1J71 Lichtarge Lab 2006

Total Page:16

File Type:pdf, Size:1020Kb

1J71 Lichtarge Lab 2006 Pages 1–9 1j71 Evolutionary trace report by report maker September 24, 2010 4.3.1 Alistat 8 4.3.2 CE 8 4.3.3 DSSP 8 4.3.4 HSSP 8 4.3.5 LaTex 8 4.3.6 Muscle 8 4.3.7 Pymol 8 4.4 Note about ET Viewer 8 4.5 Citing this work 8 4.6 About report maker 8 4.7 Attachments 9 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1j71): Title: Structure of the extracellular aspartic proteinase from candida tropicalis yeast. Compound: Mol id: 1; molecule: aspartic proteinase; chain: a; synonym: candidapepsin; ec: 3.4.23.24; mol id: 2; molecule: tetra- peptide thr-ile-thr-ser; chain: b Organism, scientific name: Unidentified CONTENTS 1j71 contains a single unique chain 1j71A (334 residues long). 1 Introduction 1 Chain 1j71B is too short (4 residues) to permit statistically significant analysis, and was treated as a peptide ligand. 2 Chain 1j71A 1 2.1 Q00663 overview 1 2.2 Multiple sequence alignment for 1j71A 1 2 CHAIN 1J71A 2.3 Residue ranking in 1j71A 1 2.1 Q00663 overview 2.4 Top ranking residues in 1j71A and their position on the structure 1 From SwissProt, id Q00663, 98% identical to 1j71A: 2.4.1 Clustering of residues at 25% coverage. 2 Description: Candidapepsin precursor (EC 3.4.23.24) (Aspartate 2.4.2 Overlap with known functional surfaces at protease) (ACP). 25% coverage. 2 Organism, scientific name: Candida tropicalis (Yeast). 2.4.3 Possible novel functional surfaces at 25% Taxonomy: Eukaryota; Fungi; Ascomycota; Saccharomycotina; coverage. 5 Saccharomycetes; Saccharomycetales; mitosporic Saccharomyceta- les; Candida. 3 Notes on using trace results 7 Catalytic activity: Preferential cleavage at the carboxyl of hydro- 3.1 Coverage 7 phobic amino acids, but fails to cleave 15-Leu-—-Tyr-16, 16- 3.2 Known substitutions 7 Tyr-—-Leu-17 and 24-Phe-—-Phe-25 of insulin B chain. Activates 3.3 Surface 7 trypsinogen, and degrades keratin. 3.4 Number of contacts 7 Subcellular location: Secreted. 3.5 Annotation 7 Ptm: O-glycosylated. 3.6 Mutation suggestions 7 Similarity: Belongs to the peptidase A1 family. About: This Swiss-Prot entry is copyright. It is produced through a 4 Appendix 7 collaboration between the Swiss Institute of Bioinformatics and the 4.1 File formats 7 EMBL outstation - the European Bioinformatics Institute. There are 4.2 Color schemes used 8 no restrictions on its use as long as its content is in no way modified 4.3 Credits 8 and this statement is not removed. 1 Lichtarge lab 2006 Fig. 1. Residues 1-167 in 1j71A colored by their relative importance. (See Fig. 2. Residues 168-334 in 1j71A colored by their relative importance. (See Appendix, Fig.9, for the coloring scheme.) Appendix, Fig.9, for the coloring scheme.) 2.2 Multiple sequence alignment for 1j71A For the chain 1j71A, the alignment 1j71A.msf (attached) with 232 sequences was used. The alignment was downloaded from the HSSP database, and fragments shorter than 75% of the query as well as duplicate sequences were removed. It can be found in the attachment to this report, under the name of 1j71A.msf. Its statistics, from the alistat program are the following: Format: MSF Number of sequences: 232 Total number of residues: 72780 Smallest: 259 Largest: 334 Average length: 313.7 Alignment length: 334 Average identity: 31% Most related pair: 99% Most unrelated pair: 16% Most distant seq: 30% Furthermore, <1% of residues show as conserved in this ali- Fig. 3. Residues in 1j71A, colored by their relative importance. Clockwise: gnment. front, back, top and bottom views. The alignment consists of 57% eukaryotic ( 14% vertebrata, <1% arthropoda, 40% fungi, <1% plantae) sequences. (Descriptions of some sequences were not readily available.) The file containing the belong to. The clusters in Fig.4 are composed of the residues listed sequence descriptions can be found in the attachment, under the name in Table 1. 1j71A.descr. Table 1. 2.3 Residue ranking in 1j71A cluster size member color residues The 1j71A sequence is shown in Figs. 1–2, with each residue colored red 80 14,21,22,23,25,29,32,33,34 according to its estimated importance. The full listing of residues 35,36,37,38,39,40,65,70,80 in 1j71A can be found in the file called 1j71A.ranks sorted in the 82,84,85,86,92,94,97,109,111 attachment. 112,122,123,124,125,126,127 2.4 Top ranking residues in 1j71A and their position on 128,138,140,141,142,145,151 the structure 156,157,158,159,160,168,170 171,172,173,174,175,176,179 In the following we consider residues ranking among top 25% of resi- 180,182,184,216,217,218,219 dues in the protein . Figure 3 shows residues in 1j71A colored by their 220,221,222,298,299,300,301 importance: bright red and yellow indicate more conserved/important 302,303,304,305,307,308,310 residues (see Appendix for the coloring scheme). A Pymol script for producing this figure can be found in the attachment. continued in next column 2.4.1 Clustering of residues at 25% coverage. Fig. 4 shows the top 25% of all residues, this time colored according to clusters they 2 Table 2. continued res type subst’s cvg noc/ dist (%) bb (A˚ ) .(2) A(1)IER 298 I I(65) 0.17 2/0 3.65 L(18) V(10)A T(2)SMY FN 85 G G(60) 0.20 9/9 3.13 V(12) A(13) I(1) L(3)YFD E(1)KSQ TM Table 2. The top 25% of residues in 1j71A at the interface with etha- nol.(Field names: res: residue number in the PDB entry; type: amino acid type; substs: substitutions seen in the alignment; with the percentage of each type in the bracket; noc/bb: number of contacts with the ligand, with the num- Fig. 4. Residues in 1j71A, colored according to the cluster they belong to: ber of contacts realized through backbone atoms given in the bracket; dist: red, followed by blue and yellow are the largest clusters (see Appendix for distance of closest apporach to the ligand. ) the coloring scheme). Clockwise: front, back, top and bottom views. The corresponding Pymol script is attached. Table 3. res type disruptive Table 1. continued mutations cluster size member 221 T (R)(K)(H)(FW) color residues 86 D (R)(FWH)(Y)(K) 311,312,319,321 298 I (R)(Y)(H)(K) 85 G (R)(K)(E)(H) Table 1. Clusters of top ranking residues in 1j71A. Table 3. List of disruptive mutations for the top 25% of residues in 1j71A, that are at the interface with ethanol. 2.4.2 Overlap with known functional surfaces at 25% coverage. The name of the ligand is composed of the source PDB identifier Figure 5 shows residues in 1j71A colored by their importance, at the and the heteroatom name used in that file. interface with 1j71EOH575. Ethanol binding site. Table 2 lists the top 25% of residues at Interface with the peptide 1j71B. Table 4 lists the top 25% the interface with 1j71EOH575 (ethanol). The following table (Table of residues at the interface with 1j71B. The following table (Table 3) suggests possible disruptive replacements for these residues (see 5) suggests possible disruptive replacements for these residues (see Section 3.6). Section 3.6). Table 2. Table 4. res type subst’s cvg noc/ dist res type subst’s cvg noc/ dist (%) bb (A˚ ) (%) bb (A˚ ) 221 T S(18) 0.13 2/0 4.45 34 G G(98)AN 0.01 17/17 3.44 T(73) S A(3) 35 S S(97)TE 0.02 5/2 3.41 G(1)QYV LV FKE 84 Y Y(97).F 0.03 28/17 3.34 86 D D(53) 0.15 7/6 3.86 LQ T(15) 218 D D(96).Q 0.03 11/0 2.69 S(22) GNHS G(1) 221 T S(18) 0.13 1/0 4.17 K(1) continued in next column continued in next column 3 Table 4. continued res type subst’s cvg noc/ dist (%) bb (A˚ ) V(15) T(2) F(3). M(3)S Table 4. The top 25% of residues in 1j71A at the interface with 1j71B. (Field names: res: residue number in the PDB entry; type: amino acid type; substs: substitutions seen in the alignment; with the percentage of each type in the bracket; noc/bb: number of contacts with the ligand, with the number of contacts realized through backbone atoms given in the bracket; dist: distance of closest apporach to the ligand. ) Table 5. res type disruptive mutations 34 G (R)(KE)(H)(FW) 35 S (R)(K)(H)(FW) 84 Y (K)(Q)(M)(ER) Fig. 5. Residues in 1j71A, at the interface with ethanol, colored by their rela- 218 D (R)(FW)(H)(Y) tive importance. The ligand (ethanol) is colored green. Atoms further than 221 T (R)(K)(H)(FW) 30A˚ away from the geometric center of the ligand, as well as on the line of 82 I (R)(Y)(H)(T) sight to the ligand were removed. (See Appendix for the coloring scheme for 298 I (R)(Y)(H)(K) the protein chain 1j71A.) 85 G (R)(K)(E)(H) 216 V (R)(K)(Y)(E) Table 4. continued res type subst’s cvg noc/ dist Table 5. List of disruptive mutations for the top 25% of residues in 1j71A, that are at the interface with 1j71B.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of Dimiq, a Potent Indolo[2,3- B]Quinoline Agent, Against Candida Albicans Biofilms
    A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of DiMIQ, a Potent Indolo[2,3- b]Quinoline Agent, against Candida albicans Biofilms Robert Zarnowski 1,2*, Anna Jaromin 3*, Agnieszka Zagórska 4, Eddie G. Dominguez 1,2, Katarzyna Sidoryk 5, Jerzy Gubernator 3 and David R. Andes 1,2 1 Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] (E.G.D.); [email protected] (D.R.A.) 2 Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA 3 Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; [email protected] 4 Department of Medicinal Chemistry, Jagiellonian University Medical College, 30-688 Cracow, Poland; [email protected] 5 Department of Pharmacy, Cosmetic Chemicals and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland; [email protected] * Correspondence: [email protected] (R.Z.); [email protected] (A.J.); Tel.: +1-608-265-8578 (R.Z.); +48-71-3756203 (A.J.) Label-Free Cellular Proteomics of Candida albicans biofilms treated with DiMIQ Identified Proteins Accession # Alternate ID Gene names (ORF ) WT DIMIQ Z SCORE Proteins induced by DiMIQ Arginase (EC 3.5.3.1) A0A1D8PP00 CAR1 CAALFM_C504490CA 0.000 6.648 drug induced Glucan 1,3-beta-glucosidase BGL2 (EC 3.2.1.58) (Exo-1Q5AMT2 BGL2 CAALFM_C402250CA
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat
    Protein Science ~2000!, 9:991–1001. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat QING-NA CAO,1,3 MARLENE STUBBS,1 KENNY Q.P. NGO,1 MICHAEL WARD,2 ANNIE CUNNINGHAM,1 EMIL F. PAI,1 GUANG-CHOU TU,1,3 and THEO HOFMANN1 1 Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada 2 Genencor International, Inc., 925 Page Mill Road, Palo Alto, California 94304-1013 ~Received August 30, 1999; Final Revision February 7, 2000; Accepted March 10, 2000! Abstract The nucleotide sequence of the gene ~ pepA! of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin ~which we propose to call penicillopepsin-JT1! has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P29 of substrates, are similar to those of penicillopepsin-JT1, endothia- pepsin, rhizopuspepsin, and pig pepsin.
    [Show full text]
  • Arabidopsis Thaliana Atypical Aspartic Proteases Involved in Primary Root Development and Lateral Root Formation
    André Filipe Marques Soares RLR1 and RLR2, two novel Arabidopsis thaliana atypical aspartic proteases involved in primary root development and lateral root formation 2016 Thesis submitted to the Institute for Interdisciplinary Research of the University of Coimbra to apply for the degree of Doctor in Philosophy in the area of Experimental Biology and Biomedicine, specialization in Molecular, Cell and Developmental Biology This work was conducted at the Center for Neuroscience and Cell Biology (CNC) of University of Coimbra and at Biocant - Technology Transfer Association, under the scientific supervision of Doctor Isaura Simões and at the Department of Biochemistry of University of Massachusetts, Amherst, under the scientific supervision of Doctor Alice Y. Cheung. Part of this work was also performed at the Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, under the scientific supervision of Doctor Herta Steinkellner and also at the Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, under the schientific supervision of Doctor Pitter F. Huesgen. André Filipe Marques Soares was a student of the Doctoral Programme in Experimental Biology and Biomedicine coordinated by the Center for Neuroscience and Cell Biology (CNC) of the University of Coimbra and a recipient of the fellowship SFRH/BD/51676/2011 from the Portuguese Foundation for Science and Technology (FCT). The execution of this work was supported by a PPP grant of the German Academic Exchange Service with funding from the Federal Ministry of Education and Research (Project-ID 57128819 to PFH) and the Fundação para a Ciência e a Tecnologia (FCT) (grant: Scientific and Technological Bilateral Agreement 2015/2016 to IS) Agradecimentos/Acknowledgments Esta tese e todo o percurso que culminou na sua escrita não teriam sido possíveis sem o apoio, o carinho e a amizade de várias pessoas que ainda estão ou estiveram presentes na minha vida.
    [Show full text]
  • Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases
    Handbook of Proteolytic Enzymes Second Edition Volume 1 Aspartic and Metallo Peptidases Alan J. Barrett Neil D. Rawlings J. Fred Woessner Editor biographies xxi Contributors xxiii Preface xxxi Introduction ' Abbreviations xxxvii ASPARTIC PEPTIDASES Introduction 1 Aspartic peptidases and their clans 3 2 Catalytic pathway of aspartic peptidases 12 Clan AA Family Al 3 Pepsin A 19 4 Pepsin B 28 5 Chymosin 29 6 Cathepsin E 33 7 Gastricsin 38 8 Cathepsin D 43 9 Napsin A 52 10 Renin 54 11 Mouse submandibular renin 62 12 Memapsin 1 64 13 Memapsin 2 66 14 Plasmepsins 70 15 Plasmepsin II 73 16 Tick heme-binding aspartic proteinase 76 17 Phytepsin 77 18 Nepenthesin 85 19 Saccharopepsin 87 20 Neurosporapepsin 90 21 Acrocylindropepsin 9 1 22 Aspergillopepsin I 92 23 Penicillopepsin 99 24 Endothiapepsin 104 25 Rhizopuspepsin 108 26 Mucorpepsin 11 1 27 Polyporopepsin 113 28 Candidapepsin 115 29 Candiparapsin 120 30 Canditropsin 123 31 Syncephapepsin 125 32 Barrierpepsin 126 33 Yapsin 1 128 34 Yapsin 2 132 35 Yapsin A 133 36 Pregnancy-associated glycoproteins 135 37 Pepsin F 137 38 Rhodotorulapepsin 139 39 Cladosporopepsin 140 40 Pycnoporopepsin 141 Family A2 and others 41 Human immunodeficiency virus 1 retropepsin 144 42 Human immunodeficiency virus 2 retropepsin 154 43 Simian immunodeficiency virus retropepsin 158 44 Equine infectious anemia virus retropepsin 160 45 Rous sarcoma virus retropepsin and avian myeloblastosis virus retropepsin 163 46 Human T-cell leukemia virus type I (HTLV-I) retropepsin 166 47 Bovine leukemia virus retropepsin 169 48
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel Et Al
    USOO8561811 B2 (12) United States Patent (10) Patent No.: US 8,561,811 B2 Bluchel et al. (45) Date of Patent: Oct. 22, 2013 (54) SUBSTRATE FOR IMMOBILIZING (56) References Cited FUNCTIONAL SUBSTANCES AND METHOD FOR PREPARING THE SAME U.S. PATENT DOCUMENTS 3,952,053 A 4, 1976 Brown, Jr. et al. (71) Applicants: Christian Gert Bluchel, Singapore 4.415,663 A 1 1/1983 Symon et al. (SG); Yanmei Wang, Singapore (SG) 4,576,928 A 3, 1986 Tani et al. 4.915,839 A 4, 1990 Marinaccio et al. (72) Inventors: Christian Gert Bluchel, Singapore 6,946,527 B2 9, 2005 Lemke et al. (SG); Yanmei Wang, Singapore (SG) FOREIGN PATENT DOCUMENTS (73) Assignee: Temasek Polytechnic, Singapore (SG) CN 101596422 A 12/2009 JP 2253813 A 10, 1990 (*) Notice: Subject to any disclaimer, the term of this JP 2258006 A 10, 1990 patent is extended or adjusted under 35 WO O2O2585 A2 1, 2002 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 13/837,254 Inaternational Search Report for PCT/SG2011/000069 mailing date (22) Filed: Mar 15, 2013 of Apr. 12, 2011. Suen, Shing-Yi, et al. “Comparison of Ligand Density and Protein (65) Prior Publication Data Adsorption on Dye Affinity Membranes Using Difference Spacer Arms'. Separation Science and Technology, 35:1 (2000), pp. 69-87. US 2013/0210111A1 Aug. 15, 2013 Related U.S. Application Data Primary Examiner — Chester Barry (62) Division of application No. 13/580,055, filed as (74) Attorney, Agent, or Firm — Cantor Colburn LLP application No.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • EUROPEAN PATENT OFFICE, VIENNA Thousand Oaks, CA 91320 (US) SUB-OFFICE
    Europäisches Patentamt *EP001033405A2* (19) European Patent Office Office européen des brevets (11) EP 1 033 405 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 15/29, C12N 15/82, 06.09.2000 Bulletin 2000/36 C07K 14/415, C12Q 1/68, A01H 5/00 (21) Application number: 00301439.6 (22) Date of filing: 25.02.2000 (84) Designated Contracting States: • Brover, Vyacheslav AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Calabasas, CA 91302 (US) MC NL PT SE • Chen, Xianfeng Designated Extension States: Los Angeles, CA 90025 (US) AL LT LV MK RO SI • Subramanian, Gopalakrishnan Moorpark, CA 93021 (US) (30) Priority: 25.02.1999 US 121825 P • Troukhan, Maxim E. 27.07.1999 US 145918 P South Pasadena, CA 91030 (US) 28.07.1999 US 145951 P • Zheng, Liansheng 02.08.1999 US 146388 P Creve Coeur, MO 63141 (US) 02.08.1999 US 146389 P • Dumas, J. 02.08.1999 US 146386 P , (US) 03.08.1999 US 147038 P 04.08.1999 US 147302 P (74) Representative: 04.08.1999 US 147204 P Bannerman, David Gardner et al More priorities on the following pages Withers & Rogers, Goldings House, (83) Declaration under Rule 28(4) EPC (expert 2 Hays Lane solution) London SE1 2HW (GB) (71) Applicant: Ceres Incorporated Remarks: Malibu, CA 90265 (US) THE COMPLETE DOCUMENT INCLUDING REFERENCE TABLES AND THE SEQUENCE (72) Inventors: LISTING IS AVAILABLE ON CD-ROM FROM THE • Alexandrov, Nickolai EUROPEAN PATENT OFFICE, VIENNA Thousand Oaks, CA 91320 (US) SUB-OFFICE.
    [Show full text]
  • Amfep Guidance on REACH Pre-Registration of Enzymes
    Amfep/08/44 30 May 2008 Amfep guidance on REACH pre-registration of enzymes 1. Purpose and timing During the period 1 June to 1 December 2008, European enzyme manufacturers and importers can pre-register the enzyme substances currently manufactured in EU and imported into the EU for technical applications. Manufacturers and importers inside the EU may appoint Third Party Representatives to remain anonymous and if based outside the EU, they may appoint Only Representatives. The pre-registration provision of REACH enables substances to remain on the market subject to later registration in 2010, 2013 or 2018, depending on tonnage. Pre-registration is made to the European Chemicals Agency (ECHA) and result in the formation of a Substance Information Exchange Forum (SIEF) per enzyme. ECHA will publish a list of pre- registered substances by 1 January 2009. Amfep has formed a pre-consortium of members and associated manufacturing companies to prepare enzyme (pre-) registrations and SIEF discussions. The Amfep secretariat can be contacted for further information and on questions related to enzyme pre-registrations. This document is intended to facilitate pre-registration of enzymes. References are given to detailed guidance on enzyme identification, pre-registration and other REACH requirements. However, it must be considered as guidance only. Each potential registrant remains fully responsible for selecting its enzymes and making individual pre-registrations. 2. Scope Enzymes listed on the European chemicals inventory EINECS are considered phase-in (‘existing’) substances and can be pre-registered. Enzymes manufactured in the EU at least once after 31 May 1992, without being placed on the EU market by the manufacturer or importer, are regarded as phase-in substances.
    [Show full text]
  • Part One Overview of Aspartic Acid Proteases
    Part One Overview of Aspartic Acid Proteases Aspartic Acid Proteases as Therapeutic Targets. Edited by Arun K. Ghosh Copyright Ó 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31811-7 j3 1 Introduction to the Aspartic Proteinase Family Ben M. Dunn Abbreviations BACE b-amyloid cleaving enzyme C-terminal carboxyl terminal D-G-I-L-G-L amino acid sequence using single-letter code HIV human immunodeficiency virus Nle norleucine Nph para-nitrophenylalanine N-terminal amino terminal PDB Protein Data Bank PfPM2 Plasmodium falciparum plasmepsin 2 Symbols – kcat/Km characterizes the kinetics of cleavage of an enzyme substrate pair Kcat turnover number of an enzyme – Km Michaelis Menten constant 1.1 Introduction All cells, tissues, and organisms require proteolysis for the control of metabolism and growth. Even a virus, the smallest nucleic acid-based self-replicating organism, typically requires either host cell proteolysis or enzymes coded by its own genetic material to provide processing of initial viral gene products. Proteolysis is required to activate prohormones and other precursor molecules, to invade into cells and tissues, to release membrane-bound molecules, to provide a cascade effect in a variety of rapid response systems, to regulate cell growth, tissue homeostasis, remodeling, and Aspartic Acid Proteases as Therapeutic Targets. Edited by Arun K. Ghosh Copyright Ó 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31811-7 4j 1 Introduction to the Aspartic Proteinase Family renewal, and to stimulate cell division, to name but a few vital functions. This applies to pathogenic organisms as well as to normal cells and tissues.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]