centre for the Study of the Sciences and the Humanities, University of Bergen, P.O. Box 7805, N-5020 Bergen, Norway; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +57-1-3202-767; Fax: +57-1-320-2767. Received: 3 September 2012; in revised form: 5 November 2012 / Accepted: 16 November 2012 / Published: 30 November 2012 Abstract: In the Amacayacu National Park in Colombia, which partially overlaps with Indigenous territories, several elements of an inclusive protected area management model have been implemented since the 1990s. In particular, a dialogue between scientific researchers, indigenous people and park staff has been promoted for the co-production of biological and cultural knowledge for decision-making. This paper, based on a four-year ethnographic study of the park, shows how knowledge products about different components of the socio-ecosystem neither were efficiently obtained nor were of much importance in park management activities. Rather, the knowledge pertinent to park staff in planning and management is the know-how required for the maintenance and mobilization of multi-scale social-ecological networks. We argue that the dominant models for protected area management—both top-down and inclusive models—underestimate the sociopolitical realm in which research is expected to take place, over-emphasize ecological knowledge as necessary for management and hold a too strong belief in decision-making as a rational, organized response to diagnosis of the PA, rather than acknowledging that thick complexity needs a different form of action.
    [Show full text]
  • Biogeochemical and Metabolic Responses to the Flood Pulse in a Semi-Arid Floodplain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU 1 Running Head: Semi-arid floodplain response to flood pulse 2 3 4 5 6 Biogeochemical and Metabolic Responses 7 to the Flood Pulse in a Semi-Arid Floodplain 8 9 10 11 with 7 Figures and 3 Tables 12 13 14 15 H. M. Valett1, M.A. Baker2, J.A. Morrice3, C.S. Crawford, 16 M.C. Molles, Jr., C.N. Dahm, D.L. Moyer4, J.R. Thibault, and Lisa M. Ellis 17 18 19 20 21 22 Department of Biology 23 University of New Mexico 24 Albuquerque, New Mexico 87131 USA 25 26 27 28 29 30 31 present addresses: 32 33 1Department of Biology 2Department of Biology 3U.S. EPA 34 Virginia Tech Utah State University Mid-Continent Ecology Division 35 Blacksburg, Virginia 24061 USA Logan, Utah 84322 USA Duluth, Minnesota 55804 USA 36 540-231-2065, 540-231-9307 fax 37 [email protected] 38 4Water Resources Division 39 United States Geological Survey 40 Richmond, Virginia 23228 USA 41 1 1 Abstract: Flood pulse inundation of riparian forests alters rates of nutrient retention and 2 organic matter processing in the aquatic ecosystems formed in the forest interior. Along the 3 Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created 4 riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are 5 still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain 6 isolated from flooding (i.e., disconnected).
    [Show full text]
  • Travel Birdwatching Birds of Colombia
    Travel Birdwatching Birds of Colombia Bogotá – Tolima - Eje Cafetero - Amazonas Program # 04 description: Day 01. Bogotá: Arrival at Bogotá, the capital of Colombia. Welcoming reception at the airport and transportation to the hotel. Accommodation. Day 02. Bogotá: Breakfast in the hotel and transportation to Swamp Martos of Guatavita, 2600 – 3150 m above sea level. This area offers more than 2000 ha of forest mists, wetlands and upland moors, where we can see more than 100 species that live there between the endemic, endangered and migratory: Brown-breasted Parakeet; Bogota Rail; Black-billed Mountain Toucan; Torrent Duck; White capped Tanager; Rufous-brwed Conebill. Day 03. Bogotá: Breakfast in the hotel of Bogotá and fieldtrip for two days to the Natural Park Chicaque. This park is located 40 minutes away from the capital of Colombia between 2100 and 270 m. above sea level. There are 300 ha of oak forests (Quercus humboldtii). Here we will able to see more than 210 species of birds of different colors and incomparable beauty, among these are: Rufous-browed Conebill; Flame-faced Tanager; Saffron-crowned Tanager; Esmerald Toucan; Capped Conebiill; Black Inca Endemic); Turquoise Dacnis (endemic). Day 04. Chicaque - Tolima: Breakfast in the hotel and transportation to the Canyon of Combeima in the department of Tolima. During the road trip we will visit the Hacienda La Coloma, where the coffee that is exported is produced. There will we learn all the different processes of how the seeds are selected and how to differentiate quality coffee. Lunch and accommodation in the city of Ibagué, the capital of Tolima.
    [Show full text]