Proterra Response to Delaware EMP.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electric Bus Feasibility Study for the City of Edmonton
I II ELECTRIC BUS FEASIBILITY STUDY FOR THE CITY OF EDMONTON JUNE 2016 A REPORT PREPARED BY III IV TABLE OF CONTENTS 1 EXECUTIVE SUMMARY 1.1 DESCRIPTION OF MANDATE 1:1 1.2 CONCLUSIONS 1:1 1.3 MAIN FINDINGS 1:4 1.3.1 CUSTOMER PERCEPTIONS OF THE E-BUSES 1:4 1.3.2 ETS AND CITY STAFF PERCEPTIONS OF THE E-BUSES 1:4 1.3.3 DESCRIPTION OF THE FIELD TRIALS 1:5 1.3.4 EXPECTED RELIABILITY OF E-BUSES IN SERVICE 1:6 1.3.5 EXTERNALITIES 1:7 1.3.6 ENVIRONMENTAL IMPACT OF E-BUSES AT ETS 1:8 1.3.7 THE ELECTRIC BUS TECHNOLOGY AND ITS EVOLUTION 1:9 1.4 THE BUSINESS CASE FOR E-BUSES IN EDMONTON 1:10 1.5 RECOMMENDATIONS 1:13 2 DESCRIPTION OF MANDATE 2.1 OBJECTIVES OF THIS STUDY 2:1 2.2 METHODOLOGY 2:1 2.3 LIMITATIONS OF THIS REPORT 2:2 3 DESCRIPTION OF FIELD TRIALS 3.1 THE ELECTRIC BUSES USED FOR WINTER EVALUATION 3:1 3.2 DURATION AND TIMING OF THE TRIALS 3:4 3.3 DUTY CYCLES OF THE BUSES 3:5 3.4 CLIMATIC CONDITIONS DURING THE TRIALS 3:6 3.5 DATA COLLECTION DURING THE FIELD TRIALS 3:7 3.6 AVAILABILITY OF THE BUSES DURING TRIALS 3:7 3.7 EXTRAORDINARY EVENTS 3:7 3.8 ANALYSIS AND SUMMARY OF TRIALS 3:8 3.8.1 RANGE, STATE OF CHARGE (SOC), ENERGY USAGE (TOTAL TEST AVERAGE) 3:8 3.8.2 TEMPERATURE AND ENERGY USAGE 3:10 3.8.3 ROUTE ANALYSIS 3:13 3.8.4 IMPACT OF SLOPE ON ENERGY CONSUMPTION 3:14 3.8.5 INTERIOR BUS TEMPERATURE ANALYSIS 3:18 3.8.6 OTHER PERFORMANCE PARAMETERS 3:20 3.9 KEY FINDINGS 3:21 4 CUSTOMER PERCEPTIONS OF THE E-BUSES 4.1 METHODOLOGY 4:1 4.2 E-BUS RIDER PERCEPTIONS (AS MEASURED DURING TRIALS) 4:2 4.2.1 BUS MODEL 4:2 4.2.2 NOTICED A DIFFERENT DESIGN -
Electrification of the Sunshine Coast Transit System: a Feasibility Study
Electrification of the Sunshine Coast Transit System: A Feasibility Study ENVR 400 Final Report Carol Fu Jason Lin Michelle Marcus Tom Cui In collaboration with the 2 Degrees Institute University of British Columbia ENVR 400: Community Project in Environmental Science Research Advisor: Tara Ivanochko April 9, 2020 Table of Contents Abstract 5 Author Biographies 6 Introduction 7 The Climate Emergency 7 The Sunshine Coast Transit System 7 Figure 1. 8 Figure 2. 9 Table 1. 9 Project Aims 10 Electric Bus Operations 10 Overview of Trade-offs Between Technologies 10 Table 2. 11 Figure 3. 12 Figure 4. 12 1) Infrastructure requirements 12 Summary: Electric Bus Operations 14 Optimization of Bus Charging Schedules 14 Methodology 14 Figure 5. 15 Figure 6. 16 Results and Discussion 17 Table 3. 17 Figure 7. 18 Figure 8. 19 Summary: Optimization of Bus Charging Schedules 19 Life Cycle Cost Analysis 19 Methodology 19 Table 4. 20 Figure 9. 20 Table 5. 21 Table 6. 23 Figure 10. 24 2 Table 7. 24 Figure 11. 25 Discussion 25 Summary: Life Cycle Cost Analysis 26 Ridership Strategies 26 Figure 12. 27 Literature Review: Ridership Improvement Strategies 27 Table 8. 30 Figure 13. 30 Figure 14. 30 Results and Discussion 31 Table 9. 31 Summary: Ridership Strategies 33 Conclusion, Limitations and Further Studies 33 Conclusion 33 Limitations 34 Further Studies 34 Acknowledgements 35 References 36 Appendix I: Optimization of Charging Schedules 42 Mathematical Reasoning Behind Charging Schedule Algorithm 42 Algorithm Code in R 42 Appendix II: Ridership Strategies 47 Table 10. 47 Table 11. 48 3 Abstract Electrifying transportation is a necessary part of reducing greenhouse gas emissions in order to mitigate global climate change. -
The US Transit Bus Manufacturing Industry
San Jose State University SJSU ScholarWorks Mineta Transportation Institute Publications 10-2016 The US Transit Bus Manufacturing Industry David Czerwinski San Jose State University, [email protected] Xu (Cissy) Hartling Salem State University Jing Zhang San Jose State University, [email protected] Follow this and additional works at: https://scholarworks.sjsu.edu/mti_publications Part of the Public Policy Commons, and the Transportation Commons Recommended Citation David Czerwinski, Xu (Cissy) Hartling, and Jing Zhang. "The US Transit Bus Manufacturing Industry" Mineta Transportation Institute Publications (2016). This Report is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in Mineta Transportation Institute Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. MTI Funded by U.S. Department of Services Transit Census California of Water 2012 Transportation and California The US Transit Bus Department of Transportation Manufacturing Industry MTI ReportMTI 12-02 December 2012 MTI Report 12-66 MINETA TRANSPORTATION INSTITUTE MTI FOUNDER LEAD UNIVERSITY OF MNTRC Hon. Norman Y. Mineta The Mineta Transportation Institute (MTI) was established by Congress in 1991 as part of the Intermodal Surface Transportation MTI/MNTRC BOARD OF TRUSTEES Equity Act (ISTEA) and was reauthorized under the Transportation Equity Act for the 21st century (TEA-21). MTI then successfully competed to be named a Tier 1 Center in 2002 and 2006 in the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Founder, Honorable Norman Joseph Boardman (Ex-Officio) Diane Woodend Jones (TE 2019) Richard A. White (Ex-Officio) Legacy for Users (SAFETEA-LU). -
Best Practices and Key Considerations For
BEST PRACTICES AND KEY CONSIDERATIONS FOR TRANSIT ELECTRIFICATION AND CHARGING INFRASTRUCTURE DEPLOYMENT TO DELIVER PREDICTABLE, RELIABLE, AND COST-EFFECTIVE FLEET SYSTEMS First Published JUNE 2020 Edition 2.0 SEPTEMBER 2020 AUTHORS Dr.Josipa Petrunic, President & CEO Dr. Elnaz Abotalebi, Researcher & Project Lead Dr. Abhishek Raj, Researcher c 2 COPYRIGHT © 2020 Information in this document is to be considered the intellectual property of the Canadian Urban Transit Research and Innovation Consortium in accordance with Canadian copyright law. This report was prepared by the Canadian Urban Transit Research and Innovation Consortium for the account of Natural Resources Canada. The material in it reflects the Canadian Urban Transit Research and Innovation Consortium’s best judgment in light of the information available to it at the time of preparation. Any use that a third party makes of this report or any reliance on or decisions to be made based on it are the responsibility of such third parties. The Canadian Urban Transit Research and Innovation Consortium accepts no responsibility of such third parties. The Canadian Urban Transit Research and Innovation Consortium accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. UPDATE: COVID-19 PUBLICATION IMPACT The publication of this report has been delayed by three months due to the COVID-19 global pandemic. This report, and the majority of research included within it, was completed primarily between September 2019 and March 2020 – prior to the novel coronavirus pandemic affecting local economies and transit revenue across Canada. While efforts have been made to include relevant announcements by Canadian transit agencies since that time, specifically as they relate to electric buses, many investment decisions and funding programs related to municipal green infrastructure deployments may change this year as a result of the financial crisis unfolding in cities across the country. -
ELECTRIFYING TRANSIT: a GUIDEBOOK for IMPLEMENTING BATTERY ELECTRIC BUSES Alana Aamodt, Karlynn Cory, and Kamyria Coney National Renewable Energy Laboratory
ELECTRIFYING TRANSIT: A GUIDEBOOK FOR IMPLEMENTING BATTERY ELECTRIC BUSES Alana Aamodt, Karlynn Cory, and Kamyria Coney National Renewable Energy Laboratory April 2021 A product of the USAID-NREL Partnership Contract No. IAG-17-2050 NOTICE This work was authored, in part, by the National Renewable Energy Laboratory (NREL), operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE- AC36-08GO28308. Funding provided by the United States Agency for International Development (USAID) under Contract No. IAG-17-2050 as well as the Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Science Undergraduate Laboratory Internship. The views expressed in this report do not necessarily represent the views of the DOE or the U.S. Government, or any agency thereof, including USAID. This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via www.OSTI.gov. Cover photo from iStock 1184915589. NREL prints on paper that contains recycled content. Acknowledgments The authors would like to thank Sarah Lawson and Andrew Fang of the U.S. Agency for International Development (USAID) for their review and support for this work. We wish to thank our National Renewable Energy Laboratory (NREL) colleagues, Andrea Watson and Alexandra Aznar, for their support of this report. Other NREL colleagues, including Caley Johnson, Leslie Eudy, and Scott Belding provided invaluable public transit electrification insight for this project. -
Race to Zero: How Manufacturers Are Positioned for Zero Emission
OCTOBER 2020 RACE TO ZERO How manufacturers are positioned for zero emission commercial trucks and buses in North America Ben Sharpe and Claire Buysse, International Council on Clean Transportation Jason Mathers, Environmental Defense Fund Victor Poudelet, Propulsion Québec ACKNOWLEDGMENTS This work is supported by the Heising-Simons Foundation, the Government of Québec, and Hydro-Québec. The authors are grateful to the Felipe Rodríguez and Ray Minjares for their critical reviews of an earlier draft of this paper. In addition, we thank the representatives from several heavy-duty vehicle manufacturing companies that provided feedback on the market data presented in the paper. Their review does not imply an endorsement, and any errors are the authors’ own. International Council on Clean Transportation 1500 K Street NW, Suite 650, Washington, DC 20005 [email protected] | www.theicct.org | @TheICCT © 2020 International Council on Clean Transportation TABLE OF CONTENTS Introduction ................................................................................................................................1 Heavy-duty vehicle market in the United States and Canada ......................................... 3 Zero-emission truck and bus market ................................................................................... 7 Class 7 and 8 tractor trucks ................................................................................................................12 Class 6 through 8 refuse trucks ........................................................................................................13 -
Best Practices and Key Considerations for Transit Electrification and Charging Infrastructure Deployment to Deliver Predictable
BEST PRACTICES AND KEY CONSIDERATIONS FOR TRANSIT ELECTRIFICATION AND CHARGING INFRASTRUCTURE DEPLOYMENT TO DELIVER PREDICTABLE, RELIABLE, AND COST-EFFECTIVE FLEET SYSTEMS JUNE 2020 AUTHORS Dr.Josipa Petrunic, President & CEO Dr. Elnaz Abotalebi, Researcher & Project Lead Dr. Abhishek Raj, Researcher 2 COPYRIGHT © 2020 Information in this document is to be considered the intellectual property of the Canadian Urban Transit Research and Innovation Consortium in accordance with Canadian copyright law. This report was prepared by the Canadian Urban Transit Research and Innovation Consortium for the account of Natural Resources Canada. The material in it reflects the Canadian Urban Transit Research and Innovation Consortium’s best judgment, in light of the information available to it at the time of preparation. Any use that a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. The Canadian Urban Transit Research and Innovation Consortium accepts no responsibility of such third parties. The Canadian Urban Transit Research and Innovation Consortium accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. UPDATE: COVID-19 PUBLICATION IMPACT The publication of this report has been delayed by three months due to the COVID-19 global pandemic. This report, and the majority of research included within it, was completed primarily between September 2019 and March 2020 – prior to the novel coronavirus pandemic affecting local economies and transit revenue across Canada. While efforts have been made to include relevant announcements by Canadian transit agencies since that time, specifically as they relate to electric buses, many investment decisions and funding programs related to municipal green infrastructure deployments may change this year as a result of the financial crisis unfolding in cities across the country. -
The U.S. Electric Bus Transition: an Analysis of Funding and Financing Mechanisms by Dexter Liu | MEM/MBA ‘19
The U.S. Electric Bus Transition: An Analysis of Funding and Financing Mechanisms by Dexter Liu | MEM/MBA ‘19 Advisor: Professor John Buley April 26th, 2019 Masters project submitted in partial fulfillment of the requirements for the Master of Environmental Management degree in the Nicholas School of the Environment of Duke University Contents Executive Summary ............................................................................................................................................................ 4 Acknowledgements ............................................................................................................................................................. 5 Section #1: The Electric Transit Bus Industry .............................................................................................................. 7 Introduction & Market Trends .................................................................................................................................... 7 Research Purpose & Methodology ............................................................................................................................ 10 Section #2: Current Ecosystem & Procurement Process .......................................................................................... 12 Electric Bus Manufacturers ......................................................................................................................................... 12 Transit Agencies .......................................................................................................................................................... -
National Park Service Bus Electrification Study: 2020 Report Madeline Gilleran, Andrew Kotz, Leslie Eudy, and Kay Kelly
National Park Service Bus Electrification Study: 2020 Report Madeline Gilleran, Andrew Kotz, Leslie Eudy, and Kay Kelly National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-78012 Operated by the Alliance for Sustainable Energy, LLC February 2021 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Park Service Bus Electrification Study: 2020 Report Madeline Gilleran, Andrew Kotz, Leslie Eudy, and Kay Kelly National Renewable Energy Laboratory Suggested Citation Gilleran, Madeline, Andrew Kotz, Leslie Eudy, and Kay Kelly. 2021. National Park Service Bus Electrification Study: 2020 Report. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-78012. https://www.nrel.gov/docs/fy21osti/78012.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-78012 Operated by the Alliance for Sustainable Energy, LLC February 2021 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S Department of the Interior, National Park Service. The views expressed herein do not necessarily represent the views of the DOE or the U.S. -
Medium & Heavy Duty Vehicles
MEDIUM & HEAVY DUTY VEHICLES 08.05.2020 Upcoming Webinars Autonomous Vehicles Wednesday, September 2 at 1 p.m. CDT Local Utilities & Infrastructure Wednesday, September 30 at 1 p.m. CDT National Drive Electric Week MediumEV 101 & TESTIMONIALSHeavy Duty Vehicles • 07.08.2020 Webinar CUMMINS NEW POWER Kevin Cook Business Development Manager 3 Cummins 100+ 1M+ 15M years serving engines annually engines in the customers produced field Understands power — past , p r esen t , a nd f u t u r e . 4 A TECHNOLOGY LEADER WITHA BROAD PORTFOLIO OF POWERSOLUTIONS Diesel Natural gas Hybrid Battery Fuel Cell powertrain powertrain electric electric electric 3 New Power Business Segment Cummins has a 100-year-long track record of delivering leading power solutions. As we look ahead, we know our industries and markets will continue to change, and we are committed to bringing our customers the right technology at the right time. Engine Power Components Distribution New Systems Power 4 7 N EW PO W ER Footprint 8 N E W P O W E R 1 2 3 Applications 1. Blue Bird Electric School Bus 2. Fuel Cell Heavy Duty Truck 3. Electrified Power Heavy Duty Truck 4 5 6 4. Alstom Fuel Cell Train 5. GILLIG Electric Commercial Bus 6. Electric Mini Excavator 7. USPS Electric Van 7 8 9 10 8. Electric Terminal Tractor 9. Fuel Cell Commercial Bus 10. UNIPER’s power-to-gas facility, Falkenhagen, Germany: 2 MW electrolyzer 9 GILLIGELECTRICBUS NOWAVAILABLE The GILLIG zero-emission battery electric bus, powered by Cummins, is now available. R ANGE The bus initially incorporates the standard 444 kWh battery capacity (six packs) and will be capable of up to 150-mile range. -
Appendix D Total Fuel Costs
Appendix D Total Fuel Costs Table of Contents A. Introduction ............................................................................................................... 1 B. Fuel Efficiency .......................................................................................................... 1 1. Altoona Test ....................................................................................................... 1 2. National Renewable Energy Laboratory (NREL) .............................................. 11 3. National Transit Database ................................................................................ 14 4. Summary of Fuel Efficiency.............................................................................. 20 C. Fuel Cost ................................................................................................................ 20 1. Diesel ............................................................................................................... 20 2. Natural Gas ...................................................................................................... 21 3. Renewable Diesel and Renewable Natural Gas .............................................. 22 4. Electricity .......................................................................................................... 23 5. Hydrogen ......................................................................................................... 24 D. EIA Energy Price Projection .................................................................................. -
Supply Chain Assessment
DOCKETED Docket Number: 19-IEPR-04 Project Title: Transportation TN #: 228787-13 Document Title: US Department of Energy - Supply Chain Assessment - May 2019 Class 3-8 Hybrid and Electric Vehicles Operating on North American Description: Roads: Supply Chain Assessment of Vehicles, Drive-Train Motors, Inverters, Converters and Batteries Filer: Wendell Krell Organization: California Energy Commission Submitter Role: Commission Staff Submission Date: 6/19/2019 9:22:42 AM Docketed Date: 6/19/2019 Open Source Intelligence for Better Decisions. Class 3-8 Hybrid and Electric Vehicles Operating on North American Roads: Supply Chain Assessment of Vehicles, Drive-Train Motors, Inverters, Converters and Batteries. *** Prepared for the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Approved for Public Release Please contact Mr. Steven Boyd, Vehicle Technologies Office, US Department of Energy at ([email protected]), or Mr. Chris Whaling, Synthesis Partners, LLC at ([email protected]), with questions or comments. Publication Date: May 2019 Collection cut-off date: July 30, 2018 Contract No. DE-DT0006388 Synthesis Partners, LLC www.synthesispartners.com Open Source Intelligence for Better Decisions. This page intentionally left blank. May 2019 www.synthesispartners.com 2 Open Source Intelligence for Better Decisions. Acknowledgements The Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office (VTO) provided funding for this work under contract number DE- DT0006388. We provide special thanks to Mr. Steven Boyd, Technology Development Manager, for his technical guidance and management of this effort. We also would like to thank Ms. Adrienne Riggi, Contracting Officer at the National Energy Technology Laboratory (NETL) for her technical oversight of this effort.