Multiple Functions of Pro-Parts of Aspartic Proteinase Zymogens
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Thesis
UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION A Dissertation Presented to The Academic Faculty By Kelly Joy Dennison In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy in Chemistry Georgia Institute of Technology December 2005 Copyright © 2005 by Kelly Joy Dennison UNDERSTANDING HTLV-I ENZYMOLOGY & PREPARATION AND CHARACTERIZATION OF LEAD INHIBITORS FOR THE TREATMENT OF HTLV-I INFECTION Approved by: Dr. Suzanne B. Shuker, Advisor Dr. Andrew S. Bommarius School of Chemistry and Biochemistry School of Chemical and Biochemical Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Thomas M. Orlando, Co-Advisor School of Chemistry and Biochemistry Dr. S. Michele Owen Georgia Institute of Technology National Center for HIV, STD, and TB Prevention Dr. Donald F. Doyle Centers for Disease Control & School of Chemistry and Biochemistry Prevention Georgia Institute of Technology Dr. Vicky L. H. Bevilacqua Dr. C. David Sherrill Edgewood Chemical Biological Center School of Chemistry and Biochemistry US Army Georgia Institute of Technology Date approved: August 11, 2005 ii ACKNOWLEDGEMENTS I would like to thank the many people that supported me through this process. To all my family: my parents, Chuck and Joy; my sisters, Gerri and Laurel; and my brother Keary, as well as Kent, Brian, and Brandy; the Chapels; the Bonuras; Tekkie and Chet; Auntie Marie; and my nephews and niece, Patrick, Ryan, Kevin, Kaitlyn, and Riley. Thanks for all your encouragement and/or financial support and most of all, for believing in me. To my friends: thanks for being present. -
In Vitro Inhibition of HIV-1 Proteinase by Cerulenin
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 261, number 2, 373-377 FEBS 08165 February 1990 In vitro inhibition of HIV-1 proteinase by cerulenin Karin Moelling, Thomas Schulze, Marie-Theres Knoop, John Kay +, Raymond Jupp +, George Nicolaou* and Laurence H. Pearl* Max-Planck lnstitut fiir Molekular Genetik, lhnestrasse 73, D-IO00 Berlin 33, FRG, +Department of Biochemistry, University College of Wales, PO Box 903, Cardiff CFl 1ST, UK and *Department of Biochemistry, University College London, Gower Street, London WCIE 6BT, UK Received 13 October 1989; revised version received 18 December 1989 Retroviruses encode proteinases necessary for the proteolytic processing of the viral gag and gag-pol precursor proteins. These enzymes have been shown to be structurally and functionally related to aspartyl proteinases such as pepsin and renin. Cerulenin is a naturally occurring antibiotic, commonly used as an inhibitor of fatty acid synthesis. Cerulenin has been observed to inhibit production of Rous sarcoma virus and murine leukae- mia virus by infected cells, possibly by interfering with proteolytic processing of viral precursor proteins. We show here that cerulenin inhibits the action of the HIV-1 proteinase in vitro, using 3 substrates: a synthetic heptapeptide (SQNYPIV) which corresponds to the sequence at the HIV-I gag p17/p24 junction, a bacterially expressed gag precursor, and purified 66 kDa reverse transcriptase. Inhibition of cleavage by HIV-1 proteinase required preincubation with cerulenin. Cerulenin also inactivates endothiapepsin, a well-characterised fungal aspartyl proteinase, sug- gesting that the action of cerulenin is a function of the common active site structure of the retroviral and aspartic proteinases. -
Membrane Proteins • Cofactors – Plimstex • Membranes • Dna • Small Molecules/Gas • Large Complexes
Structural mass spectrometry hydrogen/deuterium exchange Petr Man Structural Biology and Cell Signalling Institute of Microbiology, Czech Academy of Sciences Structural biology methods Low-resolution methods High-resolution methods Rigid SAXS IR Raman CD ITC MST Cryo-EM AUC SPR MS X-ray crystallography Chemical cross-linking H/D exchange Native ESI + ion mobility Oxidative labelling Small Large NMR Dynamic Structural biology approaches Simple MS, quantitative MS Cross-linking, top-down, native MS+dissociation native MS+ion mobility Cross-linking Structural MS What can we get using mass spectrometry IM – ion mobility CXL – chemical cross-linking AP – afinity purification OFP – oxidative footprinting HDX – hydrogen/deuterium exchange ISOTOPE EXCHANGE IN PROTEINS 1H 2H 3H occurence [%] 99.988 0.0115 trace 5 …Kaj Ulrik Linderstrøm-Lang „Cartesian diver“ Proteins are migrating in tubes with density gradient until they stop at the point where the densities are equal 1H 2H 3H % 99.9885 0.0115 trace density [g/cm3] 1.000 1.106 1.215 Methods of detection IR: β-: NMR: 1 n = 1.6749 × 10-27 kg MS: 1H 2H 3H výskyt% [%] 99.9885 0.0115 trace hustotadensity vody [g/cm [g/cm3] 3] 1.000 1.106 1.215 jadernýspinspin ½+ 1+ ½+ mass [u] 1.00783 2.01410 3.01605 Factors affecting H/D exchange hydrogen bonding solvent accessibility Factors affecting H/D exchange Side chains (acidity, steric shielding) Bai et al.: Proteins (1993) Glasoe, Long: J. Phys. Chem. (1960) Factors affecting H/D exchange – side chain effects Inductive effect – electron density is Downward shift due to withdrawn from peptide steric hindrance effect of bond (S, O). -
Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin
Int. J. Mol. Sci. 2015, 16, 19184-19194; doi:10.3390/ijms160819184 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Structure-Based Optimization of Inhibitors of the Aspartic Protease Endothiapepsin Alwin M. Hartman 1,†, Milon Mondal 1,†, Nedyalka Radeva 2, Gerhard Klebe 2 and Anna K. H. Hirsch 1,* 1 Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; E-Mails: [email protected] (A.M.H.); [email protected] (M.M.) 2 Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35032 Marburg, Germany; E-Mails: [email protected] (N.R.); [email protected] (G.K.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Fax: +31-50-363-4296. Academic Editor: John George Hardy Received: 1 May 2015 / Accepted: 6 July 2015 / Published: 14 August 2015 Abstract: Aspartic proteases are a class of enzymes that play a causative role in numerous diseases such as malaria (plasmepsins), Alzheimer’s disease (β-secretase), fungal infections (secreted aspartic proteases), and hypertension (renin). We have chosen endothiapepsin as a model enzyme of this class of enzymes, for the design, preparation and biochemical evaluation of a new series of inhibitors of endothiapepsin. Here, we have optimized a hit, identified by de novo structure-based drug design (SBDD) and DCC, by using structure-based design approaches focusing on the optimization of an amide–π interaction. Biochemical results are in agreement with SBDD. -
Progress in the Field of Aspartic Proteinases in Cheese Manufacturing
Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin, Peter Dekker To cite this version: Sirma Yegin, Peter Dekker. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. Dairy Science & Technology, EDP sciences/Springer, 2013, 93 (6), pp.565-594. 10.1007/s13594-013-0137-2. hal-01201447 HAL Id: hal-01201447 https://hal.archives-ouvertes.fr/hal-01201447 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dairy Sci. & Technol. (2013) 93:565–594 DOI 10.1007/s13594-013-0137-2 REVIEW PAPER Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering Sirma Yegin & Peter Dekker Received: 25 February 2013 /Revised: 16 May 2013 /Accepted: 21 May 2013 / Published online: 27 June 2013 # INRA and Springer-Verlag France 2013 Abstract Aspartic proteinases are an important class of proteinases which are widely used as milk-coagulating agents in industrial cheese production. They are available from a wide range of sources including mammals, plants, and microorganisms. -
Serine Proteases with Altered Sensitivity to Activity-Modulating
(19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants. -
Analyse Structurale Et Fonctionnelle De La Préséniline-1 Humaine : Implications Dans La Maladie D'alzheimer
SÉBASTIEN HÉBERT ANALYSE STRUCTURALE ET FONCTIONNELLE DE LA PRÉSÉNILINE-1 HUMAINE : IMPLICATIONS DANS LA MALADIE D’ALZHEIMER Thèse présentée à la Faculté des études supérieures de l’Université Laval dans le cadre du programme de biologie cellulaire et moléculaire pour l’obtention du grade de Philosophiae Doctor (Ph.D.) FACULTÉ DE MÉDECINE UNIVERSITÉ LAVAL QUÉBEC DÉCEMBRE 2003 © Sébastien S. Hébert, 2003 i RÉSUME COURT La préséniline-1 (PS1) mutée est associée à un développement très précoce de la maladie (chez les individus de 24-55 ans) d’Alzheimer. Dans la cellule, la PS1 existe principalement sous forme de fragments (N-terminaux et C-terminaux, respectivement NTFs et CTFs) qui semblent nécessaires à sa fonction et à l’activité γ- secrétase étroitement liée à la formation des peptides β-amyloïdes neurotoxiques. Nous avons étudié l’organisation structurale et fonctionnelle de la PS1, ses fragments, et leurs relations avec les protéines impliquées dans la production des peptides β- amyloïdes. Dans un premier temps, des expériences en levure, confirmées avec des techniques d’immunobuvardage et d’immunoprécipitation en cellules de mammifères, nous ont permis de mettre en évidence un rôle de l’holoprotéine de la PS1 dans la génération des fragments NTFs et CTFs. De plus, il a été possible de démontrer une interaction directe entre PS1 et BACE (enzyme de type aspartyl protéase aussi appelée β-secrétase), les deux joueurs clés dans la production des peptides β- amyloïdes. Finalement, l’étude du rôle fonctionnel de cette interaction nous a fournis des résultats permettant de suggérer une régulation de la PS1 par BACE. -
Crystal Structures of Native and Inhibitedforms of Human Cathepsin
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 6796-6800, July 1993 Biochemustry Crystal structures of native and inhibited forms of human cathepsin D: Implications for lysosomal targeting and drug design (aspartic protcase/N-linked oligosaccharide/pepstatin A) ERic T. BALDWIN*, T. NARAYANA BHAT*, SERGEI GULNIK*, MADHUSOODAN V. HOSUR*t, RAYMOND C. SOWDER Il, RAUL E. CACHAU*, JACK COLLINS*, ABELARDO M. SILVA*, AND JOHN W. ERICKSON*§ *Structural Biochemistry Program, Frederick Biomedical Supercomputing Center and tAIDS Vaccine Program, Program Resources Inc./DynCorp, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, MD 21702 Communicated by David R. Davies, March 24, 1993 (receivedfor review February 4, 1993) ABSTRACT Cathepsin D (EC 3.4.23.5) is a lysosomal duced in the vicinity of the growing tumor, may degrade the protease suspected to play important roles in protein catabo- extracellular matrix and thereby promote the escape of lism, antigen processing, degenerative diseases, and breast cancer cells to the lymphatic and circulatory systems and cancer progresson. Determination of the crystal structures of enhance the invasion of new tissues (17, 18). The design of cathepsin D and a complex with pepstatin at 2.5 A resolution potent and specific inhibitors of cathepsin D will aid the provides insights into inhibitor binding and lysosomal targeting further elucidation of the roles of this enzyme in human for this two-chain, N-glycosylated aspartic protease. Compar- disease. We previously described the purification and crys- ison with the structures of a complex of pepstatin bound to tallization ofhuman cathepsin D from liver (3); similar studies rhizopuspepsin and with a human renin-bihbitor complex have been reported recently for cathepsin D isolated from revealed differences in subsite structures and inhibitor-enzyme bovine liver (19) and human spleen (20). -
Mouse Cathepsin E Antibody Antigen Affinity-Purified Polyclonal Goat Igg Catalog Number: AF1130
Mouse Cathepsin E Antibody Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF1130 DESCRIPTION Species Reactivity Mouse Specificity Detects both pro and mature mouse Cathepsin E in direct ELISAs and Western blots. In direct ELISAs and Western blots, approximately 40% crossreactivity with recombinant human Cathepsin E and less than 1% crossreactivity with recombinant mouse Cathepsin D is observed. Source Polyclonal Goat IgG Purification Antigen Affinitypurified Immunogen Mouse myeloma cell line NS0derived recombinant mouse Cathepsin E Gln19Pro397 Accession # P70269 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 0.1 µg/mL Recombinant Mouse Cathepsin E (Catalog # 1130AS) Immunohistochemistry 515 µg/mL See Below Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Mouse Cathepsin E (Catalog # 1130AS), see our available Western blot detection antibodies DATA Immunohistochemistry Cathepsin E in Mouse Lung. Cathepsin E was detected in perfusion fixed frozen sections of mouse lung using Goat Anti Mouse Cathepsin E Antigen Affinitypurified Polyclonal Antibody (Catalog # AF1130) at 15 µg/mL overnight at 4 °C. Tissue was stained using the AntiGoat HRPDAB Cell & Tissue Staining Kit (brown; Catalog # CTS008) and counterstained with hematoxylin (blue). Specific labeling was localized to the plasma membrane of type II alveolar cells. View our protocol for Chromogenic IHC Staining of Frozen Tissue Sections. -
Review Article the Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries
Hindawi Journal of Food Quality Volume 2018, Article ID 7957269, 15 pages https://doi.org/10.1155/2018/7957269 Review Article The Role of Microbial Aspartic Protease Enzyme in Food and Beverage Industries Jermen Mamo and Fassil Assefa Microbial, Cellular and Molecular Biology Department, College of Natural Science, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia Correspondence should be addressed to Jermen Mamo; [email protected] Received 3 April 2018; Revised 16 May 2018; Accepted 29 May 2018; Published 3 July 2018 Academic Editor: Antimo Di Maro Copyright © 2018 Jermen Mamo and Fassil Assefa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Proteases represent one of the three largest groups of industrial enzymes and account for about 60% of the total global enzymes sale. According to the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, proteases are classied in enzymes of class 3, the hydrolases, and the subclass 3.4, the peptide hydrolases or peptidase. Proteases are generally grouped into two main classes based on their site of action, that is, exopeptidases and endopeptidases. Protease has also been grouped into four classes based on their catalytic action: aspartic, cysteine, metallo, and serine proteases. However, lately, three new systems have been dened: the threonine-based proteasome system, the glutamate-glutamine system of eqolisin, and the serine-glutamate-aspartate system of sedolisin. Aspartic proteases (EC 3.4.23) are peptidases that display various activities and specicities. -
Treatment of Cashew Extracts with Aspergillopepsin Reduces Ige Binding to Cashew Allergens
Journal of Applied Biology & Biotechnology Vol. 4 (02), pp. 001-010, March-April, 2016 Available online at http://www.jabonline.in DOI: 10.7324/JABB.2016.40201 Treatment of cashew extracts with Aspergillopepsin reduces IgE binding to cashew allergens Cecily B. DeFreece1, Jeffrey W. Cary2, Casey C. Grimm2, Richard L. Wasserman3, Christopher P Mattison2* 1Department of Biology, Xavier University of Louisiana, New Orleans, LA, USA. 2USDA-ARS, Southern Regional Research Center, New Orleans, LA, USA. 3Allergy Partners of North Texas Research, Department of Pediatrics, Medical City Children’s Hospital, Dallas, Texas, USA. ARTICLE INFO ABSTRACT Article history: Enzymes from Aspergillus fungal species are used in many industrial and pharmaceutical applications. Received on: 21/10/2015 Aspergillus niger and Aspergillus oryzae were cultured on media containing cashew nut flour to identify secreted Revised on: 06/12/2015 proteins that may be useful as future food allergen processing enzymes. Mass-spectrometric analysis of secreted Accepted on: 20/12/2015 proteins and protein bands from SDS-PAGE gels indicated the presence of at least 63 proteins. The majority of Available online: 21/04/2016 these proteins were involved in carbohydrate metabolism, but there were also enzymes involved in lipid and protein metabolism. It is likely that some of these enzymes are specifically upregulated in response to cashew Key words: nut protein, and study of these enzymes could aid our understanding of cashew nut metabolism. Aspergillus, cashew, food Aspergillopepsin from A. niger was one of the proteolytic enzymes identified, and 6 distinct peptides were allergy, immunoglobulin E, matched to this protein providing 22% coverage of the protein. -
2006.01) Kr, Kw, Kz, La, Lc, Lk, Lr, Ls, Lu, Ly, Ma, Md, Me, (21
( (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 48/00 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US20 19/06 1701 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 15 November 2019 (15. 11.2019) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available) . ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/768,645 16 November 2018 (16. 11.2018) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/769,697 20 November 2018 (20. 11.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 62/778,706 12 December 2018 (12. 12.2018) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, (71) Applicant: ASKLEPIOS BIOPHARMACEUTICAL, KM, ML, MR, NE, SN, TD, TG).