The Comparative Specificity of Acid Proteinases

Total Page:16

File Type:pdf, Size:1020Kb

The Comparative Specificity of Acid Proteinases Proceedings of the National Academy of Sciences Vol. 68, No. 2, pp. 257-259, February 1971 The Comparative Specificity of Acid Proteinases IRENE M. VOYNICK AND JOSEPH S. FRUTON Kline Biology Tower, Yale University, New Haven, Cown. 06520 Communicated November 16, 1970 ABSTRACT Examination of the kinetic parameters for the site of attack by such a reagent (10). A reactive aspartyl the hydrolysis, by acid proteinases, of a single peptide bond residue has also been identified as part of the active site of (between p-nitro-L-phenylalanyl and L-phenylalanyl) in a series of oligopeptides has shown that secondary interac- penicillopepsin (6). Although further studies are needed, the tions are important factors in determining the catalytic available information suggests that in the action of pepsin efficiency. Comparison of the action of highly purified (and possibly of other acid proteinases) an imino-enzyme pepsinlike enzymes (Rhizopus proteinase, Mucor protein- intermediate is involved in the catalytic mechanism; it has ase, rennin) with that of swine pepsin A indicates signifi- cant differences among them, either in the binding of the been suggested that the active site contains a carboxylate substrate (as estimated by K.), or in the catalytic efficiency group acting as a nucleophile and another carboxyl group (as measured by kcat), or both. It may be concluded from (in its protonated form) acting as a proton donor (11, 12). these data that, in their action on oligopeptide substrates, Whereas the serine proteinases exhibit significant differ- the specificity of proteinases operating by a similar cata- ences in specificity with respect to the amino acid residue, lytic mechanism cannot be explained solely in terms of the in amino acid residues flanking the sensitive peptide bond; the substrate, which provides the carbonyl group of the sensi- in addition, the specificity includes significant contribu- tive peptide bond, the known acid proteinases appear to have tions from secondary interactions arising from comple- similar (although not identical) preference for hydrophobic mentary relations between parts of the substrate and of amino acid units flanking the sensitive bond (13). Thus, the the enzyme at a distance from the catalytic site. Data are also presented for the effect of urea (about 1 M) on the available data on the cleavage of the oxidized B chain of kinetic parameters of several acid proteinases; under the insulin by pepsin (14), rennin (3), and the acid proteinases of conditions of these studies, the binding of the substrate is Rhizopus (15) and Mucor (16) show, in all cases, a preferential affected to a much lesser degree than is the catalytic effi- attack at Leu-Tyr (15-16), Tyr-Leu (16-17), Phe-Phe (24-25), ciency. and Phe-Tyr (25-26), although differences have been noted Many of the known proteinases have been classified into in the apparent susceptibility of other peptide bonds. distinct types, according to the nature of the enzymic groups Despite their similarity of action on the B chain of insulin, identified with the catalytic process (1). The so-called serine however, several of the known acid proteinases have been proteinases, which include chymotrypsin, trypsin, elastase, reported to be relatively inactive toward simple synthetic and subtilisin, are characterized by the presence of a reactive substrates for crystalline swine pepsin A. Recent work has seryl residue and a histidyl residue at the catalytic site. In provided a large number of new pepsin substrates, some of the cysteine proteinases (papain, ficin, streptococcal pro- which are cleaved at a rapid rate, and conclusions have been teinase, etc.), a cysteinyl residue and a histidyl residue are drawn concerning the specificity of the action of this enzyme involved. These enzymes act optimally on proteins and on at peptide bonds (13). In particular, it has been found that synthetic peptide substrates at pH values in the range 5-9, with small synthetic substrates of the type A-X-Y-B, where and the available evidence is consistent with the intermediate X and Y are -amino acid residues flanking a sensitive peptide formation of an acyl-enzyme. In addition, there is a sizeable bond, pepsin prefers a phenylalanyl residue in the X position group of enzymes whose optimal action on protein substrates and a tryptophyl, tyrosyl, or phenylalanyl residue in the Y is in the pH range 2-5, and that have been termed "acid position; other hydrophobic amino acid residues also promote proteinases." The best-known member of this group is swine pepsin action, but to a much lesser degree (17). Moreover, it pepsin A (2); others are rennin (3), cathepsin D (4), and the has been found that the rate of pepsin action at the Phe-Phe acid proteinases of several molds, including Rhizopus chinensis [or Phe(NO2)-Phe] bond of substrates of the type A-Phe- (5), Penicillium janthinellum (penicillopepsin (6)), and AMucor Phe-B [or A-Phe(NO2)-Phe-B] is greatly influenced by the miehei (7). Besides pepsin, several of these enzymes have nature of the A and B groups on either side of the sensitive been prepared in crystalline form (3, 5, 6). dipeptidyl unit (18, 19). These effects have been interpreted A common feature of the acid proteinases appears to be as providing evidence for the view that the "secondary" in- their inhibition by diazo compounds (8, 9); in the case of teractions of the A and B groups of the substrate with com- pepsin, the carboxyl group of an aspartyl residue in the se- plementary enzymic groups relatively distant from the cata- quence Ile-Val-Asp-Thr-Gly-Thr-Ser has been identified as lytic site may alter the conformation of the enzyme in a manner that affects the efficiency of catalysis. It appeared likely, therefore, that the apparent discrepancy between the similar- Abbreviations: In addition to the usual abbreviations for L-amino ity of the action of the acid proteinases on the B chain of in- acid residues, the following have been used: Phe(NO2), p-nitro-I. sulin and the wide differences among them in the cleavage of phenylalany ; Z, benzyloxycarbonyl; OMe, methoxy. small synthetic substrates might be related to the effect of 257 Downloaded by guest on October 2, 2021 258 Biochemistry: Voynick and Fruton Proc. Nat. Acad. Sci. USA such secondary interactions. The present experiments were kcat/Km for the three substrates with B = OMe, Ala-OMe, undertaken to examine this possibility. and Ala-Ala-OMe were roughly similar to those obtained MATERIALS AND METHODS with pepsin, both kcat and Km being lower. One of the possible explanations for this difference in the kinetic parameters was obtained Swine pepsin (twice crystallized, lot PM693-7) observed with pepsin and the Rhizopus proteinase is that, in from the Worthington Biochemical Corp. When assayed in the latter case, nonproductive interaction makes a relatively the usual manner (20), with hemoglobin as the substrate, the larger contribution to the binding of the substrates (19, 23). proteinase activity of this enzyme preparation was 2700 That such nonproductive interaction may involve the ben- units/mg of protein. The acid proteinase of Rhizopus chinensis zyloxycarbonyl group is suggested by the finding that when (3 times crystallized) was obtained from the Miles Labora- A = Phe-Gly-His, the Km values for the two substrates tories, and had a specific activity of 870 units/mg of protein in tested with both pepsin and the Rhizopus proteinase are the the above assay (at pH 3.8, a similar activity was noted). same, although k0,t is much lower in the latter case. In con- The acid proteinase of Mucor meihei (7) was generously trast to the Rhizopus proteinase, the enzyme from Mucor provided by Dr. M. Ottesen. Crystalline rennin was prepared cleaves the substrates with A = Z-His much more slowly from commercial rennet powder according to the method of than does pepsin, the Km values being much higher; the effect Berridge (21); material generously provided by Dr. B. of the replacement of B = OMe by Ala-OMe on the value of Garnier was used for seeding, and greatly Foltmann and Dr. J. kcat/Km is similar, however, to the results for pepsin and the accelerated the preparation. The specific activity (milk- Rhizopus proteinase. With the Mucor proteinase, the re- clotting assay (22)) was 60 units/mg of protein. placement of A = Z-His by Phe-Gly-His exerts a markedly The synthesis of the oligopeptides used as substrates in unfavorable effect on kcat; thus the substrate with B = OMe the present study has been described previously, as has the was not cleaved at a measurable rate at the highest enzyme spectrophotometric method employed for the determination concentration (13 ,M) tested, and the substrate with B = of the initial rates of cleavage of the Phe(NO2)-Phe bond in Ala-Phe-OMe was cleaved at about 0.01% of the rate found such substrates (19). In all cases, the data were obtained at with pepsin. pH 4.0 (0.04 M formate buffer) and 370C, and accorded with The data in Table 1 for the action of rennin on pepsin sub- Michaelis-Menten kinetics over the range of substrate con- strates show that, of those tested, only those with B = Ala- centration (0.02-0.4 mM) employed; 5-8 runs were per- OMe, Ala-Ala-OMe, and Ala-Phe-OMe were cleaved at the formed for each determination of Km and of kcat (Vm per Phe(NO2)-Phe bond to a measurable extent under the con- molar equivalent of enzyme); the enzyme concentration ditions of these studies. With B = Ala-OMe, the value of (0.003-5.4 ,uM) was chosen to give reliable data for the initial Km was too high to permit an estimate of kcat to be made, and rate of hydrolysis.
Recommended publications
  • Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
    Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms.
    [Show full text]
  • Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat
    Protein Science ~2000!, 9:991–1001. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat QING-NA CAO,1,3 MARLENE STUBBS,1 KENNY Q.P. NGO,1 MICHAEL WARD,2 ANNIE CUNNINGHAM,1 EMIL F. PAI,1 GUANG-CHOU TU,1,3 and THEO HOFMANN1 1 Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada 2 Genencor International, Inc., 925 Page Mill Road, Palo Alto, California 94304-1013 ~Received August 30, 1999; Final Revision February 7, 2000; Accepted March 10, 2000! Abstract The nucleotide sequence of the gene ~ pepA! of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin ~which we propose to call penicillopepsin-JT1! has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P29 of substrates, are similar to those of penicillopepsin-JT1, endothia- pepsin, rhizopuspepsin, and pig pepsin.
    [Show full text]
  • Review Article the Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries
    Hindawi Journal of Food Quality Volume 2018, Article ID 7957269, 15 pages https://doi.org/10.1155/2018/7957269 Review Article The Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries Jermen Mamo and Fassil Assefa Microbial, Cellular and Molecular Biology Department, College of Natural Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia Correspondence should be addressed to Jermen Mamo; [email protected] Received 3 April 2018; Revised 16 May 2018; Accepted 29 May 2018; Published 3 July 2018 Academic Editor: Antimo Di Maro Copyright © 2018 Jermen Mamo and Fassil Assefa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total global enzymes sale. According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classied in enzymes of class 3, the hydrolases, and the subclass 3.4, the peptide hydrolases or peptidase. Proteases are generally grouped into two main classes based on their site of action, that is, exopeptidases and endopeptidases. Protease has also been grouped into four classes based on their catalytic action: aspartic, cysteine, metallo, and serine proteases. However, lately, three new systems have been dened: the threonine-based proteasome system, the glutamate-glutamine system of eqolisin, and the serine-glutamate-aspartate system of sedolisin. Aspartic proteases (EC 3.4.23) are peptidases that display various activities and specicities.
    [Show full text]
  • DUAL ROLE of CATHEPSIN D: LIGAND and PROTEASE Martin Fuseka, Václav Větvičkab
    Biomed. Papers 149(1), 43–50 (2005) 43 © M. Fusek, V. Větvička DUAL ROLE OF CATHEPSIN D: LIGAND AND PROTEASE Martin Fuseka, Václav Větvičkab* a Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic, and b University of Louisville, Department of Pathology, Louisville, KY40292, USA, e-mail: [email protected] Received: April 15, 2005; Accepted (with revisions): June 20, 2005 Key words: Cathepsin D/Procathepsin D/Cancer/Activation peptide/Mitogenic activity/Proliferation Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracel- lular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor’s actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a “ligand-like” function then on proteolytic activity. CATHEPSIN D – MEMBER PRIMARY, SECONDARY AND TERTIARY OF ASPARTIC PEPTIDASES FAMILY STRUCTURES OF ASPARTIC PEPTIDASES Major function of cathepsin D is the digestion of There is a high degree of sequence similarity among proteins and peptides within the acidic compartment eukaryotic members of the family of aspartic peptidases, of lysosome1.
    [Show full text]
  • Structure of the Human Renin Gene
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 5999-6003, October 1984 Biochemistry Structure of the human renin gene (hypertension/aspartyl proteinase/nucleotide sequence/splice junction) HITOSHI MIYAZAKI*, AKIYOSHI FUKAMIZU*, SHIGEHISA HIROSE*, TAKASHI HAYASHI*, HITOSHI HORI*, HIROAKI OHKUBOt, SHIGETADA NAKANISHIt, AND KAZUO MURAKAMI** *Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305, Japan; and tInstitute for Immunology, Kyoto University Faculty of Medicine, Kyoto 606, Japan Communicated by Leroy Hood, June 27, 1984 ABSTRACT The human renin gene was isolated from a between the intron-exon organization of the gene and the Charon 4A human genomic library and characterized. The tertiary structure of the protein. gene spans about 11.7 kilobases and consists of 10 exons and 9 introns that map at points that could be variable surface loops MATERIALS AND METHODS of the enzyme. The complete coding regions, the 5'- and 3'- Materials. All restriction enzymes were obtained from flanking regions, and the exon-intron boundaries were se- either New England Biolabs or Takara Shuzo (Kyoto, Ja- quenced. The active site aspartyl residues Asp-38 and Asp-226 pan). Escherichia coli alkaline phosphatase and T4 DNA li- are encoded by the third and eighth exons, respectively. The gase were from Takara Shuzo. [_y-32P]ATP (>5000 Ci/mmol; extra three amino acids (Asp-165, Ser-166, Glu-167) that are 1 Ci = 37 GBq) and [a-32P]dCTP (=3000 Ci/mmol) were not present in mouse renin are encoded by the separate sixth from Amersham. exon, an exon as small as 9 nucleotides. The positions of the Screening. A human genomic library, prepared from partial introns are in remarkable agreement with those in the human Alu I and Hae III digestion and ligated into the EcoRI arms pepsin gene, supporting the view that the genes coding for of the X vector Charon 4A, was kindly provided by T.
    [Show full text]
  • The Complete Amino Acid Sequence of Prochymosin
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 6, pp. 2321-2324, June 1977 Biochemistry The complete amino acid sequence of prochymosin (protease/primary structure/homology) BENT FOLTMANN, VIBEKE BARKHOLT PEDERSEN, HENNING JACOBSEN*, DOROTHY KAUFFMANt, AND GRITH WYBRANDTf Institute of Biochemical Genetics, University of Copenhagen, 0. Farimagsgade 2A, DK-1353 Copenhagen K, Denmark Communicated by Hans Neurath, March 18,1977 ABSTRACT The total sequence of 365 amino acid residues order to avoid unspecific, chymotrypsin-like cleavages (13). in bovine prochymosin is presented. Alignment with the amino After such treatment the large fragments were purified by gel acid sequence of porcine pepsinogen shows that 204 amino acid with residues are common to the two zymogens. Further comparison filtration on Sephadex G-100 in 0.05 M NH4HCO3, pH 8, and alignment with the amino acid sequence of penicillopepsin 8 M urea. After cleavage of chymosin with cyanogen bromide shows that 66 residues are located at identical positions in all the fragments were purified by gel filtration on Sephadex G-100 three proteases. The three enzymes belong to a large group of in 25% acetic acid. The best results were obtained if cleavage proteases with two aspartate residues in the active center. This was performed on enzyme with intact disulfide bridges. By such group forms a family derived from one common ancestor. treatment two of the large fragments, CB(211-302) and CB(314-373), are held together and separated from the frag- Chymosin (EC 3.4.23.4) is the major proteolytic enzyme in the ment next in size, CB(45-126).
    [Show full text]
  • Arabidopsis Thaliana Atypical Aspartic Proteases Involved in Primary Root Development and Lateral Root Formation
    André Filipe Marques Soares RLR1 and RLR2, two novel Arabidopsis thaliana atypical aspartic proteases involved in primary root development and lateral root formation 2016 Thesis submitted to the Institute for Interdisciplinary Research of the University of Coimbra to apply for the degree of Doctor in Philosophy in the area of Experimental Biology and Biomedicine, specialization in Molecular, Cell and Developmental Biology This work was conducted at the Center for Neuroscience and Cell Biology (CNC) of University of Coimbra and at Biocant - Technology Transfer Association, under the scientific supervision of Doctor Isaura Simões and at the Department of Biochemistry of University of Massachusetts, Amherst, under the scientific supervision of Doctor Alice Y. Cheung. Part of this work was also performed at the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, under the scientific supervision of Doctor Herta Steinkellner and also at the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, under the schientific supervision of Doctor Pitter F. Huesgen. André Filipe Marques Soares was a student of the Doctoral Programme in Experimental Biology and Biomedicine coordinated by the Center for Neuroscience and Cell Biology (CNC) of the University of Coimbra and a recipient of the fellowship SFRH/BD/51676/2011 from the Portuguese Foundation for Science and Technology (FCT). The execution of this work was supported by a PPP grant of the German Academic Exchange Service with funding from the Federal Ministry of Education and Research (Project-ID 57128819 to PFH) and the Fundação para a Ciência e a Tecnologia (FCT) (grant: Scientific and Technological Bilateral Agreement 2015/2016 to IS) Agradecimentos/Acknowledgments Esta tese e todo o percurso que culminou na sua escrita não teriam sido possíveis sem o apoio, o carinho e a amizade de várias pessoas que ainda estão ou estiveram presentes na minha vida.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • Hemoglobin Degradation in the Human Malaria Pathogen Plasmodium Falciparum : a Catabolic Pathway Initiated by a Specific Aspartic Protease by Daniel E
    Hemoglobin Degradation in the Human Malaria Pathogen Plasmodium falciparum : A Catabolic Pathway Initiated by a Specific Aspartic Protease By Daniel E. Goldberg,* Andrew F. G. Slater,* Ronald Beavis,$ Brian Chait, $ Anthony Cerami," and Graeme B. Henderson" II From the 'Laboratory of Medical Biochemistry and the LLaboratory ofMass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10021 Summary Hemoglobin is an important nutrient source for intraerythrocytic malaria organisms. Its catabolism occurs in an acidic digestive vacuole . Our previous studies suggested that an aspartic protease plays a key role in the degradative process. We have now isolated this enzyme and defined its role in the hemoglobinolysic pathway. Laser desorption mass spectrometry was used to analyze the proteolytic action of the purified protease. The enzyme has a remarkably stringent specificity Downloaded from towards native hemoglobin, making a single cleavage between tx33Phe and 34Leu. This scission is in the hemoglobin hinge region, unraveling the molecule and exposing other sites for proteolysis. The protease is inhibited by pepstatin and has NH2-terminal homology to mammalian aspartic proteases . Isolated digestive vacuoles make a pepstatin-inhibitable cleavage identical to that of the purified enzyme. The pivotal role of this aspartic hemoglobinase in initiating hemoglobin degradation in the malaria parasite digestive vacuoles is demonstrated. www.jem.org he intraerythrocytic malaria parasite develops within a Materials and Methods on January 24, 2005 cell that contains a single major cytosolic protein, he- Materials. Saponin, Triton X-100, and bovine spleen cathepsin moglobinT . The organism avidly ingests host hemoglobin and D were from Sigma Chemical Co. (St.
    [Show full text]
  • Proteases in Fish and Shellfish: Role on Muscle Softening and Prevention *Sriket, C
    International Food Research Journal 21(1): 433-445 (2014) Journal homepage: http://www.ifrj.upm.edu.my Mini Review Proteases in fish and shellfish: Role on muscle softening and prevention *Sriket, C. Program in Food Science and Technology, Faculty of Agriculture, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000, Thailand Article history Abstract Received: 10 January 2013 Textural quality of fish and shellfish is the most important factor because it limits consumer Received in revised form: acceptance as well as market price. The muscle softening or mushiness of fish and shellfish 17 October 2013 during storage or distribution in ice is generally occurred. This phenomenon is considered as the Accepted: 19 October 2013 muscle protein degradation due to the proteolytic activity. The presence of active proteases in Keywords muscle and digestive organ makes the flesh fish and shellfish prone to degrade especially during iced storage, since the digestive organ is not practically removed prior to storage. The digestive Protease Softening tracts have been known to have high proteolytic or collagenolytic enzymes. During storage of Mushiness fish and shellfish, the intensive hydrolysis of myofibrillar and collagenous proteins by proteases Muscle degradation can be observed. To lower the muscle degradation, different pre-treatment methods as well Protease inhibitor as protease inhibitors have been applied in the stored fish and shellfish. Thus, the knowledge Prevention gained can be then transferred to the seafood processors for the quality improvement of fish and Postmortem shellfish, especially those with iced storage, leading to a full market value of fish species. Digestive enzyme © All Rights Reserved Introduction and collagenolytic proteases (Cao et al., 2000b; Aoki et al., 2003; Sriket et al., 2011a).
    [Show full text]
  • Amino Acid Sequence of Porcine Spleen Cathepsin D (Primary Structure/Aspartic Protease/Lysosomal Enzyme/Homology with Pepsin) JAIPRAKASH G
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 3703-3707, June 1984 Biochemistry Amino acid sequence of porcine spleen cathepsin D (primary structure/aspartic protease/lysosomal enzyme/homology with pepsin) JAIPRAKASH G. SHEWALE* AND JORDAN TANG*t *Laboratory of Protein Studies, Oklahoma Medical Research Foundation, and tThe Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 Communicated by Stuart Kornfeld, March 12, 1984 ABSTRACT The amino acid sequence of porcine spleen V8 and endoproteinase Lys C were obtained from Millipore, cathepsin D heavy chain has been determined and, hence, the Miles, and Boehringer Mannheim, respectively. Sequencer complete structure of this enzyme is now known. The sequence reagents were from Beckman and from Burdick and Jackson of heavy chain was constructed by aligning the structures of (Muskegon, MI). All other chemicals used in this study were peptides generated by cyanogen bromide, trypsin, and endo- of analytical grade. proteinase Lys C cleavages. The structure of the light chain Separation of Peptides. Peptides from CNBr cleavage, has been published previously. The cathepsin D molecule con- tryptic and endoproteinase Lys C digests were initially frac- tains 339 amino acid residues in two polypeptide chains: a 97- tionated by gel filtration on Sephadex G-50 (Pharmacia) in residue light chain and a 242-residue heavy chain, with a com- either 10% formic acid or 0.1 M ammonium bicarbonate. In- bined Mr of 36,779 (without carbohydrate). There are two car- dividual peptides were further purified using ion-exchange bohydrate units linked to asparagine residues 70 and 192.
    [Show full text]
  • Pepsin-Inhibitory Activity of the Uterine Serpins
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13653–13658, November 1996 Biochemistry Pepsin-inhibitory activity of the uterine serpins (uterine secretory activityyaspartic proteinase inhibitoryprogesterone-induced uterine proteinyendometrium–trophoblast interaction) NAGAPPAN MATHIALAGAN*† AND THOMAS R. HANSEN‡ *Department of Animal Sciences, University of Missouri, Columbia, MO 65211; and ‡Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 Communicated by Michael Roberts, University of Missouri, Columbia, MO, September 19, 1996 (received for review June 20, 1996) ABSTRACT Among the major products secreted by the distinct (20). Therefore, it was of considerable interest that uteri of cattle, sheep, and pigs during pregnancy are glyco- both species should produce large quantities of structurally proteins with amino acid sequences that place them in the similar progesterone-inducible products during pregnancy. serpin (serine proteinase inhibitor) superfamily of proteins. Hence the studies on uterine serpins have been extended. The inferred amino acid sequences for bovine uterine serpin Herein we demonstrate that these uterine serpins interact with (boUS-1) and ovine uterine serpin (ovUS-1) exhibit about 72% members of the aspartic proteinase family rather than with sequence identity to each other but only about 50% and 56% serine proteinases. They provide another example of serpins identity, respectively, to two distinct porcine uterine serpins with crossover function. (poUS-1 and poUS-2). Despite these differences in primary Because various acronyms were used for these uterine structure, the uterine serpins possess well-conserved reactive serpins before their general relatedness was revealed by mo- center loop regions that contain several motifs present in the lecular cloning studies, it is proposed that the previous desig- propeptide regions of pepsinogens.
    [Show full text]