Starshade Exoplanet Data Challenge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Agb Newsletter
THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Red Giants and Supergiants No. 276 — 1 July 2020 https://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Board (Working Group Organising Committee): Marcelo Miguel Miller Bertolami, Carolyn Doherty, JJ Eldridge, Anibal Garc´ıa-Hern´andez, Josef Hron, Biwei Jiang, Tomasz Kami´nski, John Lattanzio, Emily Levesque, Maria Lugaro, Keiichi Ohnaka, Gioia Rau, Jacco van Loon (Chair) Figure 1: The Cat’s Eye Planetary Nebula imaged by Mark Hanson at Stan Watson Observatory with a 24′′ f6.7 teelescope. It includes 23 hours worth of [O iii]. The best known part, the “eye” is just the small object in the middle, while the messy halo extends much further. Notice also the bowshock on the right. (Suggestion by Sakib Rasool.) 1 Editorial Dear Colleagues, It is a pleasure to present you the 276th issue of the AGB Newsletter. Note that IAU Symposium 366 (”The Origin of Outflows in Evolved Stars”) has been postponed until November next year, while in June 2021 there will be a 4-week programme of workshops on stellar astrophysics in the Gaia era, in Munich (Germany). See the announcements for both meetings at the end of the newsletter. Unfortunately our proposal for a Focus Meeting at next year’s IAU General Assembly was not successful. One of the reasons given was: ”Some evaluators commented that Most of the topics in this proposal could have been made 10 or 20 years ago. -
“A Brief History of Beiji (Northern Culmen)”
“A Brief History of Beiji (Northern Culmen)” (Prepared for the 4th International Conference on the Inspiration of Astronomical Phenomena INSAP IV, Oxford University, August 3-9, 2003.) David W. Pankenier Lehigh University Abstract: In ancient Chinese astral lore, the imperial nomenclature associated with the circumpolar stars in the Palace of Purple Tenuity points to the crucial importance of the north-pole in astrological, calendrical, and spiritual contexts. But preoccupation with this numinous region has a history far longer than the Chinese empire, founded in 221 BCE. This paper briefly surveys what is known about the pre-imperial history of the region of the ‘Northern Culmen,’ with particular reference to spiritual and metaphysical conceptions relating to the Northern Dipper, and to the void at the pivot of the heavens which lacked a pole star throughout much of the formative period of classical Chinese civilization. The discussion concludes with a hypothesis about the astral origins of the ancient form of the character used to denote the High God di. Chinese preoccupation with astronomical orientation has a very long history. Archaeological evidence from the 5th millennium BCE Neolithic cultures of North China shows that burials and dwellings were already being oriented with particular attention to the diurnal and seasonal variations in the Sun’s position.1 By the early Bronze Age in the early 2nd millennium BCE and the inception of early state formation, such concepts had progressed to the point where ritually and politically important structures were uniformly quadrilateral in shape, and cardinally oriented, with the longitudinal axis aligned with some precision in a north-south direction.2 Palatial structures and royal tombs from the earliest dynastic states in the 2nd millennium BCE, that is, Xia, Shang, and Zhou, consistently display such orientation. -
News from the Society for Astronomical Sciences
News from the Society for Astronomical Sciences Vol . 9 No. 2 (April, 2011 ) Triennial Election of SAS the powerful Wilson-Devinney (WD) follows the general style of regular program used by most professionals in papers. These should be sent to the Committee the field. PHOEBE is a cross-platform Program Committee (prior to the April The SAS is a non-profit public benefit (Linux/Unix, Windows, OS X) graphical 16 deadline), to be included in the pub- corporation incorporated in California, program that greatly simplifies the use lished Proceedings. of WD. which is managed by a Board of Direc- tors. The Directors are elected for 3- The workshop will consist of a mix of year terms by the membership. The lecture-style background information SAS 2011 Symposium: current Directors’ terms of office will and hands-on analysis of real data. end on June 1, 2011. Accordingly, the Registration Information 2011 Symposium will include a brief Dirk Terrell is an astrophysicist at the 2011 marks the 30 th Anniversary of the business meeting to elect 7 Directors Southwest Research Institute's De- Society for Astronomical Sciences! to hold office for the next three years. partment of Space Studies in Boulder, This year’s Symposium is shaping up Colorado. His research work focuses The following candidates will be pre- to offer a diverse array of talks, work- mainly on theoretical and observa- shops, and networking opportunities, sented to the Membership for approval tional aspects of close binary stars. He as Directors, to serve from June 2, so you do not want to miss out. -
Arxiv:1408.0401V1 [Astro-Ph.EP] 2 Aug 2014 Page Intentionally Left Blank
arXiv:1408.0401v1 [astro-ph.EP] 2 Aug 2014 Page intentionally left blank. Development and Application of Tools to Characterize Transiting Astrophysical Systems A dissertation presented by Bence B´eky to The Department of Astronomy in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Astronomy and Astrophysics Harvard University Cambridge, Massachusetts 2014 April Copyright c 2014 Bence B´eky All rights reserved. Dissertation Advisor: Author: Dr. Matthew Holman Bence B´eky Development and Application of Tools to Characterize Transiting Astrophysical Systems Abstract Since the discovery of the first exoplanets (planets outside our Solar System) more than 20 years ago, there has been an increasing need for photometric and spectroscopic models to characterize these systems. While imaging has been used extensively for Solar System bodies and extended objects like galaxies, the small angular extent of typical planetary systems makes it difficult or impossible to resolve them. Spatially integrated observations like measuring the total brightness or spectrum, however, can be conducted at a resonable cost. This thesis focuses on photometric models in the context of transiting systems, which exhibit a number of phenomena that can be exploited for characterization. First, we showcase the popular methods of transiting exoplanet discovery and characterization by ground based observations on the hot Jupiter HAT-P-27b. We demonstrate how transits allow us to constrain planetary mass, radius, and orbital inclination, which would not be possible based only on, for example, radial velocity measurements. Next, we perform reflection spectroscopy on HAT-P-1b, another hot Jupiter, using the binary companion of the host star as a reference to remove systematic errors from iii the signal. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
A Brief History of Beiji 北极 (Northern Culmen), with an Excursus on the Origin of the Character Di 帝”
DRAFT OF WORK IN PROGRESS: NOT FOR CIRCULATION OR CITATION “A Brief History of Beiji 北极 (Northern Culmen), with an Excursus on the Origin of the Character di 帝” David W. Pankenier Lehigh University Abstract: In ancient Chinese astral lore, the imperial nomenclature associated with the circumpolar stars in the Palace of Purple Tenuity 紫微垣 points to the crucial importance of the north-pole in astrological, calendrical, and spiritual contexts. But preoccupation with this numinous region has a history dating back far earlier than the Qin and Han empires. This paper briefly surveys what is known about the pre-imperial history of the region of the ‘Northern Culmen,’ with particular reference to spiritual and metaphysical conceptions concerning the Northern Dipper, and to the void at the pivot of the heavens, where there was no prominent pole star throughout much of the formative period of classical Chinese civilization. The discussion concludes with a hypothesis about possible astral origins of the ancient form of the character used to denote the High God di 帝. Chinese preoccupation with astronomical orientation has a very long history. Archaeological evidence from the 5th millennium BCE Neolithic cultures of North China shows that burials and dwellings were already being oriented with particular attention to the diurnal and seasonal variations in the Sun’s position.1 With the beginning of the Bronze Age in the early 2nd millennium BCE and the inception of early state formation, such concepts had progressed to the point where ritually and politically important structures were uniformly quadrilateral in shape and cardinally oriented, with the longitudinal axis aligned with varying precision in a north-south direction.2 Palatial structures and royal tombs from the earliest dynastic states in the 2nd millennium BCE, that is, Xia,3 Shang, and Zhou, consistently display such orientation. -
Download This Issue (Pdf)
Volume 46 Number 1 JAAVSO 2018 The Journal of the American Association of Variable Star Observers Optical Flares and Quasi-Periodic Pulsations on CR Draconis during Periastron Passage Upper panel: 2017-10-10-flare photon counts, time aligned with FFT spectrogram. Lower panel: FFT spectrogram shows time in UT seconds versus QPP periods in seconds. Flares cited by Doyle et al. (2018) are shown with (*). Also in this issue... • The Dwarf Nova SY Cancri and its Environs • KIC 8462852: Maria Mitchell Observatory Photographic Photometry 1922 to 1991 • Visual Times of Maxima for Short Period Pulsating Stars III • Recent Maxima of 86 Short Period Pulsating Stars Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Kosmas Gazeas Kristine Larsen Dunlap Institute of Astronomy University of Athens Department of Geological Sciences, and Astrophysics Athens, Greece Central Connecticut State University, and University of Toronto New Britain, Connecticut Toronto, Ontario, Canada Edward F. Guinan Villanova University Vanessa McBride Associate Editor Villanova, Pennsylvania IAU Office of Astronomy for Development; Elizabeth O. Waagen South African Astronomical Observatory; John B. Hearnshaw and University of Cape Town, South Africa Production Editor University of Canterbury Michael Saladyga Christchurch, New Zealand Ulisse Munari INAF/Astronomical Observatory Laszlo L. Kiss of Padua Editorial Board Konkoly Observatory Asiago, Italy Geoffrey C. Clayton Budapest, Hungary Louisiana State University Nikolaus Vogt Baton Rouge, Louisiana Katrien Kolenberg Universidad de Valparaiso Universities of Antwerp Valparaiso, Chile Zhibin Dai and of Leuven, Belgium Yunnan Observatories and Harvard-Smithsonian Center David B. -
Transits of Mercury, 1605–2999 CE
Appendix A Transits of Mercury, 1605–2999 CE Date (TT) Int. Offset Date (TT) Int. Offset Date (TT) Int. Offset 1605 Nov 01.84 7.0 −0.884 2065 Nov 11.84 3.5 +0.187 2542 May 17.36 9.5 −0.716 1615 May 03.42 9.5 +0.493 2078 Nov 14.57 13.0 +0.695 2545 Nov 18.57 3.5 +0.331 1618 Nov 04.57 3.5 −0.364 2085 Nov 07.57 7.0 −0.742 2558 Nov 21.31 13.0 +0.841 1628 May 05.73 9.5 −0.601 2095 May 08.88 9.5 +0.326 2565 Nov 14.31 7.0 −0.599 1631 Nov 07.31 3.5 +0.150 2098 Nov 10.31 3.5 −0.222 2575 May 15.34 9.5 +0.157 1644 Nov 09.04 13.0 +0.661 2108 May 12.18 9.5 −0.763 2578 Nov 17.04 3.5 −0.078 1651 Nov 03.04 7.0 −0.774 2111 Nov 14.04 3.5 +0.292 2588 May 17.64 9.5 −0.932 1661 May 03.70 9.5 +0.277 2124 Nov 15.77 13.0 +0.803 2591 Nov 19.77 3.5 +0.438 1664 Nov 04.77 3.5 −0.258 2131 Nov 09.77 7.0 −0.634 2604 Nov 22.51 13.0 +0.947 1674 May 07.01 9.5 −0.816 2141 May 10.16 9.5 +0.114 2608 May 13.34 3.5 +1.010 1677 Nov 07.51 3.5 +0.256 2144 Nov 11.50 3.5 −0.116 2611 Nov 16.50 3.5 −0.490 1690 Nov 10.24 13.0 +0.765 2154 May 13.46 9.5 −0.979 2621 May 16.62 9.5 −0.055 1697 Nov 03.24 7.0 −0.668 2157 Nov 14.24 3.5 +0.399 2624 Nov 18.24 3.5 +0.030 1707 May 05.98 9.5 +0.067 2170 Nov 16.97 13.0 +0.907 2637 Nov 20.97 13.0 +0.543 1710 Nov 06.97 3.5 −0.150 2174 May 08.15 3.5 +0.972 2644 Nov 13.96 7.0 −0.906 1723 Nov 09.71 13.0 +0.361 2177 Nov 09.97 3.5 −0.526 2654 May 14.61 9.5 +0.805 1736 Nov 11.44 13.0 +0.869 2187 May 11.44 9.5 −0.101 2657 Nov 16.70 3.5 −0.381 1740 May 02.96 3.5 +0.934 2190 Nov 12.70 3.5 −0.009 2667 May 17.89 9.5 −0.265 1743 Nov 05.44 3.5 −0.560 2203 Nov -
Exo-S Interim Report
Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept Interim Report April 28, 2014 CL#14-1548 National Aeronautics and Space Administration Exo-S: Starshade Probe-Class Jet Propulsion Laboratory California Institute of Technology Pasadena, California Exoplanet Direct Imaging Mission Concept Interim Report ExoPlanet Exploration Program Astronomy, Physics and Space Technology Directorate Jet Propulsion Laboratory for Astrophysics Division Science Mission Directorate NASA April 28, 2014 Science and Technology Definition Team Sara Seager, Chair (MIT) JPL Design Team: M. Turnbull (GCI) D. Lisman, Lead W. Sparks (STSci) D. Webb S. Shaklan and M. Thomson (NASA-JPL) R. Trabert N.J. Kasdin (Princeton U.) D. Scharf S. Goldman, M. Kuchner, and A. Roberge (NASA-GSFC) S. Martin W. Cash (U. Colorado) J. Henrikson E. Cady The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and Caltech. © 2014. All rights reserved. Exo-S STDT Interim Report Table of Contents Table of Contents Executive Summary ....................................................................................................................................................... 1 1 Introduction .......................................................................................................................................................... 1-1 1.1 Scientific Introduction .............................................................................................................................. -
A Treatise on Astronomy Theoretical and Practical by Robert
NAPOLI Digitized by Google Digitized Google A TREATISE ov ASTRONOMY THEORETICAL and PRACTICAL. BY ROBERT WOODHOUSE, A M. F.R.S. FELLOW OF GONVILLK AND CAIUS COLLEGE, AND PLUMIAN PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF CAMBRIDGE. Part II. Vol. I. CONTAINING THE THEORIES OF THE SUN, PLANETS, AND MOON. CAMBRIDGE: PRINTED BY 3 . SMITH, PRINTER TO THE UNIVERSITY ; FOR J. DEIGHTON & SONS, AND O. & W. B. WHITTAKER, LONDON. 1823 Digitized by Google Digitized by Google : ; —; CHAP. XVII. ON THE SOLAR THEORY Inequable Motions of the Sun in Right Ascension and Longi- tude.— The Obliquity of the Ecliptic determined from Ob- servations made near to the Solstices . — The Reduction of Zenith Distances near to the Solstices, to the Solstitial Zenith Distance.—Formula of such Reduction.—Its Application . Investigation of the Form of the Solar Orbit. — Kepler’s Discoveries.— The Computation of the relative Values of the Sun’s Distances and of the Angles described round the Earth.— The Solar Orbit an Ellipse. — The Objects of the Elliptical Theory. In giving a denomination to the preceding part of this Volume, we have stated it to contain the Theories of the fixed Stars such theories are, indeed, its essential subjects ; but they are not exclusively so. In several parts we have been obliged to encroach on, or to borrow from, the Solar Theory and, in so doing, have been obliged to establish certain points in that theory, or to act as if they had been established. To go no farther than the terms Right Ascension, Latitude, and Longitude. The right ascension of a star is measured from the first point of Aries, which is the technical denomination of the intersection of the equator and ecliptic, the latter term de- signating the plane of the Sun’s orbit the latitude of a star is its angular distance from the last mentioned plane ; and the longitude of a star is its distance from the first point of Aries measured along the ecliptic. -
The Evening Sky Map 28 = UT – 4 Hours.) Time Eastern Summer (UT)
I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O t h r e o r n n e s h k O t N y n t i o Z d f I e i C n t a d R I c P o R l O o l ) C a H h r L i g s u E , E o t l H h ( P e T F r O o N ( D o R NORTH r r N t M e E h p A X p O s i A t H D a C M T r g I . i P N B S L E E e P Z h “ t E NORTHERN HEMISPHERE A N e H O s M T R U T Y N H E Deneb ” K E ) W S . δ . T T E U W B R N W D The Evening Sky Map μ E T T CASSIOPEIA APRIL 2008 WH A E C CEPHEUS FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY And O S η γ G L K e Y E m ” . R M m s A d A a SKY MAP SHOWS HOW i S P k i T s C A e t E h R h t Sky Calendar – April 2008 J O e THE NIGHT SKY LOOKS “ B U s b O N a r L i D g Cluster n A NE h I I w β EARLY APR 10 PM T t Double T o e S • National Dark Sky Week, March 29 to April 4. -
Discovery and Characterization of Three of These Transiting Circumbinary Planetary Systems, Specifically Kepler-47, Kepler-64, Kepler-413
DISCOVERY AND CHARACTERIZATION OF TRANSITING CIRCUMBINARY PLANETS FROM NASA’s KEPLER MISSION by Veselin B. Kostov A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy. Baltimore, Maryland August, 2014 c Veselin B. Kostov 2014 All rights reserved Abstract Planets with two suns have long fascinated our imagination yet it was only recently that astronomers were able to provide direct evidence of their existence. Several candi- dates have been proposed since 2003, based on measured timing variations in binary stellar systems, but it was not until 2011 and the launch of NASA’s Kepler mission that circumbi- nary planets were unambiguously detected through their transits. At the time of writing, the peerless-quality data from Kepler has enabled the confirmation of eight planets orbiting both members of seven gravitationally bound, eclipsing binaries (one of the systems has two circumbinary planets). This thesis presents our contribution to the field in terms of discovery and characterization of three of these transiting circumbinary planetary systems, specifically Kepler-47, Kepler-64, Kepler-413. As predicted by theoretical models, the planets we discovered are smaller than Jupiter, have orbits close to the limit for dynamical stability, and are nearly co-planar to their host binaries (although the circumbinary system Kepler-413 is sufficiently misaligned that, due to fast orbital precession, the planet does not transit at every inferior conjunction). The results of our work deliver important insight into the nature of this remarkable new class of ii objects, and provide deeper understanding of a) the type of binary stars that can support cir- cumbinary planets; b) the orbital and physical properties of these fascinating systems (e.g.