Incidence of Gingival Overgrowth Caused by Calcium Channel Blockers

Total Page:16

File Type:pdf, Size:1020Kb

Incidence of Gingival Overgrowth Caused by Calcium Channel Blockers Vol.27 No.2 2008 歯 薬 療 法79 Present research status on drug-induced gingival overgrowth Incidence of gingival overgrowth caused by calcium channel blockers MAKIKO ONO1, NAOKO OHNO1, KAZUHIRO HASEGAWA1, SHIGEO TANAKA1, MASAMICHI KOMIYA1, HIROKO MATSUMOTO2, AKIRA FUJII2 and YOSHIAKI AKIMOTO1 Abstract : The incidence of gingival overgrowth caused by calcium channel blockers was determined. The overgrowth was found in patients receiving amlodipine, diltiazem, manidipine, nicardipine, nifedipine and nisoldipine. The highest rate of gingival overgrowth was obtained by nifedipine (7.6%), followed by diltiazem (4.1%), manidipine (1.8%), amlodipine (1.l%), nisoldipine (1.1%) and nicardipine (0.5%). The rate of nifedipine-induced gingival overgrowth was significant- ly higher than those of amlodipine, manidipine, nicardipine and nisoldipine, but not diltiazem. Key words : calcium channel blocker, gingival overgrowth, incidence treatment of their various oral diseases. The patients Introduction were surveyed to determine the calcium channel Gingival overgrowth induced by calcium channel blocker-induced gingival overgrowth. The 15 kinds of blockers is a well-known adverse effect. Amlodipine1-3), calcium channel blocker and numbers of cases were as diltiazem4,5), felodipine6), manidipine7,8) nicardipine9), follows: amlodipine (n=267), azelnipine (n=11), barni- nifedipine3-5.8.10-12)nisoldipine13), nitrendipine14) and dipine (n=25), benidipine (n=28), diltiazem (n= verapamil3-5,15.16) were reported as causative drugs 196), efonidipine (n=14), felodipine (n=4), flunarizine for gingival overgrowth. However, this evidence has (n=32), manidipine (n=111), nicardipine (n=219), come from several case reports, and there have been nifedipine (n=347), nilvadipine (n=58), nisoldipine few prevalence studyies to evaluate the magnitude of (n=89), nitrendipine (n=25) or verapamil (n=41). this effect. Since the incidence of gingival overgrowth Patients taking other drugs known to induce gingival induced by calcium channel blockers remains poorly overgrowth such as phenytoin and cyclosporin A were defined, the rates of 15 calcium channel blockers were excluded from this study. Clinical diagnosis of calcium determined. channel blocker-induced gingival overgrowth was veri- fied by disappearance or decreased severity of gingival Patients and Methods overgrowth after withdrawal of the causative drug. During a 17-year period (1991-2007),1,467 dental pa- Results tients taking a calcium channel blocker for a minimum of 3 months attended the Department of Oral Surgery, Gngival overgrowth was found in patients receiving Nihon University School of Dentistry at Matsudo for amlodipine (n=3), diltiazem (n=8), manidipine (n 1 Departments of Oral Surgery, Nihon University School of Dentistry at Matsudo (Chief: Prof. YOSHIAKIAKIMOTO) 2 Department of Oral Molecular Pharmacology , Nihon University School of Dentistry at Matsudo (Chief: Prof. AKIRA FUJII) 1日 本 大 学 松 戸 歯 学 部 口腔 外 科 学 講 座(主 任:秋 元 芳 明教 授) 2日 本 大 学 松 戸 歯 学 部 口腔 分 子 薬 理 学 講 座(主 任:藤 井 彰 教 授) 〔2007年11月26日 受 付 〕 80 歯 薬 療 法 Vol.27 No.2 2008 =2) , nicardipine (n=1), nifedipine (n=27) and ni- other calcium channel blockers such as nifedipine and soldipine (n=1), but not azelnipine, barnidipine, beni- diltiazem, a tentative diagnosis of gingival overgrowth dipine, efonidipine, felodipine, fiunarizine, nilvadipine, induced by amlodipine was made. A gingival speci- nitrendipine and verapamil (Table 1). The highest men was obtained for histological examination, which rate was obtained by nifedipine (7.6%), followed by revealed gingival overgrowth (Fig. 2). Amlodipine diltiazem (4.1%), manidipine (1.8%), amlodipine (1.1%), was discontinued after consultation with the patient's nisoldipine (1.1%) and nicardipine (0.5%). The inci- physician and was replaced with an ACE (angiotensin dence of nifedipine-induced gingival overgrowth was converting enzyme) inhibitor. No specific periodontal significantly higher than those of amlodipine, mani- treatment was provided to the patient for the gingival dipine, nicardipine and nisoldipine, but not diltiazem overgrowth. Marked reduction of gingival overgrowth (Table 1). Concerning amlodipine, diltiazem and nife- was evident 2 months after withdrawal of amlodipine dipine, males were 2.0-3.5 times more likely to develop (Fig. 3). We concluded that this gingival overgrowth overgrowth. was induced by amlodipine. A typical case of gingival overgrowth is as follows: Discussion A 48-years-old man was on amlodipine (5 mg/day) for hypertension. A marked painless gingival swelling at There are two main classes of calcium channel interdental papillae on the labial side of the lower and blockers: dihydropyridines (amlodipine, felodipine, upper anterior teeth was found at nine months follow- manidipine, nifedipine, nicardipine and nisoldipine) ing administration of amlodipine. The gingival tissues and nondihydropyridines which include a benzothi- were firm and fairly hard, but bled rather easily upon azepine (diltiazem) and a phenylalkylamine (vera- probing and brushing (Fig. 1). Since the clinical find- pamil)1.5,17) Calcium channel blockerinduced gingival ings of gingival overgrowth were similar to those of overgrowth was reported in both classes, in which Table 1 Gingival overgrowth induced by calcium channel blockers Statistical difference vs nifedipine : a, Fisher's test (two tail); b, ƒÔ 2-test (Yate's correlation). **p<0 .01; *p<0.05 Vol.27 No.2 2008 Incidence of calcium channel blocker-induced gingival overgrowth 81 Fig. 1 Amlodipine-induced gingival overgrowth Fig. 3 Amlodipine-induced gingival overgrowth at interdental papillae. at interdental papillae. Marked reduction was evident 2 months after withdrawal of manidipine. nifedipine3-5,8.11-12) nisoldipine13), nitrendipine14) and verapamil3-5.15,16) were reported as the causative drug for gingival overgrowth. However, felodipine, nitren- dipine and verapamil were not found in the present study. The number of felodipine samples was small in the study. The low incidence with nitrendipine and verapamil, might be also found in future studies. Previous reports concerning the incidence of cal- cium channel blocker-related gingival overgrowth with sample size of more than 100 are summarized in Table 2. The highest rate was found with nifedipine Fig. 2 Histological view of gingival overgrowth and varied from 6.3 to 43.6%3,4,11). Those of amlodipine (Hematoxylin and eosin, •~ 40). and diltiazem were 1.7, 3.3 and 2.2%, respectively2,3). The surface was covered by parakeratotic Compared with the present results, amlodipine showed and acanthotic stratified squamous epithe- lium with irregular elongation and fusion a lower rate, but diltiazem and nifedipine higher rates. of rete ridges. In the subepithelial con- Since the patients of the present study were not well nective tissue, bundles of collagen fibers controlled and community-based, these differences with normal density of fibroblasts were might be observed. Ellis et al. reported that males proliferated, and increased vascularity and mild lymphocyte infiltration were also rec- were 3 times as likely to develop overgrowth. The ognized. present results identified the same tendency. As mentioned, there are many kinds of calcium channel blockers, and usage of the drug has changed the first report of gingival overgrowth among calcium with the times. In the 1980s and 1990s, nifedipine channel blockers was nifedipine10-. Since then, many (AdalatðF) was common, but the recently used drug is cases concerning nifedipine as well as other calcium amlodipine (NorvascðF). channel blockers have been reported. Amlodipine1-3), Gingival overgrowth induced by phenytoin and cy- diltiazem4,5), felodipine6), manidipine7,8), nicardipines9), closporine A is also a well-known adverse effect. The 82 Vol.27 No.2 2008 Table 2 Previous reports on incidence of calcium channel blocker-related gingival overgrowth with sample size of more than 100 incidence was reported to be about 5018-19) and 30- impairs nutrition and access for oral hygiene, resulting 70%20-22),respectively, which were higher than those of in an increased susceptibility to oral infection, caries, calcium channel blockers. and periodontal diseases. Most drug-associated gingi- Plaque is a well-known risk factor for drug induced val overgrowth is similar in characteristics among the gingival overgrowth. The severity of gingival over- causative drugs29). growth in patients taking calcium channel blockers The most effective treatment for drug-related gingi- correlates well with poor plaque control and is com- val overgrowth is withdrawal or substitution of medi- mensurate with the degree of plaque induced inflam- cation. When this treatment approach is taken, as sug- mation3,12) The importance of plaque as a cofactor in gested by a case report, it may take from 1 to 8 weeks the etiology of drug associated gingival overgrowth for resolution of gingival lesions2). Unfortunately, not has been recognized in the most recent classification all patients respond to this mode of treatment, espe- system for periodontal diseases23). Another factor af- cially those with longstanding gingival lesions. Substi- fecting the occurrence of gingival overgrowth may in- tution of phenytoin with a different anticonvulsant has clude gender, with males being three times as likely to long been suggested as the treatment of choice for the develop overgrowth24). Although there are conflicting severely affected gingiva. Recently, the feasibility of data with respect to the relationship
Recommended publications
  • List of New Drugs Approved in India from 1991 to 2000
    LIST OF NEW DRUGS APPROVED IN INDIA FROM 1991 TO 2000 S. No Name of Drug Pharmacological action/ Date of Indication Approval 1 Ciprofloxacin 0.3% w/v Eye Indicated in the treatment of February-1991 Drops/Eye Ointment/Ear Drop external ocular infection of the eye. 2 Diclofenac Sodium 1gm Gel March-1991 3 i)Cefaclor Monohydrate Antibiotic- In respiratory April-1991 250mg/500mg Capsule. infections, ENT infection, UT ii)Cefaclor Monohydrate infections, Skin and skin 125mg/5ml & 250mg/5ml structure infections. Suspension. iii)Cefaclor Monohydrate 100mg/ml Drops. iv)Cefaclor 187mg/5ml Suspension (For paediatric use). 4 Sheep Pox Vaccine (For April-1991 Veterinary) 5 Omeprazole 10mg/20mg Short term treatment of April-1991 Enteric Coated Granules duodenal ulcer, gastric ulcer, Capsule reflux oesophagitis, management of Zollinger- Ellison syndrome. 6 i)Nefopam Hydrochloride Non narcotic analgesic- Acute April-1991 30mg Tablet. and chronic pain, including ii)Nefopam Hydrochloride post-operative pain, dental 20mg/ml Injection. pain, musculo-skeletal pain, acute traumatic pain and cancer pain. 7 Buparvaquone 5% w/v Indicated in the treatment of April-1991 Solution for Injection (For bovine theileriosis. Veterinary) 8 i)Kitotifen Fumerate 1mg Anti asthmatic drug- Indicated May-1991 Tablet in prophylactic treatment of ii)Kitotifen Fumerate Syrup bronchial asthma, symptomatic iii)Ketotifen Fumerate Nasal improvement of allergic Drops conditions including rhinitis and conjunctivitis. 9 i)Pefloxacin Mesylate Antibacterial- In the treatment May-1991 Dihydrate 400mg Film Coated of severe infection in adults Tablet caused by sensitive ii)Pefloxacin Mesylate microorganism (gram -ve Dihydrate 400mg/5ml Injection pathogens and staphylococci). iii)Pefloxacin Mesylate Dihydrate 400mg I.V Bottles of 100ml/200ml 10 Ofloxacin 100mg/50ml & Indicated in RTI, UTI, May-1991 200mg/100ml vial Infusion gynaecological infection, skin/soft lesion infection.
    [Show full text]
  • Dorset Medicines Advisory Group
    DORSET CARDIOLOGY WORKING GROUP GUIDELINE FOR CALCIUM CHANNEL BLOCKERS IN HYPERTENSION SUMMARY The pan-Dorset cardiology working group continues to recommend the use of amlodipine (a third generation dihydropyridine calcium-channel blocker) as first choice calcium channel blocker on the pan-Dorset formulary for hypertension. Lercanidipine is second choice, lacidipine third choice and felodipine is fourth choice. This is due to preferable side effect profiles in terms of ankle oedema and relative costs of the preparations. Note: where angina is the primary indication or is a co-morbidity prescribers must check against the specific product characteristics (SPC) for an individual drug to confirm this is a licensed indication. N.B. Lacidipine and lercandipine are only licensed for use in hypertension. Chapter 02.06.02 CCBs section of the Formulary has undergone an evidence-based review. A comprehensive literature search was carried out on NHS Evidence, Medline, EMBASE, Cochrane Database, and UK Duets. This was for recent reviews or meta-analyses on calcium channel blockers from 2009 onwards (comparative efficacy and side effects) and randomised controlled trials (RCTs). REVIEW BACKGROUND Very little good quality evidence exists. No reviews, meta-analyses or RCTs were found covering all calcium channel blockers currently on the formulary. Another limitation was difficulty obtaining full text original papers for some of the references therefore having to use those from more obscure journals instead. Some discrepancies exist between classification of generations of dihydropyridine CCBs, depending upon the year of publication of the reference/authors’ interpretation. Dihydropyridine (DHP) CCBs tend to be more potent vasodilators than non-dihydropyridine (non-DHP) CCBs (diltiazem, verapamil), but the latter have greater inotropic effects.
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Medicine for Prevention of and Treatment for Arteriosclerosis and Hypertension
    Europäisches Patentamt *EP001604664A1* (19) European Patent Office Office européen des brevets (11) EP 1 604 664 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 31/4422, A61K 45/06, 14.12.2005 Bulletin 2005/50 A61P 9/00, A61P 9/10, A61P 43/00, A61P 9/12, (21) Application number: 04706359.9 A61P 13/12 (22) Date of filing: 29.01.2004 (86) International application number: PCT/JP2004/000861 (87) International publication number: WO 2004/067003 (12.08.2004 Gazette 2004/33) (84) Designated Contracting States: • IWAI, Masaru AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Shigenobu-cho, Onsen-gun, HU IE IT LI LU MC NL PT RO SE SI SK TR Ehime 791-0204 (JP) Designated Extension States: • SADA, Toshio, Sankyo Company, Limited AL LT LV MK Tokyo 140-8710 (JP) • MIZUNO, Makoto, Sankyo Company, Limited (30) Priority: 31.01.2003 JP 2003022990 Tokyo 140-8710 (JP) 07.02.2003 JP 2003030830 (74) Representative: Gibson, Christian John Robert (71) Applicant: Sankyo Company, Limited Marks & Clerk Tokyo 103-8426 (JP) 90 Long Acre London WC2E 9RA (GB) (72) Inventors: • HORIUCHI, Masatsugu Onsen-gun, Ehime 791-0204 (JP) (54) MEDICINE FOR PREVENTION OF AND TREATMENT FOR ARTERIOSCLEROSIS AND HYPERTENSION (57) A medicament comprising the following composition: (A) an angiotensin II receptor antagonist selected from the group of a compound having a general formula (I), pharmacologically acceptable esters thereof and pharmacolog- ically acceptable salts thereof (for example, olmesartan medoxomil and the like); EP 1 604 664 A1 Printed by Jouve, 75001 PARIS (FR) (Cont.
    [Show full text]
  • Antioxidant Effects of Calcium Antagonists Rat Myocardial
    223 Antioxidant Effects of Calcium Antagonists ['Ii] Rat Myocardial Membrane Lipid Peroxidation Hitoshi Sugawara, Katsuyuki Tobise, and Kenjiro Kikuchi We studied the antioxidant effects of nine calcium antagonists (nisoldipine, benidipine, nilvadipine, felo- dipine, nicardipine; nitrendipine, nifedipine, verapamil, and diltiazem) by means of rat myocardial membrane lipid peroxidation with a nonenzymatic active oxygen-generating system (DHF/FeC13-ADP). The order of antioxidant potency of these agents was nilvadipine > nisoldipine > felodipine > nicardipine > verapamil > benidipine. Their IC50 values (,uM) were 25.1, 28.2, 42.0, 150.0, 266.1, and 420.0, re- spectively. In contrast, nitrendipine, nifedipine, and diltiazem had little inhibitory effect on lipid peroxi- dation.These six calcium antagonists could be divided into four types on the basis of their antioxidant mechanisms. Nilvadipine, nisoldipine, and verapamil, which showed antioxidant effects both before and after the addition of active oxygen, and reduced the dihydroxyfumarate (DHF) auto-oxidation rate, were chain-breaking and preventive antioxidants. Felodipine, which showed antioxidant effects both before and after exposure to active oxygen and increased the DHF auto-oxidation rate, was only a chain-break- ing antioxidant. Nicardipine, which showed an antioxidant effect only before exposure to active oxygen and reduced the DHF auto-oxidation rate, was mainly a preventive antioxidant. Benidipine, which showed an antioxidant effect only before exposure to active oxygen and had no appreciable effect on the DHF auto-oxidation rate, could interrupt the chain reaction of lipid peroxidation at the initial step alone. Although these results suggest that the antioxidant properties of some calcium antagonists may be beneficial clinically in protecting against cellular damage caused by lipid peroxidation, further studies are required to establish the antioxidant effects of these agents in vivo.
    [Show full text]
  • Benidipine, a Dihydropyridine-Ca2+ Channel Blocker, Increases the Endothelial Differentiation of Endothelial Progenitor Cells in Vitro
    1047 Hypertens Res Vol.29 (2006) No.12 p.1047-1054 Original Article Benidipine, a Dihydropyridine-Ca2+ Channel Blocker, Increases the Endothelial Differentiation of Endothelial Progenitor Cells In Vitro Hiroshi ANDO1), Kosuke NAKANISHI2), Mami SHIBATA1), Kazuhide HASEGAWA2), Kozo YAO2), and Hiromasa MIYAJI1) Benidipine is a dihydropyridine-Ca2+ channel blocker used in the treatment of hypertension and angina pec- toris. In the present study, we examined the effects of benidipine on the endothelial differentiation of circu- lating endothelial progenitor cells (EPCs) using an in vitro culture method. Peripheral blood derived mononuclear cells (PBMCs) containing EPCs were isolated from C57BL/6 mice, and then the cells were cul- tured on vitronectin/gelatin-coated slide glasses. After 7 days of culture, endothelial cells differentiated from EPCs were identified as adherent cells with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine–labeled acetylated low density lipoprotein (DiI-Ac-LDL) uptake and lectin binding under a fluorescent microscope. Incubation of PBMCs for 7 days with benidipine (0.01–1 µmol/l) significantly increased the number of DiI- Ac-LDL+/fluorescein isothiocyanate-lectin (FITC-Lectin)+ cells. Wortmannin, a phosphoinositide-3 kinase (PI3K) inhibitor, selectively attenuated the effect of benidipine on the endothelial differentiation. In addition, benidipine treatment augmented the phosphorylation of Akt, indicating that the PI3K/Akt pathway contrib- uted, at least in part, to the endothelial differentiation induced by benidipine. These results suggest that the treatment with benidipine may increase the endothelial differentiation of circulating EPCs and contribute to endothelial protection, prevention of cardiovascular disease, and/or an improvement of the prognosis after ischemic damage.
    [Show full text]
  • Benidipine Reduces Albuminuria and Plasma Aldosterone in Mild-To-Moderate Stage Chronic Kidney Disease with Albuminuria
    Hypertension Research (2011) 34, 268–273 & 2011 The Japanese Society of Hypertension All rights reserved 0916-9636/11 $32.00 www.nature.com/hr ORIGINAL ARTICLE Benidipine reduces albuminuria and plasma aldosterone in mild-to-moderate stage chronic kidney disease with albuminuria Masanori Abe1, Kazuyoshi Okada1, Noriaki Maruyama1, Shiro Matsumoto1, Takashi Maruyama1, Takayuki Fujita1, Koichi Matsumoto1 and Masayoshi Soma1,2 Benidipine inhibits both L- and T-type Ca channels, and has been shown to dilate the efferent arterioles as effectively as the afferent arterioles. In this study, we conducted an open-label and randomized trial to compare the effects of benidipine with those of amlodipine on blood pressure (BP), albuminuria and aldosterone concentration in hypertensive patients with mild-to- moderate stage chronic kidney disease (CKD). Patients with BPX130/80 mm Hg, with estimated glomerular filtration rate (eGFR) of 30–90 ml minÀ1 per 1.73 m2, and with albuminuria430 mg per g creatinine (Cr), despite treatment with the maximum recommended dose of angiotensin II receptor blockers (ARBs) were randomly assigned to two groups. Patients received either of the following two treatment regimens: 2 mg per day benidipine, which was increased up to a dose of 8 mg per day (n¼52), or 2.5 mg per day amlodipine, which was increased up to a dose of 10 mg per day (n¼52). After 6 months of treatment, a significant and comparable reduction in the systolic and diastolic BP was observed in both groups. The decrease in the urinary albumin to Cr ratio in the benidipine group was significantly lower than that in the amlodipine group.
    [Show full text]
  • Beneficial Effects of Low-Dose Benidipine in Acute Autoimmune
    EXPERIMENTAL INVESTIGATION Circ J 2003; 67: 545–550 Beneficial Effects of Low-Dose Benidipine in Acute Autoimmune Myocarditis Suppressive Effects on Inflammatory Cytokines and Inducible Nitric Oxide Synthase Zuyi Yuan, MD; Chiharu Kishimoto, MD; Keisuke Shioji, MD Excessive production of nitric oxide (NO) by inducible NO synthase (iNOS) contributes to the progression of myocardial damage in myocarditis. Some dihydropyridine calcium channel blockers reportedly inhibit NO production and proinflammatory cytokines and the present study sought to clarify if a low dose of benidipine, a novel dihydropyridine calcium channel blocker, would ameliorate experimental autoimmune myocarditis (EAM). Rats with or without myocarditis were administered oral benidipine at a dose of 3mg·kg–1·day–1 for 3 weeks. Low-dose benidipine did not decrease blood pressure significantly compared with the untreated group, but markedly reduced the severity of myocarditis. Myocardial interleukin-1β(IL-1β) expression and IL-1β-posi- tive cells were significantly less in rats with EAM that were treated with low-dose benidipine compared with un- treated rats. Also, myocardial iNOS expression and iNOS-positive cells were markedly reduced in in the treated rats compared with the untreated group. Furthermore, myocardial NO production and nitrotyrosine expression were suppressed by the treatment in rats with EAM. The cardioprotection of low-dose benidipine may be caused by suppression of inflammatory cytokines and inhibition of NO production. (Circ J 2003; 67: 545–550) Key Words: Calcium
    [Show full text]
  • Pharmacokinetic Drug–Drug Interactions
    Therapeutics and Clinical Risk Management Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Pharmacokinetic drug–drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management Yi-Ting Zhou1 Background: Coadministration of 1,4-dihydropyridine calcium channel blockers (DHP-CCBs) Lu-Shan Yu2 with statins (or 3-hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase inhibitors) Su Zeng2 is common for patients with hypercholesterolemia and hypertension. To reduce the risk of Yu-Wen Huang1 myopathy, in 2011, the US Food and Drug Administration (FDA) Drug Safety Communication Hui-Min Xu1 set a new dose limitation for simvastatin, for patients taking simvastatin concomitantly with Quan Zhou1 amlodipine. However, there is no such dose limitation for atorvastatin for patients receiving amlodipine. The combination pill formulation of amlodipine/atorvastatin is available on the 1 Department of Pharmacy, the Second market. There been no systematic review of the pharmacokinetic drug–drug interaction (DDI) Affiliated Hospital, School of Medicine, 2Department of Pharmaceutical profile of DHP-CCBs with statins, the underlying mechanisms for DDIs of different degree, or Analysis and Drug Metabolism, the corresponding management of clinical risk. College of Pharmaceutical Sciences, The relevant literature was identified by performing a PubMed search, covering Zhejiang University, Hangzhou, Methods: Zhejiang Province, People’s Republic the period from January 1987 to September 2013. Studies in the field of drug metabolism and of China pharmacokinetics that described DDIs between DHP-CCB and statin or that directly com- pared the degree of DDIs associated with cytochrome P450 (CYP)3A4-metabolized statins or DHP-CCBs were included.
    [Show full text]
  • Comparison of Efficacy and Safety Between Benidipine And
    Open Access Protocol BMJ Open: first published as 10.1136/bmjopen-2016-013672 on 24 February 2017. Downloaded from Comparison of efficacy and safety between benidipine and hydrochlorothiazide in fosinopril- treated hypertensive patients with chronic kidney disease: protocol for a randomised controlled trial Cheng Xue,1,2 Chenchen Zhou,3 Bo Yang,1 Jiayi Lv,1 Bing Dai,1 Shengqiang Yu,1 Yi Wang,3 Guanren Zhao,2 Changlin Mei1 To cite: Xue C, Zhou C, ABSTRACT et al Strengths and limitations of this study Yang B, . Comparison Introduction: Co-administration of a diuretic or of efficacy and safety calcium channel blocker with an ACE inhibitor are both ▪ between benidipine and This is a multicentred, prospective, double-blind, preferred combinations in patients with hypertensive hydrochlorothiazide in randomised, parallel controlled trial involving fosinopril-treated chronic kidney disease (CKD). According to the chronic kidney disease (CKD) patients with hypertensive patients with available evidence, it is still unknown which diabetes and non-diabetes. chronic kidney disease: combination plays a more active role in renal ▪ Outcomes may help future guidelines regarding protocol for a randomised protection. We hypothesised that a combination of antihypertensive combinations in CKD. controlled trial. BMJ Open fosinopril and benidipine may delay the progression of ▪ A limitation may be the relatively short follow-up 2017;7:e013672. CKD more effectively than a combination of fosinopril time. doi:10.1136/bmjopen-2016- and hydrochlorothiazide (HCTZ). ▪ Loss to follow-up, especially non-responders 013672 Methods and analysis: This study will be a within follow-up, is possible. multicentred, prospective, double-blind, randomised ▸ Prepublication history and parallel controlled trial for hypertensive CKD patients http://bmjopen.bmj.com/ additional material is in China.
    [Show full text]
  • 187 Scientists Repurposing FDA-Approved Drugs to Fight
    Vol.33 No.3 2019 Science Watch Life Sciences Scientists Repurposing FDA- Approved Drugs to Fight against Viruses n a study published in Cell Research on August 23, researchers from the CAS Wuhan Institute Iof Virology/Center for Biosafety Mega-Science, Chinese Academy of Sciences, together with their collaborator from State Key Laboratory of Pathogen and Biosecurity discovered a new talent for two molecules of calcium channel blockers (CCBs), a group of widely used anti-hypertensive and anti-atherosclerotic agents. These two CCB molecules were found to inhibit the replication of a certain virus that causes severe fever with thrombocytopenia syndrome (SFTS). SFTS is an emerging tick-borne infectious disease caused by a novel phlebovirus (SFTS virus, SFTSV), which was listed among the top 10 priority infectious A proposed model for the anti-SFTSV activity of the two calcium diseases by the World Health Organization due to its high channel blockers that inhibit viral internalization and replication through reducing the intracellular Ca2+ concentration. (Credit: Prof. fatality and pandemic risk. Currently, there is no medicine PENG Ke’s group) marketed specifically against SFTSV. In the face of a growing threat to public health imposed by SFTSV, a fight back against SFTSV is highly demanded. hydrochloride inhibits virus infection through impairing To meet the demanding need, researchers resorted virus internalization and genome replication through to screen FDA-approved drugs for anti-viral compounds. reducing the intracellular Ca2+ level. This is an effective strategy to repurpose drug application They also tested a broad panel of CCBs to see whether as it eases one’s mind on the safety concerns of the inhibition of SFTSV replication is a general feature of identified drug candidates.
    [Show full text]
  • PDF-Document
    Table 1. Checklist for Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Reported on Section/topic # Checklist item page # TITLE Title 1 Identify the report as a systematic review, meta-analysis, or both. 1 ABSTRACT Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and Structured 2 interventions; study appraisal and synthesis methods; results; limitations; 1 summary conclusions and implications of key findings; systematic review registration number. INTRODUCTION Rationale 3 Describe the rationale for the review in the context of what is already known. 1-2 Provide an explicit statement of questions being addressed with reference to Objectives 4 participants, interventions, comparisons, outcomes, and study design 2 (PICOS). METHODS Indicate if a review protocol exists, if and where it can be accessed (e.g., Web Protocol and 5 address), and, if available, provide registration information including - registration registration number. Specify study characteristics (e.g., PICOS, length of follow-up) and report Eligibility criteria 6 characteristics (e.g., years considered, language, publication status) used as 2 criteria for eligibility, giving rationale. Describe all information sources (e.g., databases with dates of coverage, Information 7 contact with study authors to identify additional studies) in the search and 2 sources date last searched. Present full electronic search strategy for at least one database, including any Search 8 2 limits used, such that it could be repeated. State the process for selecting studies (i.e., screening, eligibility, included in Study selection 9 2-3 systematic review, and, if applicable, included in the meta-analysis). Describe method of data extraction from reports (e.g., piloted forms, Data collection 10 independently, in duplicate) and any processes for obtaining and confirming 3 process data from investigators.
    [Show full text]