Determining the Specificity of Pepsin for Proteolytic Digestion

Total Page:16

File Type:pdf, Size:1020Kb

Determining the Specificity of Pepsin for Proteolytic Digestion 1 DETERMINING THE SPECIFICITY OF PEPSIN FOR PROTEOLYTIC DIGESTION A thesis presented by Melissa H. Palashoff to The Department of Chemistry and Chemical Biology in partial fulfillment of the requirements for the degree of Master of Science in the field of Chemistry Northeastern University Boston, Massachusetts August 2008 2 DETERMINING THE SPECIFICITY OF PEPSIN FOR PROTEOLYTIC DIGESTION by Melissa H. Palashoff ABSTRACT OF THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemistry and Chemical Biology in the Graduate School of Arts and Sciences of Northeastern University, August 2008 3 ABSTRACT Pepsin is an aspartic acid protease that is commonly found in the stomach of many organisms. Porcine pepsin is the most studied and is fully active at pH 1.9 but inactive above pH ~7. Pepsin is known to have limited specificity and there are only general rules about its cleavage preferences. To further define rules regarding pepsin specificity, a database was constructed consisting of 40 proteins and 1344 peptide cleavages from the literature. Contemporary scientific literature was searched for all publications that involve pepsin digestion and mass spectrometry at pH 2.5-2.7. Peptide data for 40 proteins were extracted and combined to create a map of pepsin cleavage specificity. The frequency of cleavage for each protein was normalized based on how many times that specific combination of residues occurred in the protein sequence. In addition to the literature search, nine proteins along with E.coli whole cell lysate were digested at pH 1.0, 2.5 and 4.0. The proteins were analyzed with online pepsin digestion using an immobilized pepsin column and UPLC/ESI-MSE. The peptides and their fragments were identified with a combination of MSE, software analysis, and manual inspection. The analysis of the data indicated that pepsin maintains limited cleavage preferences. At pH 2.5, pepsin will cleave preferentially after most bulky, hydrophobic amino acids such as leucine and phenylalanine. Additionally, the residues that most often occur immediately following the cleaved peptide bond are tryptophan and tyrosine. It has also been shown that pepsin will rarely cleave at proline and histidine. Analysis performed at pH 1.0 and 4.0 yielded similar results. 4 ACKNOLEDGEMENTS I would like to begin by thanking my advisor Dr. John R. Engen for all of his help in making me a better scientist. Without his guidance and advice this research would not have been possible. I am also grateful to my other committee members, Dr. Mary Jo Ondrechen and Dr. Paul Vouros, for helping to make this thesis the best that it could be. I would like to sincerely thank everyone in Dr. Engen’s lab for their continuous support over the past year. To my labmates, Dr. Thomas Wales, Dr. Roxana Iacob, Christopher Morgan, Sean Marcsisin, Damian Houde and Susan Fang, for providing a wonderful environment for me to work and learn in. Finally, I would like to dedicate this to my family and friends for their constant encouragement during the past five years. I would especially like to thank my parents, William and Patricia, and my brother Joshua for everything they have done to support me, both morally and materially, during my college career. Last, but certainly not least, to Eddie for always being there to support me during the good days and the bad, thank you. 5 TABLE OF CONTENTS ABSTRACT ………………………………………………………………………………………. 3 TABLE OF CONTENTS …………………………………………………………………………. 5 LIST OF FIGURES ……………………………………………………………………………….. 8 LIST OF TABLES ………………………………………………………………………………...10 LIST OF ABBREVIATIONS …………………………………………………………………… 11 CHAPTER ONE: INTRODUCTION AND BACKGROUND TO ASPARTIC ACID PROTEASES AND PEPSIN…………………………………………………………….. 13 1.1 Aspartic Acid Proteases ……………………………………………………………...13 1.2 Catalytic Mechanism of Aspartic Proteases …………………………………………. 15 1.3 Primary Structure of the Pepsin-like Family ………………………………………… 17 1.4 Pepsin …………………………………………………………………………………18 1.4.1 History of pepsin ……………………………………………………………18 1.4.2 Activation of pepsin ………………………………………………………...18 1.4.3 Pepsin crystal structure ……………………………………………………..21 1.4.4 Activity of pepsin ………………………………………………………….. 23 1.4.5 Pepsin and proteomics ……………………………………………………... 23 1.5 Research Objectives …………………………………………………………………. 24 1.6 References …………………………………………………………………………… 25 CHAPTER TWO: LITERATURE SEARCH …………………………………………………… 29 2.1 Introduction ………………………………………………………………………….. 29 2.2 Materials and Methods ………………………………………………………………. 30 2.3 Construction of Cleavage Database …………………………………………………..30 6 2.4 Data Normalization ………………………………………………………………….. 34 2.5 Cleavage Data Map ………………………………………………………………….. 36 2.6 Revised Cleavage Data Map ………………………………………………………… 41 2.7 Summary of Literature Research ……………………………………………………. 44 2.8 References …………………………………………………………………………… 44 CHAPTER 3: EXPERIMENTAL DETERMINATION OF PEPSIN SPECIFICITY AND THE EFFECTS OF pH ………………………………………………………………………... 78 3.1 Introduction ………………………………………………………………………….. 78 3.2 Instrumentation ……………………………………………………………………….78 3.2.1 UPLC and online pepsin digestion ………………………………………… 79 3.2.2 Mass Spectrometry ………………………………………………………… 81 3.3 Materials and Methods ………………………………………………………………. 83 3.3.1 Protein sample analysis ……………………………………………………. 83 3.3.1.1 Protein sample preparation ………………………………………. 83 3.3.1.2 UPLC methods …………………………………………………... 85 3.3.1.3 Mass analysis ……………………………………………………..87 3.3.2 E.coli sample analysis ……………………………………………………... 87 3.3.2.1 E.coli sample preparation ………………………………………... 87 3.3.2.2 UPLC analysis …………………………………………………… 88 3.3.2.3 Mass analysis ……………………………………………………..88 3.4 Data Analysis …………………………………………………………………………88 3.4.1 Software processing ……………………………………………………….. 88 3.4.2 Peptide analysis ……………………………………………………………. 89 7 3.5 Results ……………………………………………………………………………….. 92 3.6 References …………………………………………………………………………...100 CHAPTER 4: PERSPECTIVES AND FUTURE DIRECTIONS ……………………………... 141 4.1 Discussion and Conclusions ………………………………………………………... 141 4.1.1 Literature search ………………………………………………………….. 141 4.1.2 Experimental research ……………………………………………………. 141 4.1.3 Research on pepsin specificity …………………………………………… 142 4.2 Future Directions …………………………………………………………………… 142 8 LIST OF FIGURES Figure 1.1 Aspartic proteases family tree ………………………………………………………... 14 Figure 1.2 The aspartic protease catalytic mechanism …………………………………………... 16 Figure 1.3 Sequence alignment of porcine pepsinogen and porcine pepsin ……………………... 19 Figure 1.4 Crystal structure of human pepsin …………………………………………………… 22 Figure 2.1 Example of a peptic digest map ……………………………………………………… 31 Figure 2.2 Example of cleavage nomenclature …………………………………………………...33 Figure 2.3 Equation used for data normalization and example calculation ……………………... 38 Figure 2.4 Cleavage data map …………………………………………………………………… 40 Figure 2.5 Cleavage data map with probability defined as a percentage ………………………... 42 Figure 3.1 Schematic of online pepsin digestion ………………………………………………… 80 Figure 3.2 Schematic of the operation of MSE …………………………………………………... 82 Figure 3.3 Example MS/MS data of hemoglobin ………………………………………………... 90 Figure 3.4 Example MS/MS data of myoglobin ………………………………………………….91 Figure 3.5 pH 2.5 peptic digest map of Abl ……………………………………………………..102 Figure 3.6 pH 2.5 peptic digest map of Albumin ………………………………………………. 103 Figure 3.7 pH 2.5 peptic digest map of Aldolase ………………………………………………. 104 Figure 3.8 pH 2.5 peptic digest map of Amyloglucosidase ……………………………………...105 Figure 3.9 pH 2.5 peptic digest map of β-Lactalbumin ……………………………………….... 106 Figure 3.10 pH 2.5 peptic digest map of Hemoglobin …………………………………………..107 Figure 3.11 pH 2.5 peptic digest map of Myoglobin ……………………………………………108 Figure 3.12 pH 2.5 peptic digest map of Nef ……………………………………………………109 Figure 3.13 pH 2.5 peptic digest map of Ubiquitin ……………………………………………...110 9 Figure 3.14 Cleavage data map pH 1.0 …………………………………………………………... 93 Figure 3.15 Cleavage data map pH 2.5 …………………………………………………………... 94 Figure 3.16 Cleavage data map pH 4.0 …………………………………………………………... 95 Figure 3.17 Cleavage data map with probability defined as a percentage, pH 1.0 ……………….97 Figure 3.18 Cleavage data map with probability defined as a percentage, pH 2.5 ……………….98 Figure 3.19 Cleavage data map with probability defined as a percentage, pH 4.0 ……………….99 10 LIST OF TABLES Table 2.1 Literature search results ……………………………………………………………….. 32 Table 2.2 Cleavage database ……………………………………………………………………... 51 Table 2.3 Sum of cleavages between two residues ………………………………………………. 35 Table 2.4 Possible cleavages between two residues ……………………………………………... 37 Table 2.5 Normalized cleavage data ……………………………………………………………... 39 Table 2.6 Cleavage data with probability defined as a percentage ………………………………. 43 Table 3.1 Proteins used for digestion ……………………………………………………………. 84 Table 3.2 Auxiliary solvents …………………………………………………………………….. 86 Table 3.3 pH 1.0 peptides ………………………………………………………………………. 111 Table 3.4 pH 4.0 peptides ………………………………………………………………………. 121 Table 3.5 pH 2.5 E.coli peptides ………………………………………………………………... 125 Table 3.6 Normalized pH 1.0 cleavage data ……………………………………………………... 93 Table 3.7 Normalized pH 2.5 cleavage data ……………………………………………………... 94 Table 3.8 Normalized pH 4.0 cleavage data ……………………………………………………... 95 Table 3.9 Normalized pH 1.0 cleavage data defined as a percentage …………………………….97 Table 3.10 Normalized pH 2.5 cleavage data defined as a percentage …………………………...98 Table 3.11 Normalized pH 4.0 cleavage data defined as a percentage …………………………...99 11 LIST OF ABBREVIATIONS ACN acetonitrile
Recommended publications
  • Final Thesis
    UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION A Dissertation Presented to The Academic Faculty By Kelly Joy Dennison In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Chemistry Georgia Institute of Technology December 2005 Copyright © 2005 by Kelly Joy Dennison UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION Approved by: Dr. Suzanne B. Shuker, Advisor Dr. Andrew S. Bommarius School of Chemistry and Biochemistry School of Chemical and Biochemical Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Thomas M. Orlando, Co-Advisor School of Chemistry and Biochemistry Dr. S. Michele Owen Georgia Institute of Technology National Center for HIV, STD, and TB Prevention Dr. Donald F. Doyle Centers for Disease Control & School of Chemistry and Biochemistry Prevention Georgia Institute of Technology Dr. Vicky L. H. Bevilacqua Dr. C. David Sherrill Edgewood Chemical Biological Center School of Chemistry and Biochemistry US Army Georgia Institute of Technology Date approved: August 11, 2005 ii ACKNOWLEDGEMENTS I would like to thank the many people that supported me through this process. To all my family: my parents, Chuck and Joy; my sisters, Gerri and Laurel; and my brother Keary, as well as Kent, Brian, and Brandy; the Chapels; the Bonuras; Tekkie and Chet; Auntie Marie; and my nephews and niece, Patrick, Ryan, Kevin, Kaitlyn, and Riley. Thanks for all your encouragement and/or financial support and most of all, for believing in me. To my friends: thanks for being present.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002
    USOO6395889B1 (12) United States Patent (10) Patent No.: US 6,395,889 B1 Robison (45) Date of Patent: May 28, 2002 (54) NUCLEIC ACID MOLECULES ENCODING WO WO-98/56804 A1 * 12/1998 ........... CO7H/21/02 HUMAN PROTEASE HOMOLOGS WO WO-99/0785.0 A1 * 2/1999 ... C12N/15/12 WO WO-99/37660 A1 * 7/1999 ........... CO7H/21/04 (75) Inventor: fish E. Robison, Wilmington, MA OTHER PUBLICATIONS Vazquez, F., et al., 1999, “METH-1, a human ortholog of (73) Assignee: Millennium Pharmaceuticals, Inc., ADAMTS-1, and METH-2 are members of a new family of Cambridge, MA (US) proteins with angio-inhibitory activity', The Journal of c: - 0 Biological Chemistry, vol. 274, No. 33, pp. 23349–23357.* (*) Notice: Subject to any disclaimer, the term of this Descriptors of Protease Classes in Prosite and Pfam Data patent is extended or adjusted under 35 bases. U.S.C. 154(b) by 0 days. * cited by examiner (21) Appl. No.: 09/392, 184 Primary Examiner Ponnathapu Achutamurthy (22) Filed: Sep. 9, 1999 ASSistant Examiner William W. Moore (51) Int. Cl." C12N 15/57; C12N 15/12; (74) Attorney, Agent, or Firm-Alston & Bird LLP C12N 9/64; C12N 15/79 (57) ABSTRACT (52) U.S. Cl. .................... 536/23.2; 536/23.5; 435/69.1; 435/252.3; 435/320.1 The invention relates to polynucleotides encoding newly (58) Field of Search ............................... 536,232,235. identified protease homologs. The invention also relates to 435/6, 226, 69.1, 252.3 the proteases. The invention further relates to methods using s s s/ - - -us the protease polypeptides and polynucleotides as a target for (56) References Cited diagnosis and treatment in protease-mediated disorders.
    [Show full text]
  • In Vitro Inhibition of HIV-1 Proteinase by Cerulenin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 261, number 2, 373-377 FEBS 08165 February 1990 In vitro inhibition of HIV-1 proteinase by cerulenin Karin Moelling, Thomas Schulze, Marie-Theres Knoop, John Kay +, Raymond Jupp +, George Nicolaou* and Laurence H. Pearl* Max-Planck lnstitut fiir Molekular Genetik, lhnestrasse 73, D-IO00 Berlin 33, FRG, +Department of Biochemistry, University College of Wales, PO Box 903, Cardiff CFl 1ST, UK and *Department of Biochemistry, University College London, Gower Street, London WCIE 6BT, UK Received 13 October 1989; revised version received 18 December 1989 Retroviruses encode proteinases necessary for the proteolytic processing of the viral gag and gag-pol precursor proteins. These enzymes have been shown to be structurally and functionally related to aspartyl proteinases such as pepsin and renin. Cerulenin is a naturally occurring antibiotic, commonly used as an inhibitor of fatty acid synthesis. Cerulenin has been observed to inhibit production of Rous sarcoma virus and murine leukae- mia virus by infected cells, possibly by interfering with proteolytic processing of viral precursor proteins. We show here that cerulenin inhibits the action of the HIV-1 proteinase in vitro, using 3 substrates: a synthetic heptapeptide (SQNYPIV) which corresponds to the sequence at the HIV-I gag p17/p24 junction, a bacterially expressed gag precursor, and purified 66 kDa reverse transcriptase. Inhibition of cleavage by HIV-1 proteinase required preincubation with cerulenin. Cerulenin also inactivates endothiapepsin, a well-characterised fungal aspartyl proteinase, sug- gesting that the action of cerulenin is a function of the common active site structure of the retroviral and aspartic proteinases.
    [Show full text]
  • In Escherichia Coli (Synthetic Oligonucleotide/Gene Expression/Industrial Enzyme) J
    Proc. Nati Acad. Sci. USA Vol. 80, pp. 3671-3675, June 1983 Biochemistry Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme) J. S. EMTAGE*, S. ANGALt, M. T. DOELt, T. J. R. HARRISt, B. JENKINS*, G. LILLEYt, AND P. A. LOWEt Departments of *Molecular Genetics, tMolecular Biology, and tFermentation Development, Celltech Limited, 250 Bath Road, Slough SL1 4DY, Berkshire, United Kingdom Communicated by Sydney Brenner, March 23, 1983 ABSTRACT A gene for calf prochymosin (prorennin) has been maturation conditions and remained insoluble on neutraliza- reconstructed from chemically synthesized oligodeoxyribonucleo- tion, it was possible that purification as well as activation could tides and cloned DNA copies of preprochymosin mRNA. This gene be achieved. has been inserted into a bacterial expression plasmid containing We describe here the construction of E. coli plasmids de- the Escherichia coli tryptophan promoter and a bacterial ribo- signed to express the prochymosin gene from the trp promoter some binding site. Induction oftranscription from the tryptophan and the isolation and conversion of this prochymosin to en- promoter results in prochymosin synthesis at a level of up to 5% active of total protein. The enzyme has been purified from bacteria by zymatically chymosin. extraction with urea and chromatography on DEAE-celiulose and MATERIALS AND METHODS converted to enzymatically active chymosin by acidification and neutralization. Bacterially produced chymosin is as effective in Materials. DNase I, pepstatin A, and phenylmethylsulfonyl clotting milk as the natural enzyme isolated from calf stomach. fluoride were obtained from Sigma. Calf prochymosin (Mr 40,431) and chymosin (Mr 35,612) were purified from stomachs Chymosin (rennin) is an aspartyl proteinase found in the fourth from 1-day-old calves (1).
    [Show full text]
  • Membrane Proteins • Cofactors – Plimstex • Membranes • Dna • Small Molecules/Gas • Large Complexes
    Structural mass spectrometry hydrogen/deuterium exchange Petr Man Structural Biology and Cell Signalling Institute of Microbiology, Czech Academy of Sciences Structural biology methods Low-resolution methods High-resolution methods Rigid SAXS IR Raman CD ITC MST Cryo-EM AUC SPR MS X-ray crystallography Chemical cross-linking H/D exchange Native ESI + ion mobility Oxidative labelling Small Large NMR Dynamic Structural biology approaches Simple MS, quantitative MS Cross-linking, top-down, native MS+dissociation native MS+ion mobility Cross-linking Structural MS What can we get using mass spectrometry IM – ion mobility CXL – chemical cross-linking AP – afinity purification OFP – oxidative footprinting HDX – hydrogen/deuterium exchange ISOTOPE EXCHANGE IN PROTEINS 1H 2H 3H occurence [%] 99.988 0.0115 trace 5 …Kaj Ulrik Linderstrøm-Lang „Cartesian diver“ Proteins are migrating in tubes with density gradient until they stop at the point where the densities are equal 1H 2H 3H % 99.9885 0.0115 trace density [g/cm3] 1.000 1.106 1.215 Methods of detection IR: β-: NMR: 1 n = 1.6749 × 10-27 kg MS: 1H 2H 3H výskyt% [%] 99.9885 0.0115 trace hustotadensity vody [g/cm [g/cm3] 3] 1.000 1.106 1.215 jadernýspinspin ½+ 1+ ½+ mass [u] 1.00783 2.01410 3.01605 Factors affecting H/D exchange hydrogen bonding solvent accessibility Factors affecting H/D exchange Side chains (acidity, steric shielding) Bai et al.: Proteins (1993) Glasoe, Long: J. Phys. Chem. (1960) Factors affecting H/D exchange – side chain effects Inductive effect – electron density is Downward shift due to withdrawn from peptide steric hindrance effect of bond (S, O).
    [Show full text]
  • Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin
    Int. J. Mol. Sci. 2015, 16, 19184-19194; doi:10.3390/ijms160819184 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin Alwin M. Hartman 1,†, Milon Mondal 1,†, Nedyalka Radeva 2, Gerhard Klebe 2 and Anna K. H. Hirsch 1,* 1 Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; E-Mails: [email protected] (A.M.H.); [email protected] (M.M.) 2 Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany; E-Mails: [email protected] (N.R.); [email protected] (G.K.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Fax: +31-50-363-4296. Academic Editor: John George Hardy Received: 1 May 2015 / Accepted: 6 July 2015 / Published: 14 August 2015 Abstract: Aspartic proteases are a class of enzymes that play a causative role in numerous diseases such as malaria (plasmepsins), Alzheimer’s disease (β-secretase), fungal infections (secreted aspartic proteases), and hypertension (renin). We have chosen endothiapepsin as a model enzyme of this class of enzymes, for the design, preparation and biochemical evaluation of a new series of inhibitors of endothiapepsin. Here, we have optimized a hit, identified by de novo structure-based drug design (SBDD) and DCC, by using structure-based design approaches focusing on the optimization of an amide–π interaction. Biochemical results are in agreement with SBDD.
    [Show full text]
  • Cloning and in Vitro-Transcription of Chymosin Gene in E. Coli
    The Open Nutraceuticals Journal, 2010, 3, 63-68 63 Open Access Cloning and In Vitro-Transcription of Chymosin Gene in E. coli S.A. El-Sohaimy1 Elsayed. E, Hafez2,* and M.A. El-Saadani3 1Food Science and Technology Department, Arid land Research Institute, Alexandria, Egypt 2Plant Molecular Pathology Department, Arid land Research Institute, Alexandria, Egypt 3Mubarak City for Scientific Research and Technology Applications, Alexandria, Egypt Abstract: Chymosin, commonly known as rennin, is the main milk-coagulating enzyme available in rennet. RNA was extracted from the abomasum of a suckling calf water buffalo and was subjected to RT-PCR using degenerate primers to amplify 850bp of the chymosin gene. The sequence was aligned with 19 different mammals' chymosin genes. The sequence revealed that there is a similarity to them ranging from 64% to 98%. The purified recombinant proteins were obtained from the transformed E. coli and yeast. The clotting activity of both of the resulting proteins was examined compared to the commercial peers. It was noticed that the concentration of the purified protein ranged from 15,000 to 40,000 MCU. Therefore, the activity of the obtained proteins was the same and it was 105% when compared to the commercial peer. Having examined the cytotoxicity of the purified proteins, the results revealed no toxicity. We can conclude that the obtained recombinant protein is more active and safe even when expressed in bacteria rather than yeast. Keywords: Chymosin, Milk Clotting, Recombinant E. coli and Recombinant Protein. INTRODUCTION Many microorganisms are known to produce rennet-like proteinases which can replace the calf rennet.
    [Show full text]
  • Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
    Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms.
    [Show full text]
  • Discovery of Digestive Enzymes in Carnivorous Plants with Focus on Proteases
    A peer-reviewed version of this preprint was published in PeerJ on 5 June 2018. View the peer-reviewed version (peerj.com/articles/4914), which is the preferred citable publication unless you specifically need to cite this preprint. Ravee R, Mohd Salleh F‘, Goh H. 2018. Discovery of digestive enzymes in carnivorous plants with focus on proteases. PeerJ 6:e4914 https://doi.org/10.7717/peerj.4914 Discovery of digestive enzymes in carnivorous plants with focus on proteases Rishiesvari Ravee 1 , Faris ‘Imadi Mohd Salleh 1 , Hoe-Han Goh Corresp. 1 1 Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia Corresponding Author: Hoe-Han Goh Email address: [email protected] Background. Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry. Methods. This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts). Results. Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants. Discussion. These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.
    [Show full text]
  • A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of Dimiq, a Potent Indolo[2,3- B]Quinoline Agent, Against Candida Albicans Biofilms
    A Label-Free Cellular Proteomics Approach to Decipher the Antifungal Action of DiMIQ, a Potent Indolo[2,3- b]Quinoline Agent, against Candida albicans Biofilms Robert Zarnowski 1,2*, Anna Jaromin 3*, Agnieszka Zagórska 4, Eddie G. Dominguez 1,2, Katarzyna Sidoryk 5, Jerzy Gubernator 3 and David R. Andes 1,2 1 Department of Medicine, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA; [email protected] (E.G.D.); [email protected] (D.R.A.) 2 Department of Medical Microbiology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA 3 Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; [email protected] 4 Department of Medicinal Chemistry, Jagiellonian University Medical College, 30-688 Cracow, Poland; [email protected] 5 Department of Pharmacy, Cosmetic Chemicals and Biotechnology, Team of Chemistry, Łukasiewicz Research Network-Industrial Chemistry Institute, 01-793 Warsaw, Poland; [email protected] * Correspondence: [email protected] (R.Z.); [email protected] (A.J.); Tel.: +1-608-265-8578 (R.Z.); +48-71-3756203 (A.J.) Label-Free Cellular Proteomics of Candida albicans biofilms treated with DiMIQ Identified Proteins Accession # Alternate ID Gene names (ORF ) WT DIMIQ Z SCORE Proteins induced by DiMIQ Arginase (EC 3.5.3.1) A0A1D8PP00 CAR1 CAALFM_C504490CA 0.000 6.648 drug induced Glucan 1,3-beta-glucosidase BGL2 (EC 3.2.1.58) (Exo-1Q5AMT2 BGL2 CAALFM_C402250CA
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Penicillopepsin-JT2, a Recombinant Enzyme from Penicillium Janthinellum and the Contribution of a Hydrogen Bond in Subsite S3 to Kcat
    Protein Science ~2000!, 9:991–1001. Cambridge University Press. Printed in the USA. Copyright © 2000 The Protein Society Penicillopepsin-JT2, a recombinant enzyme from Penicillium janthinellum and the contribution of a hydrogen bond in subsite S3 to kcat QING-NA CAO,1,3 MARLENE STUBBS,1 KENNY Q.P. NGO,1 MICHAEL WARD,2 ANNIE CUNNINGHAM,1 EMIL F. PAI,1 GUANG-CHOU TU,1,3 and THEO HOFMANN1 1 Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada 2 Genencor International, Inc., 925 Page Mill Road, Palo Alto, California 94304-1013 ~Received August 30, 1999; Final Revision February 7, 2000; Accepted March 10, 2000! Abstract The nucleotide sequence of the gene ~ pepA! of a zymogen of an aspartic proteinase from Penicillium janthinellum with a 71% identity in the deduced amino acid sequence to penicillopepsin ~which we propose to call penicillopepsin-JT1! has been determined. The gene consists of 60 codons for a putative leader sequence of 20 amino acid residues, a sequence of about 150 nucleotides that probably codes for an activation peptide and a sequence with two introns that codes for the active aspartic proteinase. This gene, inserted into the expression vector pGPT-pyrG1, was expressed in an aspartic proteinase-free strain of Aspergillus niger var. awamori in high yield as a glycosylated form of the active enzyme that we call penicillopepsin-JT2. After removal of the carbohydrate component with endoglycosidase H, its relative molecular mass is between 33,700 and 34,000. Its kinetic properties, especially the rate-enhancing effects of the presence of alanine residues in positions P3 and P29 of substrates, are similar to those of penicillopepsin-JT1, endothia- pepsin, rhizopuspepsin, and pig pepsin.
    [Show full text]