Pepsin-Inhibitory Activity of the Uterine Serpins

Total Page:16

File Type:pdf, Size:1020Kb

Pepsin-Inhibitory Activity of the Uterine Serpins Proc. Natl. Acad. Sci. USA Vol. 93, pp. 13653–13658, November 1996 Biochemistry Pepsin-inhibitory activity of the uterine serpins (uterine secretory activityyaspartic proteinase inhibitoryprogesterone-induced uterine proteinyendometrium–trophoblast interaction) NAGAPPAN MATHIALAGAN*† AND THOMAS R. HANSEN‡ *Department of Animal Sciences, University of Missouri, Columbia, MO 65211; and ‡Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 Communicated by Michael Roberts, University of Missouri, Columbia, MO, September 19, 1996 (received for review June 20, 1996) ABSTRACT Among the major products secreted by the distinct (20). Therefore, it was of considerable interest that uteri of cattle, sheep, and pigs during pregnancy are glyco- both species should produce large quantities of structurally proteins with amino acid sequences that place them in the similar progesterone-inducible products during pregnancy. serpin (serine proteinase inhibitor) superfamily of proteins. Hence the studies on uterine serpins have been extended. The inferred amino acid sequences for bovine uterine serpin Herein we demonstrate that these uterine serpins interact with (boUS-1) and ovine uterine serpin (ovUS-1) exhibit about 72% members of the aspartic proteinase family rather than with sequence identity to each other but only about 50% and 56% serine proteinases. They provide another example of serpins identity, respectively, to two distinct porcine uterine serpins with crossover function. (poUS-1 and poUS-2). Despite these differences in primary Because various acronyms were used for these uterine structure, the uterine serpins possess well-conserved reactive serpins before their general relatedness was revealed by mo- center loop regions that contain several motifs present in the lecular cloning studies, it is proposed that the previous desig- propeptide regions of pepsinogens. One such motif, VVVK, nations [e.g., uteroferrin-associated basic protein (UABP) and aligns with the first 4 amino acids of the aspartic proteinase uterine milk protein (UTMP)] be abandoned and instead they inhibitor pepstatin. Although no inhibitory activity toward should be named uterine serpins (or US) preceded by the any serine proteinase has been found, at least one of the species name, e.g., bovine (bo), ovine (ov), and porcine (po). uterine serpins, ovUS-1, can bind specifically to immobilized pepsin A and can weakly inhibit the proteolytic activities of MATERIALS AND METHODS pepsin A and C (but not cathepsins D and E). OvUS-1 is the first specific inhibitor of aspartic proteinases to be identified Materials. Porcine gastric pepsin A, bovine spleen cathepsin in vertebrates and provides another example of a serpin with B, Na-CBZ-L-lysine p-nitrophenyl ester hydrochloride (CBZ is ‘‘crossover’’ activity. The pregnancy-associated glycoproteins carbobenzoxy), bovine hemoglobin, and CNBr-activated (PAGs), which are secreted by the trophoblast layer of the Sepharose-4B were purchased from Sigma. Recombinant hu- placentas of ungulate species and are inactive members of the man and porcine cathepsin D were donated by G. Conner, aspartic proteinase family, can also bind ovUS-1 and may be University of Miami. Recombinant cathepsin E was a gift from the natural target partners for the uterine serpins. B. Dunn, University of Florida, Gainesville, FL. Pepsin C was provided by J. Tang, University of Oklahoma, Oklahoma City, 14 The porcine uterus produces large quantities of several pro- OK. [ C]Formaldehyde was obtained from American Radio- 14 teins in response to progesterone, the hormone of pregnancy labeled Chemicals, St. Louis. [ C]Hemoglobin was prepared (1, 2). These proteins are secreted into the uterine lumen and, by the procedure described by Means and Feeney (21). during pregnancy, contribute to the so-called histotrophe or Screening of Porcine Endometrial cDNA Library. About uterine milk that bathes the conceptuses. Among them are 40,000 recombinant phages from a porcine endometrial cDNA uteroferrin (3) and a retinol-binding protein (4, 5) (both of library were screened with a random-primed poUS-1 cDNA which probably have nutritional roles), growth factors, growth probe (9, 22). factor binding proteins (6), a group of low molecular weight Phage DNA was isolated from 10 positive plaques. The sizes proteinase inhibitors belonging to the Kunitz family (7), and of cDNA inserts ranged from 400 bp to 1250 bp. Clone 12.1 three related basic glycoproteins known collectively as the cDNA (1250 bp) was subcloned and sequenced (23). To obtain a full-length cDNA (1400 bases), the sequence of clone 12.1 uteroferrin-associated basic proteins (8, 9). The latter (Mr 5 50,000, 48,000, and 42,000, respectively) are in the serpin cDNA was merged with the 59 sequence of a previously superfamily and arise by proteolytic processing and differential reported poUS clone (2.1) (9). This sequence was confirmed glycosylation of a larger precursor molecule (9). from the genomic sequence of poUS-2 (data not shown). The uterus of the ewe also synthesizes abundant amounts of Screening of Bovine Endometrial cDNA Library. The bo- vine library was constructed from day 17 pregnant cow endo- progesterone-induced secretory protein composed largely of 1 two basic glycoproteins, the so-called uterine milk proteins, metrial poly(A) RNA in lZAP vector (Stratagene). The library was amplified in XL1-blue cells, and about 106 plaques which have a Mr of 57,000 and 55,000, respectively (10–13), and 32 which are also in the serpin superfamily (14). These ovine were screened with a P-labeled full-length ovUS-1 cDNA. uterine serpins (now called ovUS) have been reported to be About 20 positives were plaque-purified, and ones with the immunosuppressive (15, 16) and may prolong the ability of skin largest inserts were identified by PCR with M13r and M13f grafts to survive within the uterus (17). They have not been primers. Clone 1.38 (1.4 kb) was selected for further charac- shown to possess any antiproteinase activity (14). terization. The plasmid was excised from the phage by in vivo Although pigs and sheep are both ungulate species, their excision and sequenced in both directions. ancestors diverged at least 55 million years ago (18, 19). Moreover, the types of placentation they exhibit are quite Abbreviations: bo, bovine; ov, ovine; PAG, pregnancy-associated glycoprotein; po, porcine; US, uterine serpin. Data deposition: The sequences reported in this paper have been The publication costs of this article were defrayed in part by page charge deposited in the GenBank data base (accession nos. X62845 and payment. This article must therefore be hereby marked ‘‘advertisement’’ in L11627). accordance with 18 U.S.C. §1734 solely to indicate this fact. †To whom reprint requests should be addressed. 13653 Downloaded by guest on September 24, 2021 13654 Biochemistry: Mathialagan and Hansen Proc. Natl. Acad. Sci. USA 93 (1996) Purification of ovUS. Sheep uterine milk was collected from alkaline phosphatase activity (100 mM TriszHCl, pH 9.5y100 unilaterally pregnant ewes (12). The basic protein fraction of mM NaCly5 mM MgCl2) (22). the uterine secretions, which is predominantly ovUS-1, was Microtiter Plate Binding Assay. Proteins (1 mg in 0.2 ml of obtained by chromatography on CM-cellulose at pH 8.2 (12). PBS) were allowed to bind to microtiter well surfaces for 12 h Protein was eluted with 0.5 M NaCl in 10 mM TriszHCl (pH at 258C. Remaining sites were blocked with 2% nonfat dry milk 8.2) and dialyzed for 6 h against three changes of 0.9% NaCl for 1 h. OvUS-1 (1 mg in 0.2 ml of PBS) was then allowed to at room temperature. About 1.0 mg of the eluted protein from bind to the adsorbed proteins in presence or absence of control CM-cellulose was further chromatographed on a Superose-12 proteins (bovine serum albumin or uteroferrin; 5 mg per well column (1 3 30 cm, Pharmacia), equilibrated with 0.9% NaCl for 1 h). Bound ovUS-1 was detected by using the anti-ovUS-1 and eluted at a flow rate of 0.5 mlymin. Samples (50 ml) from antiserum described above (1:10,000 dilution) followed by a each fraction were assayed for pepsin A inhibitory activity. second antibody (goat anti-rabbit immunoglobulin G conju- Samples (10 ml) from the peak protein fractions were analyzed gated to alkaline phosphatase). Bound enzyme was assayed by by gel electrophoresis in 12.5% polyacrylamide gels in pres- using p-nitrophenyl phosphate as substrate (Sigma). ence of SDS (12). OvUS Affinity Chromatography of Ovine Placental Secre- Enzyme Inhibitory Activity Measurements. Inhibitory ac- tions. Secretory proteins were collected by in vitro incubation tivity of ovUS-1 toward pepsin A and pepsin C (gastriscin) was of explants prepared from day 100 sheep placenta (28). determined by using [14C]methyl-hemoglobin as substrate Purified ovUS-1 (25 mg) was coupled to CNBr-activated (24). Increasing protein concentrations of purified ovUS-1 Sepharose 4B. About 1 mg of placental secretory proteins were (1–250 mg), bovine serum albumin, or ovalbumin were prein- passed over the ovUS-1-Sepharose column. Equilibration, cubated with 0.5 mg of pepsin A or 5.0 mg of pepsin C in 0.9% washing, and elution of the affinity column were carried out as NaCl in water in a total volume of 50 mlat378C for 15 min. described earlier for the pepsin affinity column. Bovine serum After the preincubation, 0.1 ml of hemoglobin [0.25% labeled albumin- and ovalbumin-Sepharose matrices were used as hemoglobin in 0.2 M sodium citrate (pH 2.0) or in 0.2 M controls. Polypeptides in the flow-through and eluted fractions sodium acetate (pH 4.5)] was added, and the incubation were analyzed by SDSyPAGE and Western blot analysis with continued for 30 min. At 30 min, the reactions were terminated a rabbit antiserum (diluted 1:1000) raised against recombinant by addition of 20 ml of 1% bovine serum albumin and 0.23 ml bovine pregnancy-associated protein (PAG) 2 (29).
Recommended publications
  • Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
    Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms.
    [Show full text]
  • Regulation of Lymphocyte Proliferation by Uterine Serpin: Interleukin-2 Mrna Production, CD25 Expression and Responsiveness to Interleukin-2 (44465) 2 1 MORGAN R
    Regulation of Lymphocyte Proliferation by Uterine Serpin: Interleukin-2 mRNA Production, CD25 Expression and Responsiveness to Interleukin-2 (44465) 2 1 MORGAN R. PELTIER,WEN-JUN LIU, AND PETER J. HANSEN Department of Dairy and Poultry Sciences, University of Florida, Gainesville, Florida 32611–0920 Abstract. During pregnancy, the endometrium of the ewe secretes large amounts of a progesterone-induced protein of the serpin superfamily of serine proteinase inhibitors called ovine uterine serpin (OvUS). This protein inhibits lymphocyte proliferation in response to concanavalin A (ConA), phytohemagglutinin (PHA), or mixed lymphocyte reaction. The purpose of these experiments was to characterize the mechanism by which OvUS inhibits lymphocyte proliferation. Ovine US caused dose-dependent in- hibition of lymphocyte proliferation induced by phorbol myristol acetate (PMA), an activator of protein kinase C. The PHA-induced increase in CD25 expression was inhibited in peripheral blood mononuclear leukocytes (PBML) by OvUS. However, no effect of OvUS on Con A-induced expression of CD25 was observed. Further analysis using two-color flow cytometry revealed that OvUS inhibited ConA-induced expres- sion of CD25 in ␥␦-TCR− cells but not ␥␦-TCR+ cells. Stimulation of PBML for 14 hr with ConA resulted in an increase in steady state amounts of interleukin-2 (IL-2) mRNA that was not inhibited by OvUS. Ovine US was also inhibitory to lymphocyte proliferation induced by human IL-2. Results suggest that OvUS acts to inhibit lymphocyte prolif- eration by blocking the upregulation of the IL-2 receptor and inhibiting IL-2–mediated events. Lack of an effect of OvUS on ConA-stimulated CD25 expression in ␥␦-TCR+ cells may reflect a different mechanism of activation of these cells or insensitivity to inhibition by OvUS.
    [Show full text]
  • TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl Für
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Physiologie Differential gene expression during pre-implantation pregnancy in bos taurus Andréa Hammerle-Fickinger Vollständiger Abdruck der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation. Vorsitzender: Univ.-Prof. Dr. U. M. Kulozik Prüfer der Dissertation: 1. Univ.-Prof. Dr. H. H. D. Meyer (schriftliche Beurteilung) 2. Priv.-Doz. Dr. K. Kramer 3. Univ.-Prof. Dr. M. W. Pfaffl Die Dissertation wurde am 20.02.2012 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 22.05.2012 angenommen. Table of Contents Table of Contents List of abbreviations .......................................................................................................... iv Zusammenfassung............................................................................................................. vi Abstract............................................................................................................................. viii 1 Introduction .................................................................................................................. 1 1.1 Bovine estrous cycle .................................................................................................. 1 1.2 Activation of the complement system during pregnancy............................................
    [Show full text]
  • A Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy
    MATERNAL IMMUNE CHANGES DURING BOVINE PREGNANCY: A FOCUS ON THE ENDOMETRIAL MACROPHAGE By LILIAN DE JESUS OLIVEIRA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2010 1 © 2010 Lilian de Jesus Oliveira 2 To my parents Luiz Manoel and Maria Aparecida de Jesus, my brother and sister, Rodolfo Manoel and Luciana de Jesus Oliveira, my boyfriend Robson Fortes Giglio, and my major advisor, Dr. Peter J. Hansen 3 ACKNOWLEDGMENTS I would like to express my heartfelt thanks in having Dr. Peter J. Hansen as my major advisor. His guidance, support and challenges throughout my PhD program have made me grow not only as scientist but also as a person. His enthusiasm, knowledge and intelligence inspired me every day during these years. He is more than an advisor; he is a very good friend that I am glad to have the opportunity to meet. I am going to miss our weekly meetings. Also, I would like to thank my committee members, Dr. Nasser Chegini, Dr. William Thatcher, Dr. Daniel Sharp and Dr. Ammon Peck, for their contributions and suggestions for improving my research projects and academic training. I am also grateful to Dr. Joel Yelich his continuous support and the opportunity to teach in his class. This experience was indispensable to my formation as a teacher; his passion for teaching is contagious. I would like to thank my current lab mates, Dr. Silvia Carambula, Sarah Fields, Barbara Loureiro, Luciano and Aline Bonilla, Justin Fear, and Jim Moss, as well as my old lab mates, Dr.
    [Show full text]
  • Review Article the Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries
    Hindawi Journal of Food Quality Volume 2018, Article ID 7957269, 15 pages https://doi.org/10.1155/2018/7957269 Review Article The Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries Jermen Mamo and Fassil Assefa Microbial, Cellular and Molecular Biology Department, College of Natural Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia Correspondence should be addressed to Jermen Mamo; [email protected] Received 3 April 2018; Revised 16 May 2018; Accepted 29 May 2018; Published 3 July 2018 Academic Editor: Antimo Di Maro Copyright © 2018 Jermen Mamo and Fassil Assefa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total global enzymes sale. According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classied in enzymes of class 3, the hydrolases, and the subclass 3.4, the peptide hydrolases or peptidase. Proteases are generally grouped into two main classes based on their site of action, that is, exopeptidases and endopeptidases. Protease has also been grouped into four classes based on their catalytic action: aspartic, cysteine, metallo, and serine proteases. However, lately, three new systems have been dened: the threonine-based proteasome system, the glutamate-glutamine system of eqolisin, and the serine-glutamate-aspartate system of sedolisin. Aspartic proteases (EC 3.4.23) are peptidases that display various activities and specicities.
    [Show full text]
  • John H. Northrop
    J OHN H . N ORTHROP T h e preparation of pure enzymes and virus proteins* Nobel Lecture, December 12, 1946 The problem of the chemical nature of the substances which control the reactions occurring in living cells has been a subject of research, and also of controversy, for nearly two hundred years. Before the eighteenth century these reactions were considered as "vital processes", outside the realm of experimental science. The work of Spallanzani, Payen and Persoz, Schwann, Kühne, and finally Buchner proved that many of these reactions could take place without living cells and were probably caused by the presence of small amounts of unstable and active substances, which Kühne called "enzymes". Berzelius, a century ago, pointed out that these enzymes were similar to the catalysts of the chemist and suggested that they be considered as special catalysts formed by the cells. This hypothesis was far ahead of its time and met with great opposition, since many workers considered that enzyme reac- tions differed qualitatively from ordinary chemical reactions. The work of Tamman, Arrhenius, Henri, Michaelis, Nelson, von Euler, Willstätter, War- burg, and other chemists, however, has shown that Berzelius’ viewpoint was correct and enzyme reactions are now considered a special kind of catalysis which does not differ qualitatively from other catalytic reactions. While the study of enzyme reactions made rapid progress all attempts to isolate an enzyme and so determine its chemical nature were unsuccessful until recently. The early workers were of the opinion that enzymes were probably pro- teins and in 1896 Pekelharing isolated a protein from gastric juice which he considered to be the enzyme pepsin.
    [Show full text]
  • Biological Role of Conceptus Derived Factors During Early Pregnancy In
    Biological Role of Conceptus Derived Factors During Early Pregnancy in Ruminants A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN ANIMAL SCIENCES UNIVERSITY OF MISSOURI- COLUMBIA Division of Animal Science By KELSEY BROOKS Dr. Thomas Spencer, Dissertation Supervisor August 2016 The undersigned have examined the dissertation entitled, BIOLOGICAL ROLE OF CONCEPTUS DERIVED FACTORS DURING EARLY PREGNANCY IN RUMINANTS presented by Kelsey Brooks, a candidate for the degree of doctor of philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. __________________________________ Chair, Dr. Thomas Spencer ___________________________________ Dr. Rodney Geisert ___________________________________ Dr. Randall Prather ___________________________________ Dr. Laura Schulz ACKNOWLEDGMENTS I would like to acknowledge all the students, faculty and staff at Washington State University and the University of Missouri for their help and support throughout my doctoral program. I am grateful for the opportunity to work with Dr. Thomas Spencer, and thank him for his input and guidance not only in planning experiments and completing projects but for helping me turn my love of science into a career in research. I would also like to acknowledge the members of my graduate committee at Washington State University for their help and input during the first 3 years of my studies. A special thanks to Dr. Jim Pru and Cindy Pru for providing unlimited entertainment, and the occasional missing reagent. Thank you to my committee members at the University of Missouri for adopting me late in my program and helping shape my future as an independent scientist. Thanks are also extended to members of the Prather lab and Wells lab for letting me in on the secrets of success using the CRISPR/Cas9 system.
    [Show full text]
  • Spatio-Specific Regulation of Endocrine-Responsive Gene Transcription by Periovulatory Endocrine Profiles in the Bovine Reproductive Tract
    CSIRO PUBLISHING Reproduction, Fertility and Development, 2016, 28, 1533–1544 http://dx.doi.org/10.1071/RD14178 Spatio-specific regulation of endocrine-responsive gene transcription by periovulatory endocrine profiles in the bovine reproductive tract Estela R. Arau´joA, Mariana SponchiadoA, Guilherme PugliesiA, Veerle Van HoeckA, Fernando S. MesquitaB, Claudia M. B. MembriveCand Mario BinelliA,D ADepartment of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sa˜o Paulo, Avenida Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil. BSchool of Veterinary Medicine, Federal University of Pampa, Rodovia BR 472, 592, Uruguaiana, RS, 97508-000, Brazil. CCollege of Animal Science, University of Sa˜o Paulo State ‘Ju´lio de Mesquita Filho’, DracenaRodovia Comandante Joa˜o Ribeiro de Barros, km 651, Dracena, SP, 17900-000, Brazil. DCorresponding author. Email: [email protected] Abstract. In cattle, pro-oestrous oestradiol and dioestrous progesterone concentrations modulate endometrial gene expression and fertility. The aim was to compare the effects of different periovulatory endocrine profiles on the expression of progesterone receptor (PGR), oestrogen receptor 2 (ESR2), oxytocin receptor (OXTR), member C4 of aldo–keto reductase family 1 (AKR1C4), lipoprotein lipase (LPL), solute carrier family 2, member 1 (SLC2A1) and serpin peptidase inhibitor, clade A member 14 (SERPINA14): (1) between uterine horns ipsi- and contralateral to the corpus luteum (CL), (2) between regions of the ipsilateral horn and (3) in the vagina. Endometrium and vagina tissue samples were collected from cows that ovulated a larger (large follicle-large CL, LF-LCL; n ¼ 6) or smaller follicle (small follicle-small CL, SF-SCL; n ¼ 6) 7 days after oestrus.
    [Show full text]
  • DUAL ROLE of CATHEPSIN D: LIGAND and PROTEASE Martin Fuseka, Václav Větvičkab
    Biomed. Papers 149(1), 43–50 (2005) 43 © M. Fusek, V. Větvička DUAL ROLE OF CATHEPSIN D: LIGAND AND PROTEASE Martin Fuseka, Václav Větvičkab* a Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic, and b University of Louisville, Department of Pathology, Louisville, KY40292, USA, e-mail: [email protected] Received: April 15, 2005; Accepted (with revisions): June 20, 2005 Key words: Cathepsin D/Procathepsin D/Cancer/Activation peptide/Mitogenic activity/Proliferation Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracel- lular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor’s actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a “ligand-like” function then on proteolytic activity. CATHEPSIN D – MEMBER PRIMARY, SECONDARY AND TERTIARY OF ASPARTIC PEPTIDASES FAMILY STRUCTURES OF ASPARTIC PEPTIDASES Major function of cathepsin D is the digestion of There is a high degree of sequence similarity among proteins and peptides within the acidic compartment eukaryotic members of the family of aspartic peptidases, of lysosome1.
    [Show full text]
  • Hydrolysis of -Lactalbumin by Chymosin and Pepsin. Effect Of
    Hydrolysis of α-lactalbumin by chymosin and pepsin. Effect of conformation and pH G. Miranda, G. Hazé, Non Renseigné To cite this version: G. Miranda, G. Hazé, Non Renseigné. Hydrolysis of α-lactalbumin by chymosin and pepsin. Effect of conformation and pH. Le Lait, INRA Editions, 1989, 69 (6), pp.451-459. hal-00929176 HAL Id: hal-00929176 https://hal.archives-ouvertes.fr/hal-00929176 Submitted on 1 Jan 1989 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1989) 69. 451-459 451 © Elsevier/INRA Original article Hydrolysis of œ-lactalburnin by chymosin and pepsin. Effect of conformation and pH G. Miranda, G. Hazé, P.Scanff and J.P.Pélissier INRA, station de recherches laitières, 78350 Jouy-en-Josas, France (received 21 March 1989. accepted 26 June 1989) Summary - The correlation between change of conformation of a-Iactalbumin and its degradation by gastric enzymes was verified. With citrate buffer (0.1 M), the modification of a-Iactalbumin confor- mation occurred when the pH value was below pH 4.0. This conformational change was influenced by buffer composition and ionic strength. However, the presence of EDTA in the butter did not modi- fy the pH value at which the change of conformation of the protein occurred.
    [Show full text]
  • Structure of the Human Renin Gene
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 5999-6003, October 1984 Biochemistry Structure of the human renin gene (hypertension/aspartyl proteinase/nucleotide sequence/splice junction) HITOSHI MIYAZAKI*, AKIYOSHI FUKAMIZU*, SHIGEHISA HIROSE*, TAKASHI HAYASHI*, HITOSHI HORI*, HIROAKI OHKUBOt, SHIGETADA NAKANISHIt, AND KAZUO MURAKAMI** *Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305, Japan; and tInstitute for Immunology, Kyoto University Faculty of Medicine, Kyoto 606, Japan Communicated by Leroy Hood, June 27, 1984 ABSTRACT The human renin gene was isolated from a between the intron-exon organization of the gene and the Charon 4A human genomic library and characterized. The tertiary structure of the protein. gene spans about 11.7 kilobases and consists of 10 exons and 9 introns that map at points that could be variable surface loops MATERIALS AND METHODS of the enzyme. The complete coding regions, the 5'- and 3'- Materials. All restriction enzymes were obtained from flanking regions, and the exon-intron boundaries were se- either New England Biolabs or Takara Shuzo (Kyoto, Ja- quenced. The active site aspartyl residues Asp-38 and Asp-226 pan). Escherichia coli alkaline phosphatase and T4 DNA li- are encoded by the third and eighth exons, respectively. The gase were from Takara Shuzo. [_y-32P]ATP (>5000 Ci/mmol; extra three amino acids (Asp-165, Ser-166, Glu-167) that are 1 Ci = 37 GBq) and [a-32P]dCTP (=3000 Ci/mmol) were not present in mouse renin are encoded by the separate sixth from Amersham. exon, an exon as small as 9 nucleotides. The positions of the Screening. A human genomic library, prepared from partial introns are in remarkable agreement with those in the human Alu I and Hae III digestion and ligated into the EcoRI arms pepsin gene, supporting the view that the genes coding for of the X vector Charon 4A, was kindly provided by T.
    [Show full text]
  • The Complete Amino Acid Sequence of Prochymosin
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 6, pp. 2321-2324, June 1977 Biochemistry The complete amino acid sequence of prochymosin (protease/primary structure/homology) BENT FOLTMANN, VIBEKE BARKHOLT PEDERSEN, HENNING JACOBSEN*, DOROTHY KAUFFMANt, AND GRITH WYBRANDTf Institute of Biochemical Genetics, University of Copenhagen, 0. Farimagsgade 2A, DK-1353 Copenhagen K, Denmark Communicated by Hans Neurath, March 18,1977 ABSTRACT The total sequence of 365 amino acid residues order to avoid unspecific, chymotrypsin-like cleavages (13). in bovine prochymosin is presented. Alignment with the amino After such treatment the large fragments were purified by gel acid sequence of porcine pepsinogen shows that 204 amino acid with residues are common to the two zymogens. Further comparison filtration on Sephadex G-100 in 0.05 M NH4HCO3, pH 8, and alignment with the amino acid sequence of penicillopepsin 8 M urea. After cleavage of chymosin with cyanogen bromide shows that 66 residues are located at identical positions in all the fragments were purified by gel filtration on Sephadex G-100 three proteases. The three enzymes belong to a large group of in 25% acetic acid. The best results were obtained if cleavage proteases with two aspartate residues in the active center. This was performed on enzyme with intact disulfide bridges. By such group forms a family derived from one common ancestor. treatment two of the large fragments, CB(211-302) and CB(314-373), are held together and separated from the frag- Chymosin (EC 3.4.23.4) is the major proteolytic enzyme in the ment next in size, CB(45-126).
    [Show full text]