Highly Frequent Allelic Loss of Chromosome 6Q16-23 in Osteosarcoma: Involvement of Cyclin C in Osteosarcoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 2. Significant
Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S. -
Identification of FBXL4 As a Metastasis Associated Gene in Prostate Cancer
Identification of FBXL4 as a Metastasis Associated Gene in Prostate Cancer Elzbieta Stankiewicz1 , Xueying Mao1, D Chas Mangham2 , Lei Xu1, Marc Yeste- Velasco1, Gabrielle Fisher3, Bernard North3, Tracy Chaplin1, Bryan Young4, Yuqin Wang1, Jasmin Kaur Bansal1, Sakunthala Kudahetti1, Lucy Spencer1, Christopher S Foster5, Henrik Moller6, Peter Scardino7, R Tim Oliver1, Jonathan Shamash1, Jack Cuzick3, Colin S Cooper8, Daniel M Berney1,+, Yong-Jie Lu1,+,* 1 Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK 2 The Robert Jones and Agnes Hunt Orthopaedic Hospital, Department of Pathology, Oswestry, Shropshire SY10 7AG, UK 3 Cancer Research UK Centre for Epidemiology, Mathematics and Statistics, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London EC1 6BQ, UK 4 Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK 5 Division of Cellular and Molecular Pathology, University of Liverpool, Liverpool L69 3BX, UK 6 King's College London, Cancer Epidemiology and Population Health, London SE1 9RT, UK 7 Department of Urology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA 1 8 School of Medicine, University of East Anglia, Norwich, NR4 7TJ, UK +These authors contributed equally as senior role *Corresponding author: Yong-Jie Lu, Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, Telephone number: 442078823563, Fax: 442078823884, e-mail address: [email protected] 2 Abstract Prostate cancer is the most common cancer among western men, with a significant mortality and morbidity reported for advanced metastatic disease. Current understanding of metastatic disease is limited due to difficulty of sampling as prostate cancer mainly metastasizes to bone. -
Anti-Cdk8 Antibody Produced in Rabbit (C0238)
ANTI-CDK8 Developed in Rabbit, Affinity Isolated Antibody Product Number C 0238 Product Description Reagent Anti-Cyclin-Dependent Kinase 8 (CDK8) is developed in Anti-CDK8, at approximately 1 mg/ml, is supplied as a rabbit using a synthetic peptide corresponding to the solution in phosphate buffered saline, pH 7.4 containing C-terminal region (aa 451-464) of human CDK8. The 0.2% BSA and 15 mM sodium azide. antibody is purified by protein A affinity chromatography. Anti-CDK8 specifically recognizes a 54 kDa protein Precautions and Disclaimer identified as cyclin-dependent kinase 8 (CDK8). Anti- Due to the sodium azide content, a material safety data CDK8 does not crossreact with the other members of sheet (MSDS) for this product has been sent to the CDK family. It detects human, mouse and rat CDK8. It attention of the safety officer of your institution. Consult is used in immunoblotting, immunoprecipitation and the MSDS for information regarding hazardous and safe immunofluorescence applications. handling practices. Cyclin-dependent kinase 8 (CDK8) is a 464-amino acid Storage/Stability protein containing the sequence motifs and 11 Store at –20 °C. For extended storage, upon initial subdomains characteristic of a serine/threonine-specific thawing, freeze the solution in working aliquots. kinase.1 CDKs become activated through binding to Avoid repeated freezing and thawing to prevent cyclins, formation of cyclin-CDK complexes and denaturing the antibody. Storage in “frost-free” reversible phosphorylation reactions. Cyclin-CDK freezers is also not recommended. If slight complexes directly control progression through G1, S, turbidity occurs upon prolonged storage, clarify the G2 and M phases of the cell division cycle. -
Dynamic Transcriptomic Profiles of Zebrafish Gills in Response to Zinc
Zheng et al. BMC Genomics 2010, 11:548 http://www.biomedcentral.com/1471-2164/11/548 RESEARCH ARTICLE Open Access Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion Dongling Zheng1,4, Peter Kille2, Graham P Feeney2, Phil Cunningham1, Richard D Handy3, Christer Hogstrand1* Abstract Background: Zinc deficiency is detrimental to organisms, highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within the zebrafish gill. This tissue represents a model system for studying ion absorption across polarised epithelial cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Results: Zebrafish were treated with either zinc-depleted (water = 2.61 μgL-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μgL-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Of the genes represented the expression of a total of 333 transcripts showed differential regulation by zinc depletion (having a fold-change greater than 1.8 and an adjusted P-value less than 0.1, controlling for a 10% False Discovery Rate). Down-regulation was dominant at most time points and distinct sets of genes were regulated at different stages. Annotation enrichment analysis revealed that ‘Developmental Process’ was the most significantly overrepresented Biological Process GO term (P = 0.0006), involving 26% of all regulated genes. -
Predicting Clinical Response to Treatment with a Soluble Tnf-Antagonist Or Tnf, Or a Tnf Receptor Agonist
(19) TZZ _ __T (11) EP 2 192 197 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.06.2010 Bulletin 2010/22 C12Q 1/68 (2006.01) (21) Application number: 08170119.5 (22) Date of filing: 27.11.2008 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Habets, Winand Designated Extension States: Life Science Patents AL BA MK RS PO Box 5096 6130 PB Sittard (NL) (71) Applicant: Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg 1081 HV Amsterdam (NL) (54) Predicting clinical response to treatment with a soluble tnf-antagonist or tnf, or a tnf receptor agonist (57) The invention relates to methods for predicting a clinical response to a therapy with a soluble TNF antagonist, TNF or a TNF receptor agonist and a kit for use in said methods. EP 2 192 197 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 192 197 A1 Description [0001] The invention relates to methods for predicting a clinical response to a treatment with a soluble TNF antagonist, with TNF or a TNF receptor agonist using expression levels of genes of the Type I INF pathway and a kit for use in said 5 methods. In another aspect, the invention relates to a method for evaluating a pharmacological effect of a treatment with a soluble TNF antagonist, TNF or a TNF receptor agonist. -
Exploring the Relationship Between Gut Microbiota and Major Depressive Disorders
E3S Web of Conferences 271, 03055 (2021) https://doi.org/10.1051/e3sconf/202127103055 ICEPE 2021 Exploring the Relationship between Gut Microbiota and Major Depressive Disorders Catherine Tian1 1Shanghai American School, Shanghai, China Abstract. Major Depressive Disorder (MDD) is a psychiatric disorder accompanied with a high rate of suicide, morbidity and mortality. With the symptom of an increasing or decreasing appetite, there is a possibility that MDD may have certain connections with gut microbiota, the colonies of microbes which reside in the human digestive system. In recent years, more and more studies started to demonstrate the links between MDD and gut microbiota from animal disease models and human metabolism studies. However, this relationship is still largely understudied, but it is very innovative since functional dissection of this relationship would furnish a new train of thought for more effective treatment of MDD. In this study, by using multiple genetic analytic tools including Allen Brain Atlas, genetic function analytical tools, and MicrobiomeAnalyst, I explored the genes that shows both expression in the brain and the digestive system to affirm that there is a connection between gut microbiota and the MDD. My approach finally identified 7 MDD genes likely to be associated with gut microbiota, implicating 3 molecular pathways: (1) Wnt Signaling, (2) citric acid cycle in the aerobic respiration, and (3) extracellular exosome signaling. These findings may shed light on new directions to understand the mechanism of MDD, potentially facilitating the development of probiotics for better psychiatric disorder treatment. 1 Introduction 1.1 Major Depressive Disorder Major Depressive Disorder (MDD) is a mood disorder that will affect the mood, behavior and other physical parts. -
Regulatory Functions of the Mediator Kinases CDK8 and CDK19 Charli B
TRANSCRIPTION 2019, VOL. 10, NO. 2, 76–90 https://doi.org/10.1080/21541264.2018.1556915 REVIEW Regulatory functions of the Mediator kinases CDK8 and CDK19 Charli B. Fant and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, CO, USA ABSTRACT ARTICLE HISTORY The Mediator-associated kinases CDK8 and CDK19 function in the context of three additional Received 19 September 2018 proteins: CCNC and MED12, which activate CDK8/CDK19 kinase function, and MED13, which Revised 13 November 2018 enables their association with the Mediator complex. The Mediator kinases affect RNA polymerase Accepted 20 November 2018 II (pol II) transcription indirectly, through phosphorylation of transcription factors and by control- KEYWORDS ling Mediator structure and function. In this review, we discuss cellular roles of the Mediator Mediator kinase; enhancer; kinases and mechanisms that enable their biological functions. We focus on sequence-specific, transcription; RNA DNA-binding transcription factors and other Mediator kinase substrates, and how CDK8 or CDK19 polymerase II; chromatin may enable metabolic and transcriptional reprogramming through enhancers and chromatin looping. We also summarize Mediator kinase inhibitors and their therapeutic potential. Throughout, we note conserved and divergent functions between yeast and mammalian CDK8, and highlight many aspects of kinase module function that remain enigmatic, ranging from potential roles in pol II promoter-proximal pausing to liquid-liquid phase separation. Introduction and MED13L associate in a mutually exclusive fash- ion with MED12 and MED13 [12], and their poten- The CDK8 kinase exists in a 600 kDa complex tial functional distinctions remain unclear. known as the CDK8 module, which consists of four CDK8 is considered both an oncogene [13–15] proteins (CDK8, CCNC, MED12, MED13). -
Global Ubiquitylation Analysis of Mitochondria in Primary Neurons
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438131; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Global ubiquitylation analysis of mitochondria in primary neurons identifies physiological Parkin targets following activation of PINK1 Odetta Antico1#, Alban Ordureau2#, Michael Stevens1, Francois Singh1, Marek φ Gierlinski3, Erica Barini1 , Mollie L. Rickwood1, Alan Prescott4, Rachel Toth1, Ian G. Ganley1, J. Wade Harper2*, and Miratul M. K. Muqit1* 1MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom, DD1 5EH, U.K. 2Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 3Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom, DD1 5EH, U.K. 4Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom, DD1 5EH, U.K #Denotes Equal Contribution φCurrent address: AbbVie Deutschland GmbH & Co, Knollstr, 67061, Ludwigshafen, Germany *Correspondence: [email protected] or [email protected] Keywords Neurons, PINK1, Parkin, ubiquitin, Parkinson’s disease, Mitochondria, Running Title: Ubiquitin analysis of mitochondria in neurons 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.01.438131; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Structure and Mechanism of the RNA Polymerase II Transcription Machinery
Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy. -
Table of Contents Table of Contents
Table of contents Table of contents................................................................................................................. 1 Summary ............................................................................................................................. 3 Abbreviations ...................................................................................................................... 4 Gene Symbols I - Incidentals .............................................................................................. 5 Gene symbols II - Target Gene Names ............................................................................... 6 1. Introduction........................................................................................................... 12 1.1. The Pathos of the Crab ..................................................................................... 12 1.2. Cancer in the Molecular Age - a genetic and epigenetic disease..................... 13 1.3. Tumoral evolution............................................................................................. 14 1.4. DNA repair systems .......................................................................................... 17 1.4.1. DNA Mismatch Repair.............................................................................. 18 1.4.2. Double-strand Break Repair..................................................................... 19 1.4.3. Direct Repair........................................................................................... -
The Pennsylvania State University the Graduate School Department
The Pennsylvania State University The Graduate School Department of Pharmacology ALTERATIONS IN GENE EXPRESSION AS A RESPONSE OF TUMOR CELLS TO STRESSES A Dissertation in Pharmacology by Kathryn Joyce Huber-Keener 2012 Kathryn Joyce Huber-Keener Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 The dissertation of Kathryn Joyce Huber-Keener was reviewed and approved* by the following: Jin-Ming Yang Professor of Pharmacology Dissertation Advisor Chair of Committee Willard M. Freeman Associate Professor of Pharmacology Rongling Wu Professor of Statistics Robert G. Levenson Professor of Pharmacology Andrea Manni Professor of Medicine Jong K. Yun Director of the Pharmacology Graduate Program *Signatures are on file in the Graduate School ii ABSTRACT Solid cancers are the 2nd leading cause of death in adults in the United States. Understanding the mechanisms by which cancer cells survive under stress is pivotal to decreasing this statistic. Cancer cells are constantly under stress, a factor which needs to be taken into consideration during the treatment of solid cancers. Both intrinsic and extrinsic stresses impact the development and progression of neoplasms, down to the level of individual proteins and genes. Stresses like nutrient deficiency, hypoxia, acidity, and the immune response are present during normal tumor growth and throughout treatment. Tumor cells that survive these stresses are more adept at surviving hostile conditions and are more resistant to current therapies. Stress, therefore, shapes the tumor cell population. Gene expression alterations are the driving feature behind the adaptive ability of cancer cells to these stresses, and therefore, careful examination of these gene expression changes must be undertaken in order to develop effective therapies for solid cancers. -
Lessons Learned from Additional Research Analyses of Unsolved Clinical Exome Cases Mohammad K
Eldomery et al. Genome Medicine (2017) 9:26 DOI 10.1186/s13073-017-0412-6 RESEARCH Open Access Lessons learned from additional research analyses of unsolved clinical exome cases Mohammad K. Eldomery1,18†, Zeynep Coban-Akdemir1†, Tamar Harel1†,JillA.Rosenfeld1, Tomasz Gambin1,2, Asbjørg Stray-Pedersen3, Sébastien Küry4,SandraMercier4,5,DavorLessel6,JonasDenecke7, Wojciech Wiszniewski1,8, Samantha Penney1, Pengfei Liu1,9,WeiminBi1,9, Seema R. Lalani1,8, Christian P. Schaaf1,8,10, Michael F. Wangler1,8, Carlos A. Bacino1,8, Richard Alan Lewis1,10, Lorraine Potocki1,8, Brett H. Graham1,8,JohnW.Belmont1,8, Fernando Scaglia1,8,JordanS.Orange11,12, Shalini N. Jhangiani13,TheodoreChiang13, Harsha Doddapaneni13, Jianhong Hu13, Donna M. Muzny13, Fan Xia1,9, Arthur L. Beaudet1,9,EricBoerwinkle13,14, Christine M. Eng1,9, Sharon E. Plon1,8,11,15,V.ReidSutton1,8, Richard A. Gibbs1,13,16, Jennifer E. Posey1, Yaping Yang1,9 and James R. Lupski1,8,11,13,17* Abstract Background: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. Methods: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent–offspring trios.