Interventions to Increase Apolipoprotein A-I Transcription in Hepg2 Cells

Total Page:16

File Type:pdf, Size:1020Kb

Interventions to Increase Apolipoprotein A-I Transcription in Hepg2 Cells Interventions to increase apolipoprotein A-I transcription in HepG2 cells Citation for published version (APA): van der Krieken, S. E. (2017). Interventions to increase apolipoprotein A-I transcription in HepG2 cells. Uitgeverij BOXPress. https://doi.org/10.26481/dis.20170330svdk Document status and date: Published: 01/01/2017 DOI: 10.26481/dis.20170330svdk Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.umlib.nl/taverne-license Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 27 Sep. 2021 1 2 3 4 5 Interventions to increase apolipoprotein A-I 6 transcription in HepG2 cells 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 This research was supported by the Dutch Technology Foundation STW, which is 48 part of the Netherlands Organisation for Scientific Research (NWO), and which is 49 partly funded by the Ministry of Economic Affairs (project number 11349). The 50 research was performed within NUTRIM School of Nutrition and Translational 51 Research in Metabolism, which participates in the Graduate School VLAG (Food 52 Technology, Agrobiotechnology, Nutrition and Health Sciences), accredited by the 53 Royal Netherlands Academy of Arts and Sciences. 54 55 56 Cover design: ProefschriftMaken 57 Layout: Sophie. E. van der Krieken 58 Printed by: Proefschriftmaken II Uitgeverij BOXPress 59 60 61 © Copyright Sophie E. van der Krieken, Maastricht 2017 62 63 ISBN 978 94 6295 568 4 64 65 66 67 68 69 70 Interventions to increase apolipoprotein A-I 71 transcription in HepG2 cells 72 73 74 75 76 77 78 79 PROEFSCHRIFT 80 81 ter verkrijging van de graad van doctor 82 aan de Universiteit Maastricht 83 op gezag van de Rector Magnificus, 84 Prof. dr. Rianne M. Letschert 85 volgens het besluit van het College van Decanen, 86 in het openbaar te verdedigen 87 op donderdag 30 maart 2017 om 16:00 uur 88 89 90 91 92 93 94 door 95 96 97 98 99 100 101 Sophie Elise van der Krieken 102 103 geboren te Eindhoven op 8 april 1989 104 105 106 107 108 Promotores 109 110 Prof. dr. J. Plat 111 Prof. dr. ir. R. P. Mensink 112 113 Co-promotor 114 115 Dr. H.E. Popeijus 116 117 118 Beoordelingscommissie 119 120 Prof. dr. E.C.M. Mariman (voorzitter) 121 Prof. dr. A.K. Groen (Academisch Medisch Centrum, Amsterdam) 122 Prof. dr. S.A.H. Kersten (Wageningen UR, Wageningen) 123 Dr. S. Rensen 124 Prof. dr. R. Shiri-Sverdlov 125 126 Table of Contents 127 128 129 Chapter 1 General introduction 7 130 131 132 Chapter 2 CCAAT/enhancer binding protein 훽 in relation to ER-stress, 133 inflammation, and metabolic disturbances 23 134 135 136 Chapter 3 C/EBP-β is differentially affected by PPARα agonists 137 Fenofibric acid and GW7647, but does not change 45 138 apolipoprotein A-I production during ER-stress and 139 inflammation 140 141 Chapter 4 Identification of natural PPARα transactivating compounds 142 and their effects on apolipoprotein A-I transcription 85 143 in HepG2 cells 144 145 Chapter 5 Link between ER-stress, PPARα activation and 146 BET inhibition in relation to apolipoprotein A-I transcription 105 147 in HepG2 cells 148 149 Chapter 6 Fatty acid chain length and saturation influences 150 PPARα transcriptional activation and repression 123 151 in HepG2 cells 152 153 Chapter 7 Structure similarity search for natural compounds 154 that increase apolipoprotein A-I transcription in HepG2 cells: 155 a focus on BRD4 inhibition 139 156 157 158 Chapter 8 General discussion 177 159 160 Summary 197 161 Samenvatting 201 162 Valorisation 205 163 164 Dankwoord 209 165 Curriculum vitae 213 166 List of publications 215 167 168 169 170 171 CHAPTER 1 172 173 174 General introduction 175 176 CHAPTER 1 General introduction Despite remarkable improvements in prevention and treatment, cardiovascular diseases (CVDs) are still the leading cause of mortality worldwide [1]. Besides genetic factors, particularly behavioral risk factors such as an unhealthy diet, physical inactivity, cigarette smoking, obesity and excessive use of alcohol, contribute to CVD development [2]. CVDs can be classified as coronary heart diseases (CHDs), cerebrovascular diseases and peripheral arterial diseases and are all strongly related to dyslipidemia. Dyslipidemia is characterized by aberrant plasma lipid and lipoprotein concentrations and the unfavorable distribution of lipids over the different lipoprotein classes, and is defined by a Low Density Lipoprotein cholesterol (LDL-C) concentration above 2.6 mmol/l (or 100 mg/dl) and/or a High Density Lipoprotein cholesterol (HDL-C) concentration under 1 mmol/l (or 40 mg/dl), and circulating triacylglycerol (TGs) of more than 1.7 mmol/l (150 mg/dl). This disturbed lipid and lipoprotein profile, often seen in the metabolic syndrome, is highly associated with the development of atherosclerotic lesions in the artery walls (figure 1). Figure 1. The development of atherosclerotic lesions, a process that is driven by inflammation. This figure was adapted from Fulmer et al. [3]. The development of atherosclerosis is a process that is already initiated during infancy. The onset of atherosclerosis may involve a response to injury of the endothelial wall [4] and the retention of small dense LDL particles from the circulation into the vessel wall [5] and is an inflammatory induced process. When LDL becomes trapped in the sub- endothelial space, it may undergo oxidative modification, forming oxy-LDL. The presence of oxy-LDL triggers the production of adhesion molecules (A) and recruitment of monocytes (B) into the artery wall, where they differentiate into macrophages (C). Oxidized LDL is then engulfed by the macrophages in such high amounts that they form lipid laden foam cells (D). Eventually, the accumulation of foam cells, smooth muscle cells and cell debris, covered by a fibrous cap, will give rise to a mature atherosclerotic plaque (E) [6]. At this stage the plaque is prone to rupture, thereby causing myocardial infarction or stroke. 8 GENERAL INTRODUCTION The most successful example of a therapy to improve dyslipidemia is the use of statins that lower the atherogenic LDL-C concentrations. Statin treatment inhibits the enzyme HMG-CoA reductase, thereby lowering the production of cholesterol in virtually every single cell in the body. Particularly the inhibition of endogenous cholesterol synthesis in the liver contributes to a reduction in circulating LDL-C concentrations. In response to this lower endogenous cholesterol production, the hepatocytes increase their expression of the LDL-receptor, and as such enhance plasma cholesterol uptake. Currently, also the effects of PCSK9 inhibitors are tested in human studies [7]. PCSK9 inhibition decreased plasma LDL-C concentrations even further as it prevents degradation of the LDL-receptor, which further increases the uptake of LDL particles in the liver. Although the use of statins has clearly led to a reduction in CVD events [8], CVDs still occurred in a large portion of patients who already received statin treatment. Thus, in order to further reduce the CVD-related economic and societal burden, it is of major importance to discover additional interventions to further decrease this risk for CVD development. A promising strategy to decrease the detrimental effects of dyslipidemia related to atherosclerosis development is increasing the cholesterol efflux capacity, via increased transcription of apolipoprotein A-I (apoA-I), leading to the production of more functional HDL particles. HDL metabolism After transcription in the human hepatocytes or the small intestinal cells, apoA-I is produced as a pre-pro-protein, which is cleaved in the endoplasmic reticulum by the action of a signal peptidase [9]. This cleavage results in the formation of intracellular pro-apoA-I, which is secreted by the cell into the extracellular space. Subsequently, the pro-segment is removed by the action of Bone Morphogenetic Protein-1 (BMP-1) and Procollagen C-proteinase Enhancer-2 Protein (PCPE2) [10,11]. At this stage, the C-terminal domain of the lipid free or lipid poor apoA-I particle can interact with the adenosine triphosphate-binding cassette A1 (ABCA1) transporter on the surface of macrophages, endothelial cells, hepatocytes and small intestinal cells, facilitating cholesterol, sphingomyelin and phospholipid uptake [12,13].
Recommended publications
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • An Investigation Into the Carbonic Anhydrase Isozymes from Zea
    This file is part of the following reference: Tems, Ursula (2009) Characterization of the carbonic anhydrase isozymes of zea mays. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/8807 Characterization of the Carbonic Anhydrase Isozymes of Zea mays Thesis submitted by Ursula TEMS B.Sc. Hons (JCU) February 2009 for the degree of Doctor of Philosophy in the School of Pharmacy and Molecular Sciences James Cook University Statement of Sources I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given. Signature Date i Statement of Access I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work. Signature Date Declaration I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of the technology available. Signature Date ii Acknowledgements I would like to express my sincere gratitude to my supervisor Jim Burnell for his enthusiasm, encouragement and guidance.
    [Show full text]
  • Dynamic Transcriptomic Profiles of Zebrafish Gills in Response to Zinc
    Zheng et al. BMC Genomics 2010, 11:548 http://www.biomedcentral.com/1471-2164/11/548 RESEARCH ARTICLE Open Access Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion Dongling Zheng1,4, Peter Kille2, Graham P Feeney2, Phil Cunningham1, Richard D Handy3, Christer Hogstrand1* Abstract Background: Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results: Zebrafish were treated with either zinc-depleted (water = 2.61 μgL-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μgL-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that ‘Developmental Process’ was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes.
    [Show full text]
  • Predicting Clinical Response to Treatment with a Soluble Tnf-Antagonist Or Tnf, Or a Tnf Receptor Agonist
    (19) TZZ _ __T (11) EP 2 192 197 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.06.2010 Bulletin 2010/22 C12Q 1/68 (2006.01) (21) Application number: 08170119.5 (22) Date of filing: 27.11.2008 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Habets, Winand Designated Extension States: Life Science Patents AL BA MK RS PO Box 5096 6130 PB Sittard (NL) (71) Applicant: Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg 1081 HV Amsterdam (NL) (54) Predicting clinical response to treatment with a soluble tnf-antagonist or tnf, or a tnf receptor agonist (57) The invention relates to methods for predicting a clinical response to a therapy with a soluble TNF antagonist, TNF or a TNF receptor agonist and a kit for use in said methods. EP 2 192 197 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 192 197 A1 Description [0001] The invention relates to methods for predicting a clinical response to a treatment with a soluble TNF antagonist, with TNF or a TNF receptor agonist using expression levels of genes of the Type I INF pathway and a kit for use in said 5 methods. In another aspect, the invention relates to a method for evaluating a pharmacological effect of a treatment with a soluble TNF antagonist, TNF or a TNF receptor agonist.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Highly Frequent Allelic Loss of Chromosome 6Q16-23 in Osteosarcoma: Involvement of Cyclin C in Osteosarcoma
    1153-1158 5/11/06 16:31 Page 1153 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 18: 1153-1158, 2006 Highly frequent allelic loss of chromosome 6q16-23 in osteosarcoma: Involvement of cyclin C in osteosarcoma NORIHIDE OHATA1, SACHIO ITO2, AKI YOSHIDA1, TOSHIYUKI KUNISADA1, KUNIHIKO NUMOTO1, YOSHIMI JITSUMORI2, HIROTAKA KANZAKI2, TOSHIFUMI OZAKI1, KENJI SHIMIZU2 and MAMORU OUCHIDA2 1Science of Functional Recovery and Reconstruction, 2Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Okayama 700-8558, Japan Received June 13, 2006; Accepted August 14, 2006 Abstract. The molecular pathogenesis of osteosarcoma is very rearrangements (1,2). It has been reported that both RB1 and complicated and associated with chaotic abnormalities on many TP53 pathways are inactivated, and the regulation of cell cycle chromosomal arms. We analyzed 12 cases of osteosarcomas is impaired in most osteosarcomas (1). For example, deletion/ with comparative genomic hybridization (CGH) to identify mutation of the CDKN2A gene encoding both p16INK4A and chromosomal imbalances, and detected highly frequent p14ARF on 9p21 (3-5), amplification of the CDK4 (6), CCND1, chromosomal alterations in chromosome 6q, 8p, 10p and MDM2 genes (4), and other aberrations related to inactivation 10q. To define the narrow rearranged region on chromosome 6 of these pathways have been found. Tumor suppressor genes with higher resolution, loss of heterozygosity (LOH) analysis (TSGs) are suspected to be involved in tumorigenesis of was performed with 21 microsatellite markers. Out of 31 cases, osteosarcoma. Loss of heterozygosity (LOH) studies have 23 cases (74%) showed allelic loss at least with one marker on detected frequent allelic loss at 3q, 13q, 17p and 18q (7).
    [Show full text]
  • Table of Contents Table of Contents
    Table of contents Table of contents................................................................................................................. 1 Summary ............................................................................................................................. 3 Abbreviations ...................................................................................................................... 4 Gene Symbols I - Incidentals .............................................................................................. 5 Gene symbols II - Target Gene Names ............................................................................... 6 1. Introduction........................................................................................................... 12 1.1. The Pathos of the Crab ..................................................................................... 12 1.2. Cancer in the Molecular Age - a genetic and epigenetic disease..................... 13 1.3. Tumoral evolution............................................................................................. 14 1.4. DNA repair systems .......................................................................................... 17 1.4.1. DNA Mismatch Repair.............................................................................. 18 1.4.2. Double-strand Break Repair..................................................................... 19 1.4.3. Direct Repair...........................................................................................
    [Show full text]
  • Supplementary Tables S1-S3
    Supplementary Table S1: Real time RT-PCR primers COX-2 Forward 5’- CCACTTCAAGGGAGTCTGGA -3’ Reverse 5’- AAGGGCCCTGGTGTAGTAGG -3’ Wnt5a Forward 5’- TGAATAACCCTGTTCAGATGTCA -3’ Reverse 5’- TGTACTGCATGTGGTCCTGA -3’ Spp1 Forward 5'- GACCCATCTCAGAAGCAGAA -3' Reverse 5'- TTCGTCAGATTCATCCGAGT -3' CUGBP2 Forward 5’- ATGCAACAGCTCAACACTGC -3’ Reverse 5’- CAGCGTTGCCAGATTCTGTA -3’ Supplementary Table S2: Genes synergistically regulated by oncogenic Ras and TGF-β AU-rich probe_id Gene Name Gene Symbol element Fold change RasV12 + TGF-β RasV12 TGF-β 1368519_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 42.22 5.53 75.28 1373000_at sushi-repeat-containing protein, X-linked 2 (predicted) Srpx2 19.24 25.59 73.63 1383486_at Transcribed locus --- ARE 5.93 27.94 52.85 1367581_a_at secreted phosphoprotein 1 Spp1 2.46 19.28 49.76 1368359_a_at VGF nerve growth factor inducible Vgf 3.11 4.61 48.10 1392618_at Transcribed locus --- ARE 3.48 24.30 45.76 1398302_at prolactin-like protein F Prlpf ARE 1.39 3.29 45.23 1392264_s_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 24.92 3.67 40.09 1391022_at laminin, beta 3 Lamb3 2.13 3.31 38.15 1384605_at Transcribed locus --- 2.94 14.57 37.91 1367973_at chemokine (C-C motif) ligand 2 Ccl2 ARE 5.47 17.28 37.90 1369249_at progressive ankylosis homolog (mouse) Ank ARE 3.12 8.33 33.58 1398479_at ryanodine receptor 3 Ryr3 ARE 1.42 9.28 29.65 1371194_at tumor necrosis factor alpha induced protein 6 Tnfaip6 ARE 2.95 7.90 29.24 1386344_at Progressive ankylosis homolog (mouse)
    [Show full text]
  • Carbonic Anhydrase VI Functional Characterization in PRXVHDQG]HEUD¿VKPRGHORUJDQLVPV
    MAARIT PATRIKAINEN Carbonic Anhydrase VI Functional characterization in PRXVHDQG]HEUD¿VKPRGHORUJDQLVPV Tampere University Dissertations 134 7DPSHUH8QLYHUVLW\'LVVHUWDWLRQV 0$$5,73$75,.$,1(1 &DUERQLF$QK\GUDVH9, Functional characterization in mouse and zebrafish model organisms $&$'(0,&',66(57$7,21 7REHSUHVHQWHGZLWKWKHSHUPLVVLRQRI WKH)DFXOW\&RXQFLORIWKH)DFXOW\RI0HGLFLQHDQG+HDOWK7HFKQRORJ\ RIWKH7DPSHUH8QLYHUVLW\ IRUSXEOLFGLVFXVVLRQLQWKHDXGLWRULXP) RIWKH$UYREXLOGLQJ$UYR<OS|QNDWX7DPSHUH RQWK2FWREHUDWR¶FORFN $&$'(0,&',66(57$7,21 7DPSHUH8QLYHUVLW\)DFXOW\RI+HDOWK7HFKQRORJ\ )LQODQG Responsible 3URIHVVRU6HSSR3DUNNLOD supervisor 7DPSHUH8QLYHUVLW\ or/and Custos )LQODQG Pre-examiner(s) $VVLVWDQW3URIHVVRU $VVRFLDWH3URIHVVRU 0LNNR0HWVl.HWHOl 0RKDPPHG$O+DURQL 8QLYHUVLW\RI7XUNX 8L7WKH$UFWLF8QLYHUVLW\RI1RUZD\ )LQODQG 1RUZD\ Opponent(s) 3URIHVVRU-XKD7XXNNDQHQ 8QLYHUVLW\RI2XOX )LQODQG 7KHRULJLQDOLW\RIWKLVWKHVLVKDVEHHQFKHFNHGXVLQJWKH7XUQLWLQ2ULJLQDOLW\&KHFN VHUYLFH &RS\ULJKWDXWKRU &RYHUGHVLJQ5RLKX,QF ,6%1 SULQW ,6%1 SGI ,661 SULQW ,661 SGI KWWSXUQIL 851,6%1 3XQD0XVWD2\±<OLRSLVWRSDLQR 7DPSHUH TO MY FAMILY “Everybody is genius. But if you judge a fish by its ability to climb a tree, It will live its whole life believing that it is stupid.” -Albert Einstein iii iv ACKNOWLEDGEMENTS This PhD thesis was carried out at the Faculty of Medicine and Health Technology, Tampere University (Tampere, Finland) during 2013-2019 under the supervision of Professor Seppo Parkkila. I wish to express my gratitude to my supervisor Professor Seppo Parkkila (MD, PhD) for providing me the opportunity to do scientific research in the field of anatomy and tissue biology and for giving me a place in your CA group. I would like to thank my external reviewers of my thesis, Associate Professor Mikko Metsä-Ketelä (PhD) and Associate Professor Mohammed Al-Haroni (DDS, PhD), for their valuable comments and kind words. I would also thank Professor Juha Tuukkanen (DDS, PhD) for giving me the honor to be my opponent.
    [Show full text]
  • Regulation and Roles of Carbonic Anhydrases IX and XII
    HEINI KALLIO Regulation and Roles of Carbonic Anhydrases IX and XII ACADEMIC DISSERTATION To be presented, with the permission of the board of the Institute of Biomedical Technology of the University of Tampere, for public discussion in the Auditorium of Finn-Medi 5, Biokatu 12, Tampere, on December 2nd, 2011, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere, Institute of Biomedical Technology Tampere University Hospital Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB) Finland Supervised by Reviewed by Professor Seppo Parkkila Docent Peppi Karppinen University of Tampere University of Oulu Finland Finland Professor Robert McKenna University of Florida USA Distribution Tel. +358 40 190 9800 Bookshop TAJU Fax +358 3 3551 7685 P.O. Box 617 [email protected] 33014 University of Tampere www.uta.fi/taju Finland http://granum.uta.fi Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1675 Acta Electronica Universitatis Tamperensis 1139 ISBN 978-951-44-8621-0 (print) ISBN 978-951-44-8622-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2011 There is a crack in everything, that’s how the light gets in. -Leonard Cohen 3 CONTENTS CONTENTS .......................................................................................................... 4 LIST OF ORIGINAL COMMUNICATIONS...................................................... 7 ABBREVIATIONS .............................................................................................
    [Show full text]
  • Functional and Immunohistological Studies on Cancer-Associated Carbonic Anhydrase Ix
    D868etukansi.kesken.fm Page 1 Monday, January 16, 2006 1:35 PM D 868 OULU 2006 D 868 UNIVERSITY OF OULU P.O. Box 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA D SERIES EDITORS Mari Leppilampi MEDICA MariLeppilampi ASCIENTIAE RERUM NATURALIUM Professor Mikko Siponen FUNCTIONAL AND BHUMANIORA IMMUNOHISTOLOGICAL Professor Harri Mantila STUDIES ON CANCER- CTECHNICA Professor Juha Kostamovaara ASSOCIATED CARBONIC DMEDICA Professor Olli Vuolteenaho ANHYDRASE IX ESCIENTIAE RERUM SOCIALIUM Senior assistant Timo Latomaa FSCRIPTA ACADEMICA Communications Officer Elna Stjerna GOECONOMICA Senior Lecturer Seppo Eriksson EDITOR IN CHIEF Professor Olli Vuolteenaho EDITORIAL SECRETARY Publication Editor Kirsti Nurkkala FACULTY OF MEDICINE, DEPARTMENT OF CLINICAL CHEMISTRY, DEPARTMENT OF PATHOLOGY, ISBN 951-42-7993-X (nid.) UNIVERSITY OF OULU ISBN 951-42-7994-8 (PDF) ISSN 0355-3221 ACTA UNIVERSITATIS OULUENSIS D Medica 868 MARI LEPPILAMPI FUNCTIONAL AND IMMUNOHISTOLOGICAL STUDIES ON CANCER-ASSOCIATED CARBONIC ANHYDRASE IX Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium 7 of Oulu University Hospital, on February 17th, 2006, at 12 noon OULUN YLIOPISTO, OULU 2006 Copyright © 2006 Acta Univ. Oul. D 868, 2006 Supervised by Professor Seppo Parkkila Docent Tuomo Karttunen Reviewed by Docent Teuvo Hentunen Professor Claudiu Supuran ISBN 951-42-7993-X (nid.) ISBN 951-42-7994-8 (PDF) http://herkules.oulu.fi/isbn9514279948/ ISSN 0355-3221 http://herkules.oulu.fi/issn03553221/ OULU UNIVERSITY PRESS OULU 2006 Leppilampi, Mari, Functional and immunohistological studies on cancer-associated carbonic anhydrase IX Faculty of Medicine, Department of Clinical Chemistry, Department of Pathology, University of Oulu, P.O.Box 5000, FI-90014 University of Oulu, Finland Acta Univ.
    [Show full text]
  • Thom Ulullallittur
    THOMULULLALLITTUR US009737480B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,737 ,480 B2 Lu et al. (45 ) Date of Patent: Aug. 22 , 2017 ( 54 ) ARRDC1-MEDIATED MICROVESICLES 2014 /0273226 AL 9 /2014 Wu 2014 /0364588 A1 12 / 2014 Haugwitz et al. ?? (ARMMS ) AND USES THEREOF 2016 / 0206566 AL 7 / 2016 Lu et al. ( 71 ) Applicants : President and Fellows of Harvard College , Cambridge, MA (US ) ; The FOREIGN PATENT DOCUMENTS Board of Trustees of the Leland WO WO 2011 / 127219 10 /2011 Stanford Junior University , Palo Alto , WO WO 2013 / 119602 8 / 2013 CA (US ) WO WO 2014 /093655 6 / 2014 (72 ) Inventors : Quan Lu , Newton , MA (US ) ; Joseph OTHER PUBLICATIONS F . Nabhan , Cambridge , MA (US ) ; Stanley N . Cohen , Stanford , CA (US ) Properzi et al . , Biomarkers Med . 2013 , 7 ( 5 ) 769 - 778 . * Kosaka et al. J . Biol. Chem 2010 , 285 : 17442 - 17452 . * International Search Report and Written Opinion for PCT/ US2013 / ( 73 ) Assignees : President and Fellows of Harvard 024839 , mailed May 28 , 2013 . College, Cambridge , MA (US ) ; The International Preliminary Report on Patentability for PCT /US2013 / Board of Trustees of the Leland 024839 , mailed Aug . 21 , 2014 . Standford Junior University , Stanford , Genbank Submission ; NIH /NCBI , Accession No. NP _ 689498 . CA (US ) Puca et al ., Mar. 22 , 2014 . Genbank Submission ; NIH /NCBI , Accession No. NP _ 001155957 . ( * ) Notice : Subject to any disclaimer , the term of this Skarnes et al. , Feb . 26 , 2014 . patent is extended or adjusted under 35 Genbank Submission ; NIH /NCBI , Accession No . NP _ 848495 . ? U . S . C . 154 ( b ) by 0 days . Skarnes et al ., Feb . 26 , 2014 .
    [Show full text]