High School Championship -- Standings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thierry Moreau
Compilation and Hardware Support for Approximate Acceleration Thierry Moreau, Adrian Sampson, Andre Baixo, Mark Wyse, Ben Ransford, Jacob Nelson, Hadi Esmaeilzadeh (Georgia Tech), Luis Ceze and Mark Oskin University of Washington [email protected] Theme: 2384.004 1 Thierry Moreau Approximate Computing Aims to exploit application resilience to trade-off quality for efficiency 2 Thierry Moreau Approximate Computing 3 Thierry Moreau Approximate Computing ✅ Accurate ✅ Approximate ❌ Expensive ✅ Cheap 4 Thierry Moreau 5 Thierry Moreau 6 Thierry Moreau 7 Thierry Moreau Neural Networks as Approximate Accelerators CPU Esmaeilzadeh et al. [MICRO 2012] 8 Thierry Moreau Neural Acceleration float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } 9 Thierry Moreau Neural Acceleration compiler-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT* *Sampson et. al [UW-TR] 10 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP* *Moreau et. al [HPCA2015] 11 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP 3.8x speedup and 2.8x efficiency - 10% error 12 Thierry Moreau Talk Outline Introduction Compiler Support with ACCEPT SNNAP Accelerator design Evaluation & Comparison with HLS 13 Thierry Moreau Compilation Overview code 1. Region detection annotation 14 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation 15 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation back prop. -
Heater Element Specifications Bulletin Number 592
Technical Data Heater Element Specifications Bulletin Number 592 Topic Page Description 2 Heater Element Selection Procedure 2 Index to Heater Element Selection Tables 5 Heater Element Selection Tables 6 Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource Description Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system. Product Certifications website, http://www.ab.com Provides declarations of conformity, certificates, and other certification details. You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. For Application on Bulletin 100/500/609/1200 Line Starters Heater Element Specifications Eutectic Alloy Overload Relay Heater Elements Type J — CLASS 10 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Type WL — CLASS 30 Note: Heater Element Type W/WL does not currently meet the material Type W Heater Elements restrictions related to EU ROHS Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F). -
K-12 Individual No. Name Team Gr Rate Pts Tbrk1 Tbrk2 Tbrk3 Tbrk4
K-12 Individual No. Name Team Gr Rate Pts TBrk1 TBrk2 TBrk3 TBrk4 Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 1 Chakraborty, Dipro 11 2299 5.5 21 24 43 20.5 W27 W12 W5 W32 W8 D3 State Champion, AZ Denker Representative 2 Yim, Tony Sung BASISS 8 2135 5 20.5 23.5 38.5 17.5 W24 W10 D3 D16 W11 W9 3 Aletheia-Zomlefer, Soren CHANPR 11 1961 5 20 23 35.5 18.5 W25 W26 D2 W40 W15 D1 4 Desmarais, Nicholas Eduard NOTRED 10 1917 5 18 20 33 18 W39 W23 W18 L15 W10 W8 5 Wong, Kinsleigh Phillip CFHS 10 1992 4.5 20 20 24.5 15 -X- W17 L1 W26 D7 W15 6 Todd, Bryce BASISC 10 1923 4.5 17 19 26.5 14.5 W38 D18 L9 W23 W21 W16 7 Chaliki, Kalyan DSMTHS 9 1726 4.5 17 18.5 26 15 W46 L16 W28 W22 D5 W17 8 Li, Bohan UHS 9 2048 4 22 25 29 18 W30 W11 W45 W9 L1 L4 9 Mittal, Rohan CFHS 9 1916 4 19.5 20.5 23 17 W47 W22 W6 L8 W20 L2 10 Pennock, Joshua CFHS 10 1682 4 19 22 24 14 W31 L2 W25 W21 L4 W29 11 Aradhyula, Sumhith CFHS 9 1631 4 18 20 22 14 W41 L8 W38 W13 L2 W19 12 Johnston, Nicolas Godfrey CFHS 9 1803 4 18 19.5 21 13 W43 L1 W29 L17 W24 W20 13 Martis, Tyler BRHS 12 1787 4 17 18 21 13 W42 L15 W24 L11 W18 W22 14 Plumb, Justin Rodney GCLACA 10 1700 4 16 17 20 13 W51 L32 W19 L20 W28 W27 15 Martinez, Isaac GLPREP 10 2159 3.5 21.5 24.5 27.5 16 W28 W13 D16 W4 L3 L5 16 Chen, Derek H CFHS 10 1965 3.5 21 23.5 26 15.5 W35 W7 D15 D2 D17 L6 17 Woodson, Tyler GILBHS 1640 3.5 19 19 17.5 14 W50 L5 W30 W12 D16 L7 18 Cancio, Aiya CFHS 9 1469 3.5 18.5 20 17.5 12.5 W36 D6 L4 W46 L13 W25 AZ Girls' Invitational Representative 19 Folden, Kurt CHANPR 10 1207 3 14 18 12 10 L32 W50 L14 W31 W23 L11 20 Thornton, -
BU97530KVT MAX 445 Segment(89Segx5com)
Datasheet LCD Segment Drivers Multi-function LCD Segment Drivers BU97530KVT MAX 445 Segment(89SEGx5COM) General Description Key Specifications The BU97530KVT is 1/5, 1/4, 1/3 duty or Static ■ Supply Voltage Range: +2.7V to +6.0V General-purpose LCD driver. The BU97530KVT can ■ Operating Temperature Range: -40°C to +85°C drive up to 445 LCD Segments directly. The ■ Max Segments: 445 Segments BU97530KVT can also control up to 9 General-purpose ■ Display Duty Static, 1/3, 1/4, 1/5 Selectable output pins / 9 PWM output pins. ■ Bias: 1/2, 1/3 Selectable These products also incorporate a key scan circuit that ■ Interface: 3wire Serial Interface accepts input from up to 30 keys to reduce printed circuit board wring. Features Package W (Typ) x D (Typ) x H (Max) Key Input Function for up to 30 Keys (A key scan is performed only when a key is pressed.) Either 1/5, 1/4, 1/3 Duty or Static Can be Selected with the Serial Control Data. 1/5 Duty Drive: Up to 445 Segments can be Driven 1/4 Duty Drive: Up to 360 Segments can be Driven 1/3 Duty Drive: Up to 270 Segments can be Driven Static Drive: Up to 90 Segments can be Driven Selectable Display Frame Frequency for Common and Segment Output Waveforms. Configurable Output Pin to Segment Output / PWM Output / General-purpose Output.(Max 9 Pins) Built-in OSC Circuit TQFP100V Integrated Voltage Detection Type Reset Circuit 16.00mm x 16.00mm x 1.20mm (VDET) No External Component Low Power Consumption Design Supports Line and Frame Inversion Applications Car Audio, Home Electrical Appliance, Meter Equipment etc. -
Fock–Goncharov Coordinates for Semisimple Lie Groups
FOCK–GONCHAROV COORDINATES FOR SEMISIMPLE LIE GROUPS S. GILLES Abstract. Fock and Goncharov [FG06b] introduced cluster ensembles, providing a framework for coordi- nates on varieties of surface representations into Lie groups, as well as a complete construction for groups of type An. Later, Zickert [Zic19], Le [Le16b], [Le16a], and Ip [Ip18] described, using differing methods, how to apply this framework for other Lie group types. Zickert also showed that this framework applies to triangulated 3-manifolds. We present a complete, general construction, based on work of Fomin and Zelevinsky. In particular, we complete the picture for the remaining cases: Lie groups of types F4, E6, E7, and E8. Contents Acknowledgements 2 1. Introduction 2 1.1. Classical Teichmüller space 2 1.2. Cluster ensemble structures 4 1.3. Higher Teichmüller spaces 5 1.4. Results 7 1.5. Historical context 7 2. Ingredients 8 2.1. Root spaces and Weyl groups 8 2.2. Unipotent subgroups 9 2.3. Coxeter elements 9 2.4. Generalized minors 9 2.5. Factorization coordinates 11 2.6. Quivers 11 2.7. Cluster ensembles 12 3. Key identities 13 3.1. Actions of a dubs 13 3.2. Actions of σG 13 3.3. Grid exchange relations 14 4. Coordinates on generically-decorated representations 15 4.1. Configurations and gluings 16 arXiv:2104.04941v1 [math.GT] 11 Apr 2021 4.2. Triangular quivers and Fock–Goncharov coordinate structures 17 4.3. From coordinates to representations 21 4.4. Regarding 3-manifolds 23 5. Main Result: Fock–Goncharov coordinate structures for non-An 23 5.1. -
Influencer Poll: Likelihood to Recommend & Support
Wave 56 Influencer Poll Update January 2018 Public Release Influencer Poll: Likelihood to Recommend & Support 1 Likelihood to Recommend and Support Military Service Likelihood to Recommend and Support Military Service 80% 71% 70% 71% 70% 66% 66% 66% 67% 63% 63% 63% 64% 61% 63% 60% 50% 46% 47% 47% 45% 44% 42% 43% 42% 39% 38% 40% 35% 32% 33% 34% 34% 30% 20% 10% Likely to Recommend: % Likely/Very Likely Likely to Support: % Agree/Strongly Agree Yearly Quarterly 0% Jan–Mar 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Likely to Recommend Military Service Likely to Support Decision to Join § Influencers’ likelihood to support the decision to join the Military increased significantly from 67% in 2015 to 70% in 2016. § However, Influencers’ likelihood to support the decision to join the Military remained stable in January–March 2017. = Significantly change from previous poll Source: Military Ad Tracking Study (Influencer Market) Wave 56 2 Questions: q1a–c: “Suppose [relation] came to you for advice about various post-high school options. How likely is it that you would recommend joining a Military Service such as the Army, Navy, Marine Corps, Air Force, or Coast Guard?” q2ff: “If [relation] told me they were planning to join the Military, I would support their decision.” Likelihood to Recommend Military Service By Influencer Type Likelihood to Recommend Military Service 80% 70% 63% 59% 59% 60% 58% 60% 57% 56% 57% 55% 54% 53% 48% 55% 50% 54% 47% 52% 51% 44% 51% 47% 42% 42% 42% 49% 41% 43% 42% 45% 45% 46% 40% 42% 37% 41% 39% 41% 38% 38% 38% 37% 37% 39% 34% 35% 34% 30% 33% 33% 32% 33% 32% 31% 32% 31% 31% 31% 32% 20% 25% 25% 24% 31% 29% 10% % Likely/Very Likely Yearly Quarterly 0% Jan–Mar 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Fathers Mothers Grandparents Other Influencers § Influencers’ likelihood to recommend military service remained stable in January–March 2017 for all influencer groups. -
BU91530KVT-M : Display Drivers
Datasheet LCD Segment Drivers Multi-function LCD Segment Drivers BU91530KVT-M MAX 445 Segment(89SEGx5COM) General Description Key Specifications The BU91530KVT-M is 1/5, 1/4, 1/3 or 1/1 duty ■ Supply Voltage Range: +2.7V to +6.0V general-purpose LCD driver that can be used for ■ Operating Temperature Range: -40°C to +85°C frequency display in electronic tuners under the control of ■ Max Segments: 445 Segments a microcontroller. The BU91530KVT-M can drive up to ■ Display Duty 1/1, 1/3, 1/4, 1/5 Selectable 445 LCD Segments directly. The BU91530KVT-M can ■ Bias: 1/2, 1/3 Selectable also control up to 9 general-purpose output ports. ■ Interface: 3wire Serial Interface These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wring. Package W (Typ.) x D (Typ.) x H (Max.) Features AEC-Q100 Qualified (Note1) Key input function for up to 30 keys (A key scan is performed only when a key is pressed.) Either 1/5, 1/4, 1/3 or 1/1 duty (static) can be selected with the serial control data. 1/5 duty drive: Up to 445 segments can be driven 1/4 duty drive: Up to 360 segments can be driven 1/3 duty drive: Up to 270 segments can be driven 1/1 duty drive: Up to 90 segments can be driven Serial Data Control of frame frequency for common and segment output waveforms. Serial data control of switching between the segment TQFP100V output port , PWM output port and general-purpose 16.00mm x 16.00mm x 1.20mm output port functions.(Max 9 ports) Built-in OSC circuit Integrated Power-on Reset Circuit No external component Low power consumption design Supports Line and Frame Inversion (Note1) Grade 3 Applications Car Audio, Home Electrical Appliance, Meter Equipment etc. -
Iow Imtx Dpa Ndv Eab Eon Rbs Mzv Bdf Mzv Imdw
(MDWAY6.MDW) 08157 CHICAGO MIDWAY INTL (MDW) MIDWAY SIX DEPARTURE SL-81 (FAA) CHICAGO, ILLINOIS ATIS TAKEOFF MINIMUMS: BADGER 132.75 PETTY 116.4 BAE B Rwys 4L/R, 13C/L, A N42 49.64' CLNC DEL E Chan 111 W87 38.04' 121.85 22L/R, 31C/R, STANDARD. L-28 GND CON Rwys 13R, 31L, NA, ATC. N43^ 07.01' - W88^17.06' 121.65 L-28, H-5 GIPPER MIDWAY TOWER SIMMN DUPAGE 115.4 GIJ G 118.7 226.3 N41 58.84' JI MIDWAY DEP CON W88 52.71' 108.4 DPA APD Chan 101 118.4 388.0 L-28 Chan 21 N41^ 46.12' - W86^ 19.11' N41^ 53.42' - W88^ 21.01' POLO L-28, H-5-10 L-28 LEWKE 111.2 PLL M VZ N41^ 45.72' Chan 49 W87^ 03.80' R-096 N41^ 57.94' 1500 L-28 W89^ 31.45' 315^ 100 L-28 2400 LOCALIZER 109.9 I-MXT IM TX LOCALIZER 109.9 Chan 36 IOWA CITY I-MDW DMI 116.2 IOW I W WO Chan 36 Chan 109 NOTE: Radar required. 135^ N41^ 31.14' NOTE: Chart not to scale. W91^ 36.80' 224^ EC-3, 03 JUL 2008 to 31 L-28, H-5 1400 1300 4 D M E EARND N41^ 25.52' W87^ 34.33' DENNT MOLINE L-28, H-5 N41^ 25.15' 114.4 MZV ZM V CMSKY W87^ 43.48' Chan 91 BACEN N41^ 19.26' N41^ 24.78' L-28, H-5 ACITO N41^ 24.40' W90^ 38.28' W87^ 52.63' N41^23.92' W88^ 01.78' L-27, H-5 L-28, H-5 W88^11.0' L-28, H-5 PEOTONE L-28, H-5 113.2 EON NEO Chan 79 N41^ 16.18' - W87^ 47.46' NEWTT L-28 N41 03.54' BRADFORD W88 04.60' DANVILLE 114.7 BDF B ROBERTS L-27 111.0 DNV D FD N EC-3, 03 JUL 2008 to 31 Chan 94 V 116.8 RBS R Chan 47 B GUIDO N41^ 09.58' S Chan 115 N40^ 17.42' N40 17.63' W89^ 35.27' N40^ 34.90' - W88^ 09.86' W87^ 51.81' W87 33.43' L-27, H-5 L-27, H-5 H-5 L-27, H-5 T DEPARTURE ROUTE DESCRIPTION TAKE-OFF RWYS 4L/R: Northbound departures assigned headings 360^ (CW) thru 080^, Climbing right turn to 2400 heading 100^ before proceeding on course, thence. -
NEMA Motor Control
Bulletin Eutectic Alloy Overload Relays Heater Elements Selection For Application on Bulletin 100/500/609/1200 Line Starters Eutectic Alloy Overload Relay Heater Elements Heater Element Selection Type J — CLASS 10 Table of Contents 0 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Overload Relay Type WL — CLASS 30 Class Designation...... this page Heater Element Selection ....................... this page 1 Type W Heater Elements Ambient Temperature Correction..................... this page Time — Current Characteristics............ 1-169 2 Index to Heater Element Selection Tables ............................. 1-170 3 Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application 4 overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F). When the temperature difference is greater, see percent of its current rating. below. A Class 10 overload relay will trip in 10 seconds or less at a current 1. The Same Temperature at the Controller and the Motor — equal to 600 percent of its rating. Select the “Heater Type Number” with the listed “Full Load 5 Amperes” nearest the full load value shown on the motor A Class 20 overload relay will trip in 20 seconds or less at a current nameplate. -
Nuclear Weapons: the Reliable Replacement Warhead Program
Order Code RL32929 CRS Report for Congress Received through the CRS Web Nuclear Weapons: The Reliable Replacement Warhead Program May 24, 2005 Jonathan Medalia Specialist in National Defense Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress Nuclear Weapons: The Reliable Replacement Warhead Program Summary Most current U.S. nuclear warheads were built in the 1980s, and are being retained longer than was planned. Yet warheads deteriorate with age, and must be maintained. The current approach monitors them for signs of aging. When problems are found, a Life Extension Program (LEP) rebuilds components. While some can be made to new specifications, a nuclear test moratorium bars that approach for critical components that would require a nuclear test. Instead, LEP rebuilds them as closely as possible to original specifications. Using this approach, the Secretaries of Defense and Energy have certified stockpile safety and reliability for the past nine years without nuclear testing. In the FY2005 Consolidated Appropriations Act, Congress initiated the Reliable Replacement Warhead (RRW) program by providing $9 million for it. The program will study developing replacement components for existing weapons, trading off features important in the Cold War, such as high yield and low weight, to gain features more valuable now, such as lower cost, elimination of some hazardous materials, greater ease of manufacture, greater ease of certification without nuclear testing, and increased long-term confidence in the stockpile. It would modify components to make these improvements; in contrast, LEP makes changes mainly to maintain existing weapons. Representative David Hobson, RRW’s prime sponsor, views it as part of a comprehensive plan for the U.S. -
AMICUS CURIAE BRIEF of TRI-VALLEY Cares -0 Case No
Case4:14-cv-01885-JSW Document26 Filed08/20/14 Page1 of 5 1 SCOTT YUNDT (CSB #242595) TRI-VALLEY CARES 2 2582 Old First Street 3 Livermore, California 94550 Telephone: (925) 443-7148 4 Facsimile: (925) 443-0177 Email: [email protected] 5 6 Attorney for Amicus Curiae TRI-VALLEY COMMUNITIES 7 AGAINST A RADIOACTIVE ENVIRONMENT (CAREs) 8 9 IN THE UNITED STATES DISTRICT COURT 10 FOR THE NORTHERN DISTRICT OF CALIFORNIA 11 SAN FRANCISCO DIVISION 12 13 ) Case No. 4:14-cv-01885-JSW THE REPUBLIC OF THE MARSHALL ) 14 ) ISLANDS, a non-nuclear-weapon State party ) MOTION FOR LEAVE TO FILE BRIEF 15 to the Treaty on the Non Proliferation of ) AMICUS CURIAE OF TRI-VALLEY Nuclear Weapons, ) CAREs IN SUPPORT OF VENUE IN THE 16 ) NORTHERN DISTRICT COURT OF Plaintiffs, ) CALIFORNIA 17 ) v. ) 18 ) Hearing Date: September 12, 2014 ) Time: 9:00 A.M. 19 THE UNITED STATES OF AMERICA, ) Courtroom: Oakland Courthouse, PRESIDENT BARACK OBAMA, THE ) 20 PRESIDENT OF THE UNITED STATES ) Courtroom 5 – 2nd Floor, OF AMERICA; THE DEPARTMENT OF ) 1301 Clay Street 21 DEFENSE; SECRETARY CHARLES ) Oakland, CA 94612 ) 22 HAGEL, THE SECRETARY OF ) DEFENSE; THE DEPARTMENT OF ) 23 ENERGY; SECRETARY ERNEST MONIZ, ) THE SECRETARY OF ENERGY; AND 24 THE NATIONAL NUCLEAR SECURITY 25 ADMINISTRATION, 26 Defendants. 27 28 MOTION FOR LEAVE TO FILE BRIEF AMICUS CURIAE OF TRI-VALLEY CAREs -0 Case No. 4:14-CV-01885-JSW Case4:14-cv-01885-JSW Document26 Filed08/20/14 Page2 of 5 1 TO ALL PARTIES AND THEIR ATTORNEYS OF RECORD: 2 PLEASE TAKE NOTICE THAT Tri-Valley Communities Against a Radioactive 3 Environment (CAREs) hereby moves this Court for leave to file a brief as amicus curiae in the 4 above-captioned case in support the Plaintiff’s choice of venue in the Northern District Court of 5 California and to oppose dismissal based on that choice of venue. -
Keyword Index
Neuropsychopharmacology (2014) 39, S692–S709 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org Keyword Index 10q24.32 . ............... ................T156 Adolescent Depression . .M198 22q11....................................T37 adolescent development . M100, W223, M133 4-Chlorokynurenine . ....................... W226 adolescent stress . .........................M21 5-HT2A receptor . ....................... W196 ADRA1A . ........................T262 5-HT2C . ................................M130 adrenergic receptor . ....................... W205 5-HT3 receptors........................... W246 adult....................................W82 5-HT7 . ................................ M93 Adversity. ........................M199 5C-CPT . ................................W62 aerobic . ........................M163 5HT5A receptor antagonist....................W191 affective disorders . ........................W80 [11C]carfentanil............................M143 affective neuroscience . M167 affective priming . ........................M112 A African American . ........................T197 aggression . ........... M78, M211, T154, W74 aging..........W31, M181, M223, T54, W30, W31, W227, ABCB gene . ............................ W75 M141, M156, M232, W5, W104 ABCB1 . ................................T254 Agomelatine . ........................W210 Abuse Liability ........................... W160 Agonist . ....................... M266 Abuse Potential ............................W165 agoraphobia