2006.01) Kr, Kw, Kz, La, Lc, Lk, Lr, Ls, Lu, Ly, Ma, Md, Me, (21

Total Page:16

File Type:pdf, Size:1020Kb

2006.01) Kr, Kw, Kz, La, Lc, Lk, Lr, Ls, Lu, Ly, Ma, Md, Me, (21 ( (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 48/00 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US20 19/06 1701 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 15 November 2019 (15. 11.2019) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available) . ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/768,645 16 November 2018 (16. 11.2018) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/769,697 20 November 2018 (20. 11.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 62/778,706 12 December 2018 (12. 12.2018) US MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, (71) Applicant: ASKLEPIOS BIOPHARMACEUTICAL, KM, ML, MR, NE, SN, TD, TG). INC. [US/US]; 20 T.W. Alexander Drive, Suite 110, Re¬ search Triangle Park, NC 27709 (US). Declarations under Rule 4.17: (72) Inventors: O'CALLAGHAN, Michael W.; c/o Asklepios — as to applicant's entitlement to apply for and be granted a Biopharmaceutical, Inc., 20 T.W. Alexander Drive, Suite patent (Rule 4.17(H)) 110, Research Triangle Park, NC 27709 (US). FRANCOIS, — as to the applicant's entitlement to claim the priority of the Achille; c/o Asklepios Biopharmaceutical, Inc., 20 T.W. earlier application (Rule 4.17(iii)) Alexander Drive, Suite 110, Research Triangle Park, NC Published: 27709 (US). — without international search report and to be republished (74) Agent: BENN, Susanna C. et al.; Nixon Peabody LLP, Ex¬ upon receipt of that report (Rule 48. 2(g)) change Place, 53 State Street, Boston, Massachusetts 02109 — with sequence listing part of description (Rule 5.2(a)) (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (54) Title: VECTORS COMPRISING A NUCLEIC ACID ENCODING LYSOSOMAL ENZYMES FUSED TO A LYSOSOMAL TARGETING SEQUENCE (57) Abstract: Vectors including viral vectors comprising a genome comprising a heterologous nucleic acid encoding a lysosomal targeting sequence, fused to a lysosomal storage enzyme, enabling the lysosomal enzyme to be targeted to the lysosomes. Particular embodiments relate to a recombinant viral vector, e.g., rAAV vector encoding a lysosomal enzyme, having a lysosomal targeting IGF2(V43) sequence that binds human cation-independent mannose-6-phosphate receptor (CI-MPR) orto the IGF2 receptor, permitting proper subcellular localization of the lysosomal enzyme polypeptide to lysosomes. Also encompassed are therapeutic fusion proteins encoded by the viral vector, non-viral vectors, cells, and methods to treat a glycogen storage disease, e.g., those listed in Table 4A or Table 5A with the viral vector. VECTORS COMPRISING A NUCLEIC ACID ENCODING LYSOSOMAL ENZYMES FUSED TO A LYSOSOMAL TARGETING SEQUENCE CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This invention claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application 62/768,645 filed on November 16, 2018 and U.S. Provisional Application 62/769,697 filed on November 20, 2018, and U.S. Provisional Application 62/778,706 filed on December 12, 2018, the contents of each are incorporated herein in their entirety by reference. SEQUENCE LISTING [0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format, and is hereby incorporated by reference in its entirety. Said ASCII copy, created on November 15, 2019 is named 046192-093910WOPT_SL and is 525,162 bytes in size. FIELD OF THE INVENTION [0003] The present invention relates to targeted vectors, including but not limited to adeno- associated virus (AAV) particles, virions and vectors for targeted translocation of lysosomal enzymes to lysosomes, and method of use for the treatment of lysosomal storage diseases. BACKGROUND [0004] Gene therapy has been shown to have the potential to not only cure genetic disorders, but to also facilitate the long-term non-invasive treatment of acquired and degenerative disease using a virus, such as an adeno-associated virus (AAV). AAV itself is a non-pathogenic-dependent parvovirus that needs helper viruses for efficient replication. AAV has been utilized as a virus vector for gene therapy because of its safety and simplicity. AAV has a broad host and cell type tropism capable of transducing both dividing and non-dividing cells. To date, 12 AAV serotypes and more than 100 variants have been identified. It has been shown that the different AAV serotypes can have differing abilities to infect cells of different tissues, either in vivo or in vitro and that these differences in infectivity are likely tied to the particular receptors and co-receptors located on the cell surface of each AAV serotype or may be tied to the intracellular trafficking pathway itself. [0005] Accordingly, as an alternative or adjunct to enzyme therapy, the feasibility of gene therapy approaches to treat GSD-II have been investigated (Amalfitano, A., et al, (1999) Proc. Natl. Acad. Sci. USA 96:8861-8866, Ding, E., et al. (2002) Mol. Ther. 5:436-446, Fraites, T. L, et al., (2002) Mol. Ther. 5:571-578, Tsujino, S., et al. (1998) Hum. Gene Ther. 9:1609-1616). [0006] More than forty lysosomal storage diseases (LSDs) are caused, directly or indirectly, by the absence of one or more lysosomal enzymes in the lysosome Enzyme replacement therapy for LSDs is being actively pursued. Therapy generally requires that LSD proteins be taken up and delivered to the lysosomes of a variety of cell types in an M6P-dependent fashion. One possible approach involves purifying an LSD protein and modifying it to incorporate a carbohydrate moiety with M6P. This modified material may be taken up by the cells more efficiently than unmodified LSD proteins due to interaction with M6P receptors on the cell surface. [0007] However, viral or AAV delivery of genes, in particular lysosomal proteins and enzymes for treatment of lysosomal storage diseases has challenges. Normally, mammalian lysosomal enzymes are synthesized in the cytosol and traverse the ER where they are glycosylated with N-linked, high mannose type carbohydrate. In the golgi, the high mannose carbohydrate is modified on lysosomal proteins by the addition of mannose-6-phosphate (M6P) which targets these proteins to the lysosome. The M6P-modified proteins are delivered to the lysosome via interaction with either of two M6P receptors. However, recombinantly produced proteins used in enzyme replacement therapy often lack the addition of the M6P which is required for targeting them to the lysosomes, therefore, often requiring high doses of recombinantly produced enzymes to be administered to a patient and/or frequent infusions. [0008] Accordingly, there is a need in the art for improved methods of producing lysosomal polypeptides using gene therapy in vitro and in vivo, for example, to treat lysosomal polypeptide deficiencies. Further, there is a need for methods that result in systemic delivery of lysosomal polypeptides to affected tissues and organs. In particular, there remains a need for more efficient methods for administering lysosomal enzymes to subjects and targeting lysosomal proteins to patient lysosomes, while reducing any potential side effects. SUMMARY OF THE INVENTION [0009] The technology described herein relates generally to gene therapy constructs and more particularly to targeted viral vectors, e.g., viral vector, such as but not limited to lentivirus, adenovirus (Ad), adeno-associated viruses (AAV), HSV etc. for example, but not limited to adeno-associated virus (AAV) virions configured for delivering a lysosomal enzyme to a subject. In some instances, the vector can be non- viral such as naked “DNA” or DNA in a nanosphere or liposome. In an alternative embodiment, the vector is a therapeutic protein. The therapeutic protein can be any of the proteins encoded by the viral or non-viral vector. [0010] In particular, described herein are targeted viral vectors, e.g., using rAAV vectors as an exemplary example, that comprises a nucleotide sequence containing inverted terminal repeats (ITRs), a promoter, a heterologous gene, a poly-A tail and potentially other regulator elements for use to treat a lysosomal storage disease, such as those listed in Table 4A or Table 5A herein, wherein the heterologous gene is a lysosomal enzyme and wherein the vector, e.g., rAAV can be administered to a patient in a therapeutically effective dose that is delivered to the appropriate tissue and/ or organ for expression of the heterologous lysosomal enzyme gene and treatment of the disease. [0011] The technology described herein relates in general to a means of producing a lysosomal enzyme that is expressed in the liver using a vector, and more effectively targeted to the lysosomes of mammalian cells, for example, human cardiac and skeletal muscle cells. The present invention provides targeted vectors, including but not limited to rAAV vectors and viral genomes and isolated nucleic acids encoding lysosomal polypeptides (also referred to as lysosomal enzymes) that are fused to a lysosomal targeting peptide that enhances targeting of the polypeptide to the secretory pathway and to aid update into lysosomes.
Recommended publications
  • Virus De Rna De Doble Cadena En Epichloë Festucae 2010
    UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA Departamento de Microbiología y Genética CARACTERIZACIÓN DE UN VIRUS QUE INFECTA AL HONGO ENDOFÍTICO Epichloë festucae María Romo Vaquero 2010 UNIVERSIDAD DE SALAMANCA FACULTAD DE BIOLOGÍA Departamento de Microbiología y Genética CARACTERIZACIÓN DE UN VIRUS QUE INFECTA AL HONGO ENDOFÍTICO Epichloë festucae Memoria que presenta la Licenciada en Biología María Romo Vaquero para optar al grado de Doctor por la Universidad de Salamanca Salamanca, Octubre de 2010 “Primero te ienoran, después se ríen de ti, luego te atacan, entonces eanas” Mahatma Gandhi. Agradecimientos Esta tesis doctoral, si bien ha requerido de esfuerzo y mucha dedicación por parte de la autora durante seis años, no hubiese sido posible su finalización sin la cooperación desinteresada de todas y cada una de las personas que a continuación citaré. Quiero expresar mi agradecimiento al Dr. Iñigo Zabalgogeazcoa González, director de esta Tesis Doctoral, por darme la oportunidad de llevarla a cabo , así como por sus sugerencias sin las cuales no hubiera sido posible la elaboración de este trabajo. Igualmente quisiera agradecer a todo el Departamento de Pastos del Instituto de Recursos Naturales y Agrobiología de Salamanca su cooperación en la realización de esta tesis doctoral. Agradecer también al Dr Balbino García Criado y la Dr. Mª Antonia García Ciudad su apoyo en el logro de la beca de tres años, con la cual se financió ésta tesis. De igual forma, quiero mencionar la valiosísima ayuda desinteresada de la Dr. Rosa Esteban, cuya orientación fue clave para la consecución de resultados favorables. Especialmente, también quisiera dar mi más sincero agradecimiento a D.
    [Show full text]
  • Uvic Thesis Template
    Characterization of a new mitovirus OMV1c in a Canadian isolate of the Dutch Elm Disease pathogen Ophiostoma novo-ulmi 93-1224 by Irina Kassatenko B.Sc., from Kiev State University, 1993 M.Sc., from Kiev State University, 1995 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Biology Irina Kassatenko, 2012 University of Victoria All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii Supervisory Committee Characterization of a new mitovirus OMV1c in a Canadian isolate of the Dutch Elm Disease pathogen Ophiostoma novo-ulmi 93-1224 by Irina Kassatenko B.Sc., from Kiev State University, 1993 M.Sc., from Kiev State University, 1995 Supervisory Committee Dr. William E. Hintz, (Department of Biology) Supervisor Dr. Paul de la Bastide, (Department of Biology) Departmental Member Dr. Barbara Hawkins, (Department of Biology) Departmental Member Dr. Juergen Ehlting, (Department of Biology) Departmental Member Dr. Delano James, (Canadian Food Inspection Agency) Additional Member iii Abstract Supervisory Committee Dr. William E. Hintz, (Department of Biology) Supervisor Dr. Paul de la Bastide, (Department of Biology) Departmental Member Dr. Barbara Hawkins, (Department of Biology) Departmental Member Dr. Juergen Ehlting, (Department of Biology) Departmental Member Dr. Delano James, (Canadian Food Inspection Agency) Additional Member The fungal pathogen Ophiostoma novo-ulmi is the causal agent of Dutch elm disease (DED) and has been responsible for the catastrophic decline of elms in North America and Europe. Double-stranded RNA (dsRNA) viruses are common to all fungal classes and although these viruses do not always cause disease symptoms, the presence of certain dsRNA viruses have been associated with reduced virulence (hypovirulence) in O.
    [Show full text]
  • Analyse Structurale Et Fonctionnelle De La Préséniline-1 Humaine : Implications Dans La Maladie D'alzheimer
    SÉBASTIEN HÉBERT ANALYSE STRUCTURALE ET FONCTIONNELLE DE LA PRÉSÉNILINE-1 HUMAINE : IMPLICATIONS DANS LA MALADIE D’ALZHEIMER Thèse présentée à la Faculté des études supérieures de l’Université Laval dans le cadre du programme de biologie cellulaire et moléculaire pour l’obtention du grade de Philosophiae Doctor (Ph.D.) FACULTÉ DE MÉDECINE UNIVERSITÉ LAVAL QUÉBEC DÉCEMBRE 2003 © Sébastien S. Hébert, 2003 i RÉSUME COURT La préséniline-1 (PS1) mutée est associée à un développement très précoce de la maladie (chez les individus de 24-55 ans) d’Alzheimer. Dans la cellule, la PS1 existe principalement sous forme de fragments (N-terminaux et C-terminaux, respectivement NTFs et CTFs) qui semblent nécessaires à sa fonction et à l’activité γ- secrétase étroitement liée à la formation des peptides β-amyloïdes neurotoxiques. Nous avons étudié l’organisation structurale et fonctionnelle de la PS1, ses fragments, et leurs relations avec les protéines impliquées dans la production des peptides β- amyloïdes. Dans un premier temps, des expériences en levure, confirmées avec des techniques d’immunobuvardage et d’immunoprécipitation en cellules de mammifères, nous ont permis de mettre en évidence un rôle de l’holoprotéine de la PS1 dans la génération des fragments NTFs et CTFs. De plus, il a été possible de démontrer une interaction directe entre PS1 et BACE (enzyme de type aspartyl protéase aussi appelée β-secrétase), les deux joueurs clés dans la production des peptides β- amyloïdes. Finalement, l’étude du rôle fonctionnel de cette interaction nous a fournis des résultats permettant de suggérer une régulation de la PS1 par BACE.
    [Show full text]
  • Wo 2007/056463 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date PCT 18 May 2007 (18.05.2007) WO 2007/056463 A2 (51) International Patent Classification: (74) Agents: WILLIAMS, Kathleen et al.; Edwards Angell C12Q 1/70 (2006.01) C12Q 1/68 (2006.01) Palmer & Dodge LLP, P.O. Box 55874, Boston, MA 02205 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2006/043502 kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, (22) International Filing Date: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, 9 November 2006 (09.1 1.2006) GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, (25) Filing Language: English LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, (26) Publication Language: English RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 60/735,085 9 November 2005 (09. 11.2005) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), PRIMERA BIOSYSTEMS, INC.
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • DUAL ROLE of CATHEPSIN D: LIGAND and PROTEASE Martin Fuseka, Václav Větvičkab
    Biomed. Papers 149(1), 43–50 (2005) 43 © M. Fusek, V. Větvička DUAL ROLE OF CATHEPSIN D: LIGAND AND PROTEASE Martin Fuseka, Václav Větvičkab* a Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic, and b University of Louisville, Department of Pathology, Louisville, KY40292, USA, e-mail: [email protected] Received: April 15, 2005; Accepted (with revisions): June 20, 2005 Key words: Cathepsin D/Procathepsin D/Cancer/Activation peptide/Mitogenic activity/Proliferation Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracel- lular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor’s actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a “ligand-like” function then on proteolytic activity. CATHEPSIN D – MEMBER PRIMARY, SECONDARY AND TERTIARY OF ASPARTIC PEPTIDASES FAMILY STRUCTURES OF ASPARTIC PEPTIDASES Major function of cathepsin D is the digestion of There is a high degree of sequence similarity among proteins and peptides within the acidic compartment eukaryotic members of the family of aspartic peptidases, of lysosome1.
    [Show full text]
  • Effect of Putative Mitoviruses on in Vitro Growth of Gremmeniella Abietina Isolates Under Different Laboratory Conditions C
    Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Forest Systems 2012 21(3), 515-525 Available online at www.inia.es/forestsystems ISSN: 2171-5068 http://dx.doi.org/10.5424/fs/2012213-02266 eISSN: 2171-9845 Effect of putative mitoviruses on in vitro growth of Gremmeniella abietina isolates under different laboratory conditions C. Romeralo1, *, L. Botella1, 2, O. Santamaria3 and J. Diez1 1 Instituto de Universitario de Gestión Forestal Sostenible, Universidad de Valladolid-INIA, Avda. Madrid 44, Edificio E, 34004 Palencia, Spain 2 Department of Forest Protection and Wildfire Management, Faculty of Forestry and Wood Technology, Mendel University, Zemedelska 3, 61300, Brno, Czech Republic 3 Departamento de Ingeniería del Medio Agronómico y Forestal. Escuela de Ingenierías Agrarias (Universidad de Extremadura). Ctra. de Cáceres, s/n. 06007 Badajoz, Spain Abstract Mitoviruses have been found in several forest pathogens (i.e. Cryphonectria parasitica, Gremmeniella abietina), and because they have been shown to reduce the virulence of host fungi there is a growing interest in studying their use as a biocontrol. This study was carried out to test the effect of temperature (5°C, 15°C, 25°C and 35°C), pH (4, 5, 7 and 9) and osmotic potential (–0.6, –1.2, –1.8 and –2.4 MPa) on the mycelial growth of seven G. abietina isolates under controlled laboratory conditions. Four of the isolates hosted mitoviruses and three of them did not. During the ex- periment, mycelial growth was recorded every week for a period of 8 weeks. Results showed no differences in growth behavior between mitovirus infected and non-infected isolates when placed under different pH modifications.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • A Novel Thermostable Aspartic Protease from Talaromyces Leycettanus and Its Specific
    bioRxiv preprint doi: https://doi.org/10.1101/528265; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 RESEARCH ARTICLE 2 3 A novel thermostable aspartic protease from Talaromyces leycettanus and its specific 4 autocatalytic activation through an intermediate transition state 5 6 Yujie Guo1, Tao Tu1, Yaxin Ren1, Yaru Wang1, Yingguo Bai1, Xiaoyun Su1, Yuan 7 Wang1, Bin Yao1, Huoqing Huang1*, Huiying Luo1* 8 9 1Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research 10 Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China 11 Running title: Insights into a specific auto-activation of proTlAPA1 12 * Corresponding authors. 13 E-mail addresses: [email protected] (H. Luo), [email protected] (H. Huang). 2 bioRxiv preprint doi: https://doi.org/10.1101/528265; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 ABSTRACT 15 Aspartic proteases exhibit optimum enzyme activity under acidic condition and 16 have been extensively used in food, fermentation and leather industries. In this study, 17 a novel aspartic protease precursor (proTlAPA1) from Talaromyces leycettanus was 18 identified and successfully expressed in Pichia pastoris. Subsequently, the 19 auto-activation processing of the zymogen proTlAPA1 was studied by SDS-PAGE 20 and N-terminal sequencing, under different processing conditions. TlAPA1 shared the 21 highest identity of 70.3 % with the aspartic endopeptidase from Byssochlamys 22 spectabilis (GAD91729) and was classified into a new subgroup of the aspartic 23 protease A1 family, based on evolutionary analysis.
    [Show full text]
  • Wirusy Roślin W Aktualnym (2017) Układzie Taksonomicznym Ictv Z Propozycjami Polskich Nazw Gatunków
    Zeszyty Problemowe Postępów Nauk Rolniczych nr 591, 2017, 63–77 DOI 10.22630/ZPPNR.2017.591.44 WIRUSY ROŚLIN W AKTUALNYM (2017) UKŁADZIE TAKSONOMICZNYM ICTV Z PROPOZYCJAMI POLSKICH NAZW GATUNKÓW. CZĘŚĆ 1. WIRUSY O GENOMIE W POSTACI DNA Selim Kryczyński, Marek S. Szyndel SGGW w Warszawie, Wydział Ogrodnictwa, Biotechnologii i Architektury Krajobrazu Streszczenie. Krótko przypomniano źródła informacji o zasadach taksonomii wirusów i uzasadniono włączenie do tekstu wirusów grzybów oraz wiroidów. Wykaz wirusów w tej części obejmuje rodziny Geminiviridae, Nanoviridae, Caulimoviridae i Rhizidioviridae. Słowa kluczowe: wirusy roślin, taksonomia wirusów, Geminiviridae, Nanoviridae, Cauli- moviridae, Rhizidioviridae. WSTĘP Wykazy polskich nazw gatunków wirusów roślin uznanych oficjalnie przez Inter- national Committee on Taxonomy of Viruses (ICTV) były ostatnio publikowane w la- tach 2002 [Kryczyński 2002b] i 2007 [Kryczyński 2007]. Ich podstawę stanowiły 7. [van Regenmortel i in. 2000] i 8. [Fauquet i in., 2005] Raporty ICTV. Od tamtej pory ukazał się drukiem 9. Raport (King i in., 2012) Komitetu wprowadzający do porządku taksonomicznego wiele zmian. W wydawnictwie tym zasygnalizowano możliwość, iż kolejne Raporty ICTV ukazywać się będą wyłącznie na stronie internetowej Komitetu. Przygotowując obecny tekst, autorzy korzystali z tej właśnie strony (ICTV Online (10th) Report, 2017). W 2017 roku ukazało się wprawdzie wydawnictwo Polskiego Towarzy- stwa Fitopatologicznego [Borecki i Schollenberger 2017], podano w nim jednak polskie nazwy chorób roślin powodowanych przez wirusy, które nie są tożsame z nazwami sa- mych wirusów, nie mówiąc o tym, że zamieszczono tam tylko nazwy względnie często [email protected] © Copyright by Wydawnictwo SGGW 64 S. Kryczyński, M.S. Szyndel występujących w Polsce chorób. Wydaje się więc, że pora już zaktualizować wykaz pol- skich nazw gatunków wirusów roślin.
    [Show full text]
  • Effect of Putative Mitoviruses on Growth of Gremmeniella Abietina Isolates in Vitro and on Its Pathogenicity on Pinus Halepensis Seedlings
    Sustainable Forest Management Research Institute University of Valladolid‐INIA Instituto Universitario de Investigación Forestal Sostenible Universidad de Valladolid‐INIA Effect of putative mitoviruses on growth of Gremmeniella abietina isolates in vitro and on its pathogenicity on Pinus halepensis seedlings Carmen Romeralo Tapia Supervisor: Julio Javier Diez Casero MSc in Conservation and Sustainable Use of Forest Systems University of Valladolid June 2012 Effect of putative mitoviruses on growth of Gremmeniella abietina isolates in vitro and on its pathogenicity on Pinus halepensis seedlings Efecto de posibles mitovirus sobre el crecimiento de aislados de Gremmeniella abietina in vitro y en su patogenicidad en plántulas de Pinus halepensis Carmen Romeralo Tapia Supervisor: Professor Julio Javier Diez Casero [email protected] Instituto de Investigación Forestal Sostenible, Universidad de Valladolid‐INIA Avda. Madrid 44, Edificio E, 34004 Palencia, Spain Assistant supervisors: Dr. Leticia Botella Sánchez [email protected] Instituto de Investigación Forestal Sostenible, Universidad de Valladolid‐INIA, Avda. Madrid 44, Edificio E, 34004 Palencia, Spain Dr. Óscar Santamaría Becerril [email protected] Departamento de Ingeniería del Medio Agronómico y Forestal. Escuela de Ingenierías Agrarias (Universidad de Extremadura). Ctra. de Cáceres, s/n. 06007 Badajoz, Spain Credits: 30 hec MSc in Conservation and Sustainable Use of Forest Systems Place of publication: Palencia Year of publication: 2012 Universidad de Valladolid Escuela Técnica Superior
    [Show full text]
  • Multiple Functions of Pro-Parts of Aspartic Proteinase Zymogens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 343 (1994) 6-10 ELSEVIER FEBS 13889 Minireview Multiple functions of pro-parts of aspartic proteinase zymogens Gerald Koelsch”, Michael MareSb, Peter Metcalf”, Martin FusekaT* ~~k~ahornaMedical Research ~~~n~t~on and Un~Qer~ityof Oklahoma Hearth Sciences Center, 825 N.E. 13th Street, Oklahoma City, OK 73f04, USA ‘institute of Organic Chem~try and Ei~c~~rn~~r~,Czech Academy of Sciences, Prague, CZ 16~~~~Czech Republic “European Molecular Bioiogy Laboratory, Heidelberg, D-6900, Germany Received 4 March 1994 Abstract The importance of aspartic proteinases in human pathophysiology continues to initiate extensive research. With burgeoning information on their biological functions and structures, the traditional view of the role of activation peptides of aspartic proteinases solely as inhibitors of the active site is changing. These peptide segments, or pro-parts, am deemed important for correct folding, targeting, and control of the activation of aspartic proteinase zymogens. Consequently, the primary structures of pro-parts reflect these functions. We discuss guidelines for formation of hypotheses derived from comparing the physiological function of aspartic proteinases and sequences of their pro-parts. Key words: Aspartic proteinase; Chaperon; Folding; Pro-part; Protein structure; Targeting 1. Introduction teinases starts with the removal of their signal peptides during the passage into the endoplasmic reticulum. The Aspartic proteinases (EC 3.4.23) share a high degree complete activation of eucaryotic zymogens of aspartic of similarity which involves primary structures, extend- proteinases is accomplished by a proteolytic removal of ing through almost identical secondary structural motifs the N-terminal pro-part which is usually 44-50 amino and manifesting a typical bilobal molecular shape [1,2].
    [Show full text]