Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat

Total Page:16

File Type:pdf, Size:1020Kb

Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat Protein Science ~2000!, 9:991–1001. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat QING-NA CAO,1,3 MARLENE STUBBS,1 KENNY Q.P. NGO,1 MICHAEL WARD,2 ANNIE CUNNINGHAM,1 EMIL F. PAI,1 GUANG-CHOU TU,1,3 and THEO HOFMANN1 1 Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada 2 Genencor International, Inc., 925 Page Mill Road, Palo Alto, California 94304-1013 ~Received August 30, 1999; Final Revision February 7, 2000; Accepted March 10, 2000! Abstract The nucleotide sequence of the gene ~ pepA! of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin ~which we propose to call penicillopepsin-JT1! has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P29 of substrates, are similar to those of penicillopepsin-JT1, endothia- pepsin, rhizopuspepsin, and pig pepsin. Earlier findings suggested that this rate-enhancing effect was due to a hydrogen bond between the -NH- of P3 and the hydrogen bond accepting oxygen of the side chain of the fourth amino acid residue C-terminal to Asp215. Thr219 of penicillopepsin-JT2 was mutated to Ser, Val, Gly, and Ala. Thr219Ser showed an increase in kcat when a P3 residue was present in the substrate, which was similar to that of the wild-type, whereas the mutants Thr219Val, Thr219Gly, and Thr219Ala showed no significant increase when a P3 residue was added. The results show that the putative hydrogen bond alone is responsible for the increase. We propose that by locking the -NH- of P3 to the enzyme, the scissile peptide bond between P1 and P19 becomes distorted toward a tetrahedral conformation and becomes more susceptible to nucleophilic attack by the catalytic apparatus without the need of a conformational change in the enzyme. Keywords: aspartic proteinases; penicillopepsin; penicillopepsin gene; subsite S3 effects Aspartic proteinases are a family of proteolytic enzymes charac- least seven amino acids of a substrate molecule ~Tang et al., 1978!. terized by two essential aspartic acid residues at the active site. It has been known for many years that the catalytic efficiency—as These are located in an extended cleft that can accommodate at expressed by kcat—of the aspartic proteinases pepsin, cathepsin D, and rhizopuspepsin is strongly dependent on the chain length of a substrate peptide ~Sampath-Kumar & Fruton, 1974; Fruton, 1976!, Reprint requests to: Theo Hofmann, Department of Biochemistry, Uni- versity of Toronto, Toronto, Ontario M5S 1A8, Canada; e-mail: theo@ whereas the apparent binding—as expressed by Km—is affected hera.med.utoronto.ca. only little by the substrate chain length. Subsequently, we obtained 3 Present address: Department of Pathology, Anatomy and Cell Biology, evidence, first with penicillopepsin-JT1 ~Hofmann et al., 1988! Thomas Jefferson University, Philadelphia, Pennsylvania 19107. and later with endothiapepsin, rhizopuspepsin, and pig pepsin Abbreviations: A., Aspergillus; CD, circular dichroism; FPLC, fast ~Balbaa et al., 1993!, that two positions in the substrate, namely P* performance liquid chromatography; endo H, endoglycosidase H; Nph, 3 p-nitrophenylalanyl; P., Penicillium; PCR, polymerase chain reaction; PTH, and P29, were largely responsible for the increases in kcat. These phenyl thiohydantoin. The definition of Schecter and Berger ~1967! for increases ranged from 31- to 50-fold for each position with denoting amino acid residues in peptide substrates as P1 to Pn and P19 to Pn9, penicillopepsin-JT1 ~Hofmann et al., 1988!, up to 100-fold with and subsites in the enzyme to which the side chains of these residues bind endothiapepsin and 40-fold to .300-fold for rhizopuspepsin as S1 to Sn and S19 to Sn9 is used throughout. The amino acids in the deduced sequence of penicillopepsin-JT2 are numbered sequentially, starting from ~Balbaa et al., 1993!, whereas residues in positions P2, P4, P39, and the first activation site ~Fig. 2!; the corresponding pepsin numbers are in P49 caused increases that ranged from 0 to only about five fold with parentheses. the three fungal enzymes ~Hofmann et al., 1988; Balbaa et al., 991 992 Q. Cao et al. 1993!. With pepsin the largest increases were also observed in richia coli because in the latter the zymogen is produced in relatively positions P3 and P29 where they were as high as 1,380-fold ~Balbaa low yield in inclusion bodies. This product has to be refolded after et al., 1993!. extraction and activated to give the active proteinase. The charac- We suggested previously that a hydrogen bond that forms be- terization of the active enzyme as well as the construction and tween the -NH- of P3 and the side-chain oxygen of Thr217 of kinetic analysis of the four mutants T219S, T219V, T219G, and penicillopepsin-JT1 ~219! in inhibitor complexes ~James et al., T219A is also described. A short review on penicillopepsins in- 1985!—and is probably present in enzyme-substrate complexes— cludes a brief summary of part of this work ~Hofmann, 1998!. may play a major role in the rate enhancing effect of P3 ~Hofmann et al., 1988!. This hydrogen bond is also present in substrate- analog complexes of endothiapepsin ~Foundling et al., 1987!, rhi- Results and discussion zopuspepsin ~Suguna et al., 1987!, human ~Fujinaga et al., 1995!, and porcine pepsins ~Abad-Zapatero et al., 1991; Chen et al., 1992!, Isolation and sequence of gene pepA chymosin ~Groves et al., 1998!, and candidapepsin, an aspartic proteinase from Candida albicans ~Cutfield et al., 1995!.Inca- The genomic library of P. janthinellum constructed in EMBL 3 thepsin D, a hydrogen bond between the oxygen of the analogous was screened with 32P-labeled ~0.5 1 1.6 kb! fragments that con- serine ~Ser235! and an inhibitor is also present but it forms with tain pepA, the gene encoding aspergillopepsin A ~Berka et al., the -C5O- of P4 instead of the -NH- of the same peptide bond 1990!, as described in Materials and methods. Aspergillopepsin A ~Baldwin et al., 1993!. There is a strong possibility that the hy- is 70% identical in amino acid sequence with penicillopepsin-JT1. drogen bond between the oxygen of the side chain of the fourth A total of 12 positive lambda clones were identified and purified residue C-terminal to the catalytic aspartic acid residue in the from 25,000 plaques. After restriction mapping, hybridization, sub- C-terminal domain of aspartic proteinases with the -NH- group of cloning, and sequencing, it was found that clone lambda-4,331 the P3 residue ~or the -C5O- of P4! of a substrate is a common contained the gene pepA, which codes for penicillopepsin-JT2 feature of all aspartic proteinases. In each of the 49 aspartic pro- ~Fig. 1!, whereas the other positive lambda clones analyzed con- teinases listed by Fusek and Vetvicka ~1995!, that position is oc- tained another gene pepB, which codes for penicillopepsin-JT3. cupied by an amino acid with a side chain carrying a hydrogen The nucleotide sequence, including 59 and 39 untranslated re- bond accepting oxygen, namely threonine, serine or asparagine, gions, of pepA for penicillopepsin-JT2 and the deduced amino acid the latter being present only in the aspartic proteinases from two sequence are shown in Figure 2. The coding region consists of species of Rhizomucor ~Fusek & Vetvicka, 1995!. Furthermore, a 1,299 nucleotides that include 2 short introns of 62 and 68 bp, serine or threonine is present at that position in all sequences that respectively. The location of the introns is based on the locations have been published since the compilation by Fusek and Vetvicka of introns 1 and 3 of the gene pepA from Aspergillus awamori and ~1995!. They include a number of enzymes from plants ~D’Hondt is confirmed by the alignment of the active enzyme part of the et al., 1997! and from animal parasites ~Becker et al., 1995; Harrop deduced amino acid sequence with the known amino acid se- et al., 1996!. In spite of the large sequence differences among the quences of penicillopepsin-JT1 ~Hsu et al., 1977; James & Sielecki, aspartic proteinases, such as the additional 100 residues that are 1983! and of aspergillopepsin A from A. awamori ~Berka et al., inserted in the plant enzymes ~Asakura et al., 1995!, there is only 1990!. The alignment of penicillopepsin-JT1 and penicillopepsin- one exception to the presence of a serine, threonine, or asparagine JT2 is shown in Figure 3. Their sequences are 71% identical. in that position in 111 sequences of aspartic proteinases of the Similarly, each of them is ;70% identical with aspergillopepsin A family A1 of Clan AA listed by Rawlings and Barrett ~1998!. The ~not shown!. Further support for the intron locations comes from exception is an allergen from the German cockroach ~Blattella the presence of the GTRNGT sequence, the 59 splice donor site, at germanica!, which also acts as an enzyme ~Arruda et al., 1995!. the start and the YAG sequence, the 39-splice acceptor site, at the The sequence around the catalytic aspartic acids in all other en- end of the introns.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • In Escherichia Coli (Synthetic Oligonucleotide/Gene Expression/Industrial Enzyme) J
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 3671-3675, June 1983 Biochemistry Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme) J. S. EMTAGE*, S. ANGALt, M. T. DOELt, T. J. R. HARRISt, B. JENKINS*, G. LILLEYt, AND P. A. LOWEt Departments of *Molecular Genetics, tMolecular Biology, and tFermentation Development, Celltech Limited, 250 Bath Road, Slough SL1 4DY, Berkshire, United Kingdom Communicated by Sydney Brenner, March 23, 1983 ABSTRACT A gene for calf prochymosin (prorennin) has been maturation conditions and remained insoluble on neutraliza- reconstructed from chemically synthesized oligodeoxyribonucleo- tion, it was possible that purification as well as activation could tides and cloned DNA copies of preprochymosin mRNA. This gene be achieved. has been inserted into a bacterial expression plasmid containing We describe here the construction of E. coli plasmids de- the Escherichia coli tryptophan promoter and a bacterial ribo- signed to express the prochymosin gene from the trp promoter some binding site. Induction oftranscription from the tryptophan and the isolation and conversion of this prochymosin to en- promoter results in prochymosin synthesis at a level of up to 5% active of total protein. The enzyme has been purified from bacteria by zymatically chymosin. extraction with urea and chromatography on DEAE-celiulose and MATERIALS AND METHODS converted to enzymatically active chymosin by acidification and neutralization. Bacterially produced chymosin is as effective in Materials. DNase I, pepstatin A, and phenylmethylsulfonyl clotting milk as the natural enzyme isolated from calf stomach. fluoride were obtained from Sigma. Calf prochymosin (Mr 40,431) and chymosin (Mr 35,612) were purified from stomachs Chymosin (rennin) is an aspartyl proteinase found in the fourth from 1-day-old calves (1).
    [Show full text]
  • Membrane Proteins • Cofactors – Plimstex • Membranes • Dna • Small Molecules/Gas • Large Complexes
    Structural mass spectrometry hydrogen/deuterium exchange Petr Man Structural Biology and Cell Signalling Institute of Microbiology, Czech Academy of Sciences Structural biology methods Low-resolution methods High-resolution methods Rigid SAXS IR Raman CD ITC MST Cryo-EM AUC SPR MS X-ray crystallography Chemical cross-linking H/D exchange Native ESI + ion mobility Oxidative labelling Small Large NMR Dynamic Structural biology approaches Simple MS, quantitative MS Cross-linking, top-down, native MS+dissociation native MS+ion mobility Cross-linking Structural MS What can we get using mass spectrometry IM – ion mobility CXL – chemical cross-linking AP – afinity purification OFP – oxidative footprinting HDX – hydrogen/deuterium exchange ISOTOPE EXCHANGE IN PROTEINS 1H 2H 3H occurence [%] 99.988 0.0115 trace 5 …Kaj Ulrik Linderstrøm-Lang „Cartesian diver“ Proteins are migrating in tubes with density gradient until they stop at the point where the densities are equal 1H 2H 3H % 99.9885 0.0115 trace density [g/cm3] 1.000 1.106 1.215 Methods of detection IR: β-: NMR: 1 n = 1.6749 × 10-27 kg MS: 1H 2H 3H výskyt% [%] 99.9885 0.0115 trace hustotadensity vody [g/cm [g/cm3] 3] 1.000 1.106 1.215 jadernýspinspin ½+ 1+ ½+ mass [u] 1.00783 2.01410 3.01605 Factors affecting H/D exchange hydrogen bonding solvent accessibility Factors affecting H/D exchange Side chains (acidity, steric shielding) Bai et al.: Proteins (1993) Glasoe, Long: J. Phys. Chem. (1960) Factors affecting H/D exchange – side chain effects Inductive effect – electron density is Downward shift due to withdrawn from peptide steric hindrance effect of bond (S, O).
    [Show full text]
  • Cloning and in Vitro-Transcription of Chymosin Gene in E. Coli
    The Open Nutraceuticals Journal, 2010, 3, 63-68 63 Open Access Cloning and In Vitro-Transcription of Chymosin Gene in E. coli S.A. El-Sohaimy1 Elsayed. E, Hafez2,* and M.A. El-Saadani3 1Food Science and Technology Department, Arid land Research Institute, Alexandria, Egypt 2Plant Molecular Pathology Department, Arid land Research Institute, Alexandria, Egypt 3Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt Abstract: Chymosin, commonly known as rennin, is the main milk-coagulating enzyme available in rennet. RNA was extracted from the abomasum of a suckling calf water buffalo and was subjected to RT-PCR using degenerate primers to amplify 850bp of the chymosin gene. The sequence was aligned with 19 different mammals' chymosin genes. The sequence revealed that there is a similarity to them ranging from 64% to 98%. The purified recombinant proteins were obtained from the transformed E. coli and yeast. The clotting activity of both of the resulting proteins was examined compared to the commercial peers. It was noticed that the concentration of the purified protein ranged from 15,000 to 40,000 MCU. Therefore, the activity of the obtained proteins was the same and it was 105% when compared to the commercial peer. Having examined the cytotoxicity of the purified proteins, the results revealed no toxicity. We can conclude that the obtained recombinant protein is more active and safe even when expressed in bacteria rather than yeast. Keywords: Chymosin, Milk Clotting, Recombinant E. coli and Recombinant Protein. INTRODUCTION Many microorganisms are known to produce rennet-like proteinases which can replace the calf rennet.
    [Show full text]
  • Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
    Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms.
    [Show full text]
  • A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of Dimiq, a Potent Indolo[2,3- B]Quinoline Agent, Against Candida Albicans Biofilms
    A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of DiMIQ, a Potent Indolo[2,3- b]Quinoline Agent, against Candida albicans Biofilms Robert Zarnowski 1,2*, Anna Jaromin 3*, Agnieszka Zagórska 4, Eddie G. Dominguez 1,2, Katarzyna Sidoryk 5, Jerzy Gubernator 3 and David R. Andes 1,2 1 Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] (E.G.D.); [email protected] (D.R.A.) 2 Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA 3 Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; [email protected] 4 Department of Medicinal Chemistry, Jagiellonian University Medical College, 30-688 Cracow, Poland; [email protected] 5 Department of Pharmacy, Cosmetic Chemicals and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland; [email protected] * Correspondence: [email protected] (R.Z.); [email protected] (A.J.); Tel.: +1-608-265-8578 (R.Z.); +48-71-3756203 (A.J.) Label-Free Cellular Proteomics of Candida albicans biofilms treated with DiMIQ Identified Proteins Accession # Alternate ID Gene names (ORF ) WT DIMIQ Z SCORE Proteins induced by DiMIQ Arginase (EC 3.5.3.1) A0A1D8PP00 CAR1 CAALFM_C504490CA 0.000 6.648 drug induced Glucan 1,3-beta-glucosidase BGL2 (EC 3.2.1.58) (Exo-1Q5AMT2 BGL2 CAALFM_C402250CA
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Crystal Structures of Native and Inhibitedforms of Human Cathepsin
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 6796-6800, July 1993 Biochemustry Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design (aspartic protcase/N-linked oligosaccharide/pepstatin A) ERic T. BALDWIN*, T. NARAYANA BHAT*, SERGEI GULNIK*, MADHUSOODAN V. HOSUR*t, RAYMOND C. SOWDER Il, RAUL E. CACHAU*, JACK COLLINS*, ABELARDO M. SILVA*, AND JOHN W. ERICKSON*§ *Structural Biochemistry Program, Frederick Biomedical Supercomputing Center and tAIDS Vaccine Program, Program Resources Inc./DynCorp, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702 Communicated by David R. Davies, March 24, 1993 (receivedfor review February 4, 1993) ABSTRACT Cathepsin D (EC 3.4.23.5) is a lysosomal duced in the vicinity of the growing tumor, may degrade the protease suspected to play important roles in protein catabo- extracellular matrix and thereby promote the escape of lism, antigen processing, degenerative diseases, and breast cancer cells to the lymphatic and circulatory systems and cancer progresson. Determination of the crystal structures of enhance the invasion of new tissues (17, 18). The design of cathepsin D and a complex with pepstatin at 2.5 A resolution potent and specific inhibitors of cathepsin D will aid the provides insights into inhibitor binding and lysosomal targeting further elucidation of the roles of this enzyme in human for this two-chain, N-glycosylated aspartic protease. Compar- disease. We previously described the purification and crys- ison with the structures of a complex of pepstatin bound to tallization ofhuman cathepsin D from liver (3); similar studies rhizopuspepsin and with a human renin-bihbitor complex have been reported recently for cathepsin D isolated from revealed differences in subsite structures and inhibitor-enzyme bovine liver (19) and human spleen (20).
    [Show full text]
  • Camel and Bovine Chymosin: the Relationship Crystallography Between Their Structures and Cheese-Making ISSN 0907-4449 Properties
    research papers Acta Crystallographica Section D Biological Camel and bovine chymosin: the relationship Crystallography between their structures and cheese-making ISSN 0907-4449 properties Jesper Langholm Jensen,a,b Bovine and camel chymosin are aspartic peptidases that are Received 19 November 2012 Anne Mølgaard,a Jens-Christian used industrially in cheese production. They cleave the Accepted 31 January 2013 Navarro Poulsen,a Phe105-Met106 bond of the milk protein -casein, releasing b Marianne Kirsten Harboe, its predominantly negatively charged C-terminus, which leads PDB References: bovine Jens Bæk Simonsen,c‡ to the separation of the milk into curds and whey. Despite chymosin, 4aa8; camel chymosin, 4aa9 Andrea Maria Lorentzen,d Karin having 85% sequence identity, camel chymosin shows a 70% higher milk-clotting activity than bovine chymosin towards Hjernø,d Johannes M. van den bovine milk. The activities, structures, thermal stabilities and Brink,b Karsten Bruun Qvistb and a glycosylation patterns of bovine and camel chymosin obtained Sine Larsen * by fermentation in Aspergillus niger have been examined. Different variants of the enzymes were isolated by hydro- aDepartment of Chemistry, University of phobic interaction chromatography and showed variations Copenhagen, Denmark, bChr. Hansen A/S, in their glycosylation, N-terminal sequences and activities. Bøge Alle´ 10-12, DK-2970 Hørsholm, Glycosylation at Asn291 and the loss of the first three residues c Denmark, Nanobioscience, Department of of camel chymosin significantly decreased its activity. Thermal Basic Sciences and Environment, University of Copenhagen, Denmark, and dInstitute of differential scanning calorimetry revealed a slightly higher Biochemistry and Molecular Biology, thermal stability of camel chymosin compared with bovine University of Southern Denmark, Denmark chymosin.
    [Show full text]
  • Hydrolysis of -Lactalbumin by Chymosin and Pepsin. Effect Of
    Hydrolysis of α-lactalbumin by chymosin and pepsin. Effect of conformation and pH G. Miranda, G. Hazé, Non Renseigné To cite this version: G. Miranda, G. Hazé, Non Renseigné. Hydrolysis of α-lactalbumin by chymosin and pepsin. Effect of conformation and pH. Le Lait, INRA Editions, 1989, 69 (6), pp.451-459. hal-00929176 HAL Id: hal-00929176 https://hal.archives-ouvertes.fr/hal-00929176 Submitted on 1 Jan 1989 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lait (1989) 69. 451-459 451 © Elsevier/INRA Original article Hydrolysis of œ-lactalburnin by chymosin and pepsin. Effect of conformation and pH G. Miranda, G. Hazé, P.Scanff and J.P.Pélissier INRA, station de recherches laitières, 78350 Jouy-en-Josas, France (received 21 March 1989. accepted 26 June 1989) Summary - The correlation between change of conformation of a-Iactalbumin and its degradation by gastric enzymes was verified. With citrate buffer (0.1 M), the modification of a-Iactalbumin confor- mation occurred when the pH value was below pH 4.0. This conformational change was influenced by buffer composition and ionic strength. However, the presence of EDTA in the butter did not modi- fy the pH value at which the change of conformation of the protein occurred.
    [Show full text]
  • Crystal Structure of a Synthetic HIV-1 Protease
    Conserved Folding in Retroviral Proteases: Crystal Structure of a Synthetic HIV-1 Protease ALEXANDER WLODAWER, MARIA MILLER, MARIUSZ JASK6LsKi,* BANGALoRE K. SATHYANARAYANA, EIuc BALDWIN, IRENE T. WEBER, LINDA M. SELK, LEIGH CLAWSON, JENS SCHNEIDER, STEPHEN B. H. KENTt symmetric dimers with active sites resembling those in pepsin-like The rational design ofdrugs that can inhibit the action of proteases (14). However, significant differences in main chain viral proteases depends on obtaining accurate structures connectivity and secondary structure were observed between the of these enzymes. The crystal structure of chemically reported crystallographic structures ofthese two homologous retro- synthesized HIV-1 protease has been determined at 2.8 viral proteases. Particularly disturbing were the drastic differences in angstrom resolution (R factor of0.184) with the use ofa the topology of the dimer interface regions (15). model based on the Rous sarcoma virus protease struc- This puzzling disparity between the structures reported for the ture. In this enzymatically active protein, the cysteines RSV and HIV-l proteases was reinforced by a model ofHIV-1 PR were replaced by ac-amino-n-butyric acid, a nongenetically based on the crystal structure of RSV PR, proposed by Weber et al. coded amino acid. This structure, in which all 99 amino (16). The model showed that the HIV-1 PR residues could be acids were located, differs in several important details accommodated in a conformation almost identical to that of the on February 13, 2012 from that reported previously by others. The interface RSV PR. Most of the differences between the RSV PR and the between the identical subunits forming the active protease smaller HIV-1 PR molecule (124 amino acids versus 99 per dimer is composed of four well-ordered ,B strands from monomer) were limited to contiguous regions located in two both the amino and carboxyl termini and residues 86 to surface loops, and the core regions of the two structures were 94 have a helical conformation.
    [Show full text]
  • Structure of the Human Renin Gene
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 5999-6003, October 1984 Biochemistry Structure of the human renin gene (hypertension/aspartyl proteinase/nucleotide sequence/splice junction) HITOSHI MIYAZAKI*, AKIYOSHI FUKAMIZU*, SHIGEHISA HIROSE*, TAKASHI HAYASHI*, HITOSHI HORI*, HIROAKI OHKUBOt, SHIGETADA NAKANISHIt, AND KAZUO MURAKAMI** *Institute of Applied Biochemistry, University of Tsukuba, Ibaraki 305, Japan; and tInstitute for Immunology, Kyoto University Faculty of Medicine, Kyoto 606, Japan Communicated by Leroy Hood, June 27, 1984 ABSTRACT The human renin gene was isolated from a between the intron-exon organization of the gene and the Charon 4A human genomic library and characterized. The tertiary structure of the protein. gene spans about 11.7 kilobases and consists of 10 exons and 9 introns that map at points that could be variable surface loops MATERIALS AND METHODS of the enzyme. The complete coding regions, the 5'- and 3'- Materials. All restriction enzymes were obtained from flanking regions, and the exon-intron boundaries were se- either New England Biolabs or Takara Shuzo (Kyoto, Ja- quenced. The active site aspartyl residues Asp-38 and Asp-226 pan). Escherichia coli alkaline phosphatase and T4 DNA li- are encoded by the third and eighth exons, respectively. The gase were from Takara Shuzo. [_y-32P]ATP (>5000 Ci/mmol; extra three amino acids (Asp-165, Ser-166, Glu-167) that are 1 Ci = 37 GBq) and [a-32P]dCTP (=3000 Ci/mmol) were not present in mouse renin are encoded by the separate sixth from Amersham. exon, an exon as small as 9 nucleotides. The positions of the Screening. A human genomic library, prepared from partial introns are in remarkable agreement with those in the human Alu I and Hae III digestion and ligated into the EcoRI arms pepsin gene, supporting the view that the genes coding for of the X vector Charon 4A, was kindly provided by T.
    [Show full text]