Structure and Mechanism of the RNA Polymerase II Transcription Machinery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Data
Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2). -
Mediator Head Subcomplex Med11/22 Contains a Common Helix Bundle
Published online 15 April 2011 Nucleic Acids Research, 2011, Vol. 39, No. 14 6291–6304 doi:10.1093/nar/gkr229 Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization Martin Seizl, Laurent Larivie` re, Toni Pfaffeneder, Larissa Wenzeck and Patrick Cramer* Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universita¨ t (LMU) Mu¨ nchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany Received February 24, 2011; Revised and Accepted March 29, 2011 ABSTRACT Mediator undergoes conformational changes, which trig- Mediator is a multiprotein co-activator of RNA poly- ger its interaction with Pol II and promote pre-initiation merase (Pol) II transcription. Mediator contains a complex (PIC) formation (7). Mediator was purified from yeast (8,9), metazoans conserved core that comprises the ‘head’ and (10,11) and plants (12). Comparative genomics identified ‘middle’ modules. We present here a structure– an ancient 17-subunit Mediator core that is conserved function analysis of the essential Med11/22 hetero- in eukaryotes (13,14). Mediator from the yeast dimer, a part of the head module. Med11/22 forms a Saccharomyces cerevisiae (Sc) is a 1.4 MDa multiprotein conserved four-helix bundle domain with C-terminal complex comprising 25 subunits, of which 11 are essential extensions, which bind the central head subunit and 22 are at least partially conserved. Based on electron Med17. A highly conserved patch on the bundle microscopy and biochemical analysis, mediator subunits surface is required for stable transcription pre- were suggested to reside in four flexibly linked modules, initiation complex formation on a Pol II promoter the head, middle, tail and kinase module (15–17). -
NIH Public Access Author Manuscript Pharmacogenomics
NIH Public Access Author Manuscript Pharmacogenomics. Author manuscript; available in PMC 2014 June 12. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Pharmacogenomics. 2014 February ; 15(2): 137–146. doi:10.2217/pgs.13.213. Genome-wide Association and Pharmacological Profiling of 29 Anticancer Agents Using Lymphoblastoid Cell Lines Chad C. Brown1, Tammy M. Havener2, Marisa W. Medina3, John R. Jack1, Ronald M. Krauss3, Howard L. McLeod2, and Alison A. Motsinger-Reif1,2,* 1Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC, 27607, USA 2Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA 3Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA Abstract Aims—Association mapping with lymphoblastoid cell lines (LCLs) is a promising approach in pharmacogenomics research, and in the current study we utilize this model to perform association mapping for 29 chemotherapy drugs. Materials and Methods—Currently, we use LCLs to perform genome-wide association mapping of the cytotoxic response of 520 European Americans to 29 different anticancer drugs, the largest LCL study to date. A novel association approach using a multivariate analysis of covariance design was employed with the software program MAGWAS, testing for differences in the dose-response profiles between genotypes without making assumptions about the response curve or the biological mode of association. Additionally, by classifying 25 of the 29 drugs into 8 families according to structural and mechanistic relationships, MAGWAS was used to test for associations that were shared across each drug family. -
1 Evidence for Gliadin Antibodies As Causative Agents in Schizophrenia
1 Evidence for gliadin antibodies as causative agents in schizophrenia. C.J.Carter PolygenicPathways, 20 Upper Maze Hill, Saint-Leonard’s on Sea, East Sussex, TN37 0LG [email protected] Tel: 0044 (0)1424 422201 I have no fax Abstract Antibodies to gliadin, a component of gluten, have frequently been reported in schizophrenia patients, and in some cases remission has been noted following the instigation of a gluten free diet. Gliadin is a highly immunogenic protein, and B cell epitopes along its entire immunogenic length are homologous to the products of numerous proteins relevant to schizophrenia (p = 0.012 to 3e-25). These include members of the DISC1 interactome, of glutamate, dopamine and neuregulin signalling networks, and of pathways involved in plasticity, dendritic growth or myelination. Antibodies to gliadin are likely to cross react with these key proteins, as has already been observed with synapsin 1 and calreticulin. Gliadin may thus be a causative agent in schizophrenia, under certain genetic and immunological conditions, producing its effects via antibody mediated knockdown of multiple proteins relevant to the disease process. Because of such homology, an autoimmune response may be sustained by the human antigens that resemble gliadin itself, a scenario supported by many reports of immune activation both in the brain and in lymphocytes in schizophrenia. Gluten free diets and removal of such antibodies may be of therapeutic benefit in certain cases of schizophrenia. 2 Introduction A number of studies from China, Norway, and the USA have reported the presence of gliadin antibodies in schizophrenia 1-5. Gliadin is a component of gluten, intolerance to which is implicated in coeliac disease 6. -
Genome-Wide Analysis of Saccharomyces Cerevisiae
M BoC | ARTICLE Genome-wide analysis of Saccharomyces cerevisiae identifies cellular processes affecting intracellular aggregation of Alzheimer’s amyloid-β42: importance of lipid homeostasis S. Naira,*, M. Trainib,*, I. W. Dawesa,c, and G. G. Perroned aSchool of Biotechnology and Biomolecular Sciences and cRamaciotti Centre for Gene Function Analysis, University of New South Wales, Sydney, NSW 2052, Australia; bAtherosclerosis Laboratory, ANZAC Research Institute, Concord Hospital, Concord, NSW 2139, Australia; dSchool of Science and Health, University of Western Sydney, Penrith, NSW 1797, Australia ABSTRACT Amyloid-β (Aβ)–containing plaques are a major neuropathological feature of Al- Monitoring Editor zheimer’s disease (AD). The two major isoforms of Aβ peptide associated with AD are Aβ40 Charles Boone University of Toronto and Aβ42, of which the latter is highly prone to aggregation. Increased presence and aggre- gation of intracellular Aβ42 peptides is an early event in AD progression. Improved under- Received: Apr 26, 2013 standing of cellular processes affecting Aβ42 aggregation may have implications for develop- Revised: May 20, 2014 ment of therapeutic strategies. Aβ42 fused to green fluorescent protein (Aβ42-GFP) was Accepted: May 20, 2014 expressed in ∼4600 mutants of a Saccharomyces cerevisiae genome-wide deletion library to identify proteins and cellular processes affecting intracellular Aβ42 aggregation by assessing the fluorescence of Aβ42-GFP. This screening identified 110 mutants exhibiting intense Aβ42- GFP–associated fluorescence. Four major cellular processes were overrepresented in the data set, including phospholipid homeostasis. Disruption of phosphatidylcholine, phosphati- dylserine, and/or phosphatidylethanolamine metabolism had a major effect on intracellular Aβ42 aggregation and localization. Confocal microscopy indicated that Aβ42-GFP localiza- tion in the phospholipid mutants was juxtaposed to the nucleus, most likely associated with the endoplasmic reticulum (ER)/ER membrane. -
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
A Clinicopathological and Molecular Genetic Analysis of Low-Grade Glioma in Adults
A CLINICOPATHOLOGICAL AND MOLECULAR GENETIC ANALYSIS OF LOW-GRADE GLIOMA IN ADULTS Presented by ANUSHREE SINGH MSc A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy Brain Tumour Research Centre Research Institute in Healthcare Sciences Faculty of Science and Engineering University of Wolverhampton November 2014 i DECLARATION This work or any part thereof has not previously been presented in any form to the University or to any other body whether for the purposes of assessment, publication or for any other purpose (unless otherwise indicated). Save for any express acknowledgments, references and/or bibliographies cited in the work, I confirm that the intellectual content of the work is the result of my own efforts and of no other person. The right of Anushree Singh to be identified as author of this work is asserted in accordance with ss.77 and 78 of the Copyright, Designs and Patents Act 1988. At this date copyright is owned by the author. Signature: Anushree Date: 30th November 2014 ii ABSTRACT The aim of the study was to identify molecular markers that can determine progression of low grade glioma. This was done using various approaches such as IDH1 and IDH2 mutation analysis, MGMT methylation analysis, copy number analysis using array comparative genomic hybridisation and identification of differentially expressed miRNAs using miRNA microarray analysis. IDH1 mutation was present at a frequency of 71% in low grade glioma and was identified as an independent marker for improved OS in a multivariate analysis, which confirms the previous findings in low grade glioma studies. -
Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces Cerevisiae Received: 26 October 2016 Henriette Uthe, Jens T
www.nature.com/scientificreports OPEN Proteomic Analysis of the Mediator Complex Interactome in Saccharomyces cerevisiae Received: 26 October 2016 Henriette Uthe, Jens T. Vanselow & Andreas Schlosser Accepted: 25 January 2017 Here we present the most comprehensive analysis of the yeast Mediator complex interactome to date. Published: 27 February 2017 Particularly gentle cell lysis and co-immunopurification conditions allowed us to preserve even transient protein-protein interactions and to comprehensively probe the molecular environment of the Mediator complex in the cell. Metabolic 15N-labeling thereby enabled stringent discrimination between bona fide interaction partners and nonspecifically captured proteins. Our data indicates a functional role for Mediator beyond transcription initiation. We identified a large number of Mediator-interacting proteins and protein complexes, such as RNA polymerase II, general transcription factors, a large number of transcriptional activators, the SAGA complex, chromatin remodeling complexes, histone chaperones, highly acetylated histones, as well as proteins playing a role in co-transcriptional processes, such as splicing, mRNA decapping and mRNA decay. Moreover, our data provides clear evidence, that the Mediator complex interacts not only with RNA polymerase II, but also with RNA polymerases I and III, and indicates a functional role of the Mediator complex in rRNA processing and ribosome biogenesis. The Mediator complex is an essential coactivator of eukaryotic transcription. Its major function is to communi- cate regulatory signals from gene-specific transcription factors upstream of the transcription start site to RNA Polymerase II (Pol II) and to promote activator-dependent assembly and stabilization of the preinitiation complex (PIC)1–3. The yeast Mediator complex is composed of 25 subunits and forms four distinct modules: the head, the middle, and the tail module, in addition to the four-subunit CDK8 kinase module (CKM), which can reversibly associate with the 21-subunit Mediator complex. -
Anti-Cdk8 Antibody Produced in Rabbit (C0238)
ANTI-CDK8 Developed in Rabbit, Affinity Isolated Antibody Product Number C 0238 Product Description Reagent Anti-Cyclin-Dependent Kinase 8 (CDK8) is developed in Anti-CDK8, at approximately 1 mg/ml, is supplied as a rabbit using a synthetic peptide corresponding to the solution in phosphate buffered saline, pH 7.4 containing C-terminal region (aa 451-464) of human CDK8. The 0.2% BSA and 15 mM sodium azide. antibody is purified by protein A affinity chromatography. Anti-CDK8 specifically recognizes a 54 kDa protein Precautions and Disclaimer identified as cyclin-dependent kinase 8 (CDK8). Anti- Due to the sodium azide content, a material safety data CDK8 does not crossreact with the other members of sheet (MSDS) for this product has been sent to the CDK family. It detects human, mouse and rat CDK8. It attention of the safety officer of your institution. Consult is used in immunoblotting, immunoprecipitation and the MSDS for information regarding hazardous and safe immunofluorescence applications. handling practices. Cyclin-dependent kinase 8 (CDK8) is a 464-amino acid Storage/Stability protein containing the sequence motifs and 11 Store at –20 °C. For extended storage, upon initial subdomains characteristic of a serine/threonine-specific thawing, freeze the solution in working aliquots. kinase.1 CDKs become activated through binding to Avoid repeated freezing and thawing to prevent cyclins, formation of cyclin-CDK complexes and denaturing the antibody. Storage in “frost-free” reversible phosphorylation reactions. Cyclin-CDK freezers is also not recommended. If slight complexes directly control progression through G1, S, turbidity occurs upon prolonged storage, clarify the G2 and M phases of the cell division cycle. -
Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(Methacrylic Acid-Co-Methyl Methacrylate) Beads
Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads by Lindsay Elizabeth Fitzpatrick A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Lindsay Elizabeth Fitzpatrick 2012 Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads Lindsay Elizabeth Fitzpatrick Doctorate of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto 2012 Abstract Poly(methacrylic acid -co- methyl methacrylate) beads were previously shown to have a therapeutic effect on wound closure through the promotion of angiogenesis. However, it was unclear how this polymer elicited its beneficial properties. The goal of this thesis was to characterize the host response to MAA beads by identifying molecules of interest involved in MAA-mediated angiogenesis (in comparison to poly(methyl methacrylate) beads, PMMA). Using a model of diabetic wound healing and a macrophage-like cell line (dTHP-1), eight molecules of interest were identified in the host response to MAA beads. Gene and/or protein expression analysis showed that MAA beads increased the expression of Shh, IL-1β, IL-6, TNF- α and Spry2, but decreased the expression of CXCL10 and CXCL12, compared to PMMA and no beads. MAA beads also appeared to modulate the expression of OPN. In vivo, the global gene expression of OPN was increased in wounds treated with MAA beads, compared to PMMA and no beads. In contrast, dTHP-1 decreased OPN gene expression compared to PMMA and no beads, but expressed the same amount of secreted OPN, suggesting that the cells decreased the expression of the intracellular isoform of OPN. -
Molecular Structure of Promoter-Bound Yeast TFIID
ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.