The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2354 Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1
[Frontiers in Bioscience 11, 2354-2370, September 1, 2006] Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1, Rocio Cruz-Ortega 1 and George R. Waller 2 1Departamento de Ecologia Funcional, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico. Mexico DF 04510, 2Department of Biochemistry and Molecular Biology, Oklahoma State University. Stillwater, OK 74078, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Classification of alkaloids 4. The importance of purine in natural compounds 5. Purine alkaloids 5.1. Distribution of purine alkaloids in plants 5.2. Metabolism of purine alkaloids 6. Biosynthesis of caffeine 6.1. Purine ring methylation 6.2. Cultured cells 7. Catabolism of caffeine 8. Caffeine-free and low caffeine varieties of coffee 8.1. Patents 9. Ecological role of alkaloids 9.1. Herbivory 9.2. Allelopathy 9.2.1. Mechanism of action of caffeine and other purine alkaloids in plants 10. Perspective 11. Acknowledgements 12. References 1. ABSTRACT 2. INTRODUCTION In this review, the biosynthesis, catabolism, Alkaloids are one of the most diverse groups of ecological significance, and modes of action of purine secondary metabolites found in living organisms. They alkaloids particularly, caffeine, theobromine and have many distinct types of structure, metabolic pathways, theophylline in plants are discussed. In the biosynthesis of and ecological and pharmacological activities. Many caffeine, progress has been made in enzymology, the amino alkaloids have been used in medicine for centuries, and acid sequence of the enzymes, and in the genes encoding some are still important drugs. Alkaloids have, therefore, N-methyltransferases. In addition, caffeine-deficient plants been prominent in many scientific fields for years, and have been produced. -
Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
University of Bath PHD The extraction and chemistry of the metabolites of Mimosa tenuiflora and Papaver somniferum Ninan, Aleyamma Award date: 1990 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 THE EXTRACTION AND CHEMISTRY OF THE METABOLITES OF MIMOSA TENUIFLORA AND PAP AVER SOMNIFERUM. submitted by ALEYAMMA NINAN for the degree of Doctor of Philosophy of the University of Bath 1990 Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author. -
Commission Implementing Regulation (EU)
21.3.2013 EN Official Journal of the European Union L 80/1 II (Non-legislative acts) REGULATIONS COMMISSION IMPLEMENTING REGULATION (EU) No 230/2013 of 14 March 2013 on the withdrawal from the market of certain feed additives belonging to the group of flavouring and appetising substances (Text with EEA relevance) THE EUROPEAN COMMISSION, submitted before that deadline for the only animal category for which those feed additives had been auth orised pursuant to Directive 70/524/EEC. Having regard to the Treaty on the Functioning of the European Union, (4) For transparency purposes, feed additives for which no applications for authorisation were submitted within the Having regard to Regulation (EC) No 1831/2003 of the period specified in Article 10(2) of Regulation (EC) No European Parliament and of the Council of 22 September 1831/2003 were listed in a separate part of the 2003 on additives for use in animal nutrition ( 1 ), and in Community Register of Feed Additives. particular Article 10(5) thereof, (5) Those feed additives should therefore be withdrawn from Whereas: the market as far as their use as flavouring and appetising substances is concerned, except for animal species and categories of animal species for which applications for (1) Regulation (EC) No 1831/2003 provides for the auth authorisation have been submitted. This measure does orisation of additives for use in animal nutrition and not interfere with the use of some of the abovemen for the grounds and procedures for granting such auth tioned additives according to other animal species or orisation. Article 10 of that Regulation provides for the categories of animal species or to other functional re-evaluation of additives authorised pursuant to Council groups for which they may be allowed. -
Phylogeography of a Tertiary Relict Plant, Meconopsis Cambrica (Papaveraceae), Implies the Existence of Northern Refugia for a Temperate Herb
Article (refereed) - postprint Valtueña, Francisco J.; Preston, Chris D.; Kadereit, Joachim W. 2012 Phylogeography of a Tertiary relict plant, Meconopsis cambrica (Papaveraceae), implies the existence of northern refugia for a temperate herb. Molecular Ecology, 21 (6). 1423-1437. 10.1111/j.1365- 294X.2012.05473.x Copyright © 2012 Blackwell Publishing Ltd. This version available http://nora.nerc.ac.uk/17105/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is the author’s final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher’s version remain. You are advised to consult the publisher’s version if you wish to cite from this article. The definitive version is available at http://onlinelibrary.wiley.com Contact CEH NORA team at [email protected] The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner. 1 Phylogeography of a Tertiary relict plant, Meconopsis cambrica 2 (Papaveraceae), implies the existence of northern refugia for a 3 temperate herb 4 Francisco J. Valtueña*†, Chris D. Preston‡ and Joachim W. Kadereit† 5 *Área de Botánica, Facultad deCiencias, Universidad de Extremadura, Avda. de Elvas, s.n. -
“Biosynthesis of Morphine in Mammals”
“Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments ..................................................................................... -
Identification and Characterization of N 9-Methyltransferase Involved In
ARTICLE https://doi.org/10.1038/s41467-020-15324-7 OPEN Identification and characterization of N9- methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea Yue-Hong Zhang1,2,3,6, Yi-Fang Li1,2,3,6, Yongjin Wang1,3,6, Li Tan1,3, Zhi-Qin Cao1,2,3, Chao Xie1,2,3, Guo Xie4, Hai-Biao Gong1,2,3, Wan-Yang Sun1,2,3, Shu-Hua Ouyang1,2,3, Wen-Jun Duan1,2,3, Xiaoyun Lu1,3, Ke Ding 1,3, ✉ ✉ ✉ ✉ Hiroshi Kurihara1,2,3, Dan Hu 1,2,3 , Zhi-Min Zhang 1,3 , Ikuro Abe 5 & Rong-Rong He 1,2,3 1234567890():,; Caffeine is a major component of xanthine alkaloids and commonly consumed in many popular beverages. Due to its occasional side effects, reduction of caffeine in a natural way is of great importance and economic significance. Recent studies reveal that caffeine can be converted into non-stimulatory theacrine in the rare tea plant Camellia assamica var. kucha (Kucha), which involves oxidation at the C8 and methylation at the N9 positions of caffeine. However, the underlying molecular mechanism remains unclear. Here, we identify the theacrine synthase CkTcS from Kucha, which possesses novel N9-methyltransferase activity using 1,3,7-trimethyluric acid but not caffeine as a substrate, confirming that C8 oxidation takes place prior to N9-methylation. The crystal structure of the CkTcS complex reveals the key residues that are required for the N9-methylation, providing insights into how caffeine N-methyltransferases in tea plants have evolved to catalyze regioselective N-methylation through fine tuning of their active sites. -
Dietary Supplements: Enough Already!
Dietary Supplements: Enough Already! Top Ten Things to Know Rhonda M. Cooper‐DeHoff, Pharm D, MS, FACC, FAHA University of Florida Associate Professor of Pharmacy and Medicine Presenter Disclosure Statement No conflicts or commercial relationships to disclose Learning Objectives After this lecture you will be able to: Understand current usage and expenditure patterns for dietary supplements Recall US regulations surrounding dietary supplements Recognize how dietary supplements may affect efficacy of and interact with prescription drugs Promote patient safety by counseling patients on issues pertaining to dietary supplement use Audience Response I take (have taken) herbal / dietary supplements Audience Response I recommend (have recommended) herbal/ dietary supplements to my patients #1 Definition and Cost of Complimentary and Alternative Medicine (CAM) Categories of CAM (NIH) •Group of diverse medical and healthcare systems, Definition practices and products that are not generally considered part of conventional medicine. Alternative Biologically Manipulative Mind‐body Energy Medical Based and Body‐ Techniques Medicine Based Systems Vitamins Approaches & Spiritual Biofield Acupunct. Minerals Massage Natural therapy Magnetic Chinese Products Meditative field Medicine •Plants (gingko) Chiropract medicine Relaxation Reiki Ayurveda Diets 1998 Expenditure on CAM Manipulative and Biologically Mind‐body Alternative Body‐Based Energy Medicine Based Techniques Medical Systems Approaches 1.5% of $34 total HCE Billion but 11% of OOP OOP NCAM 2007 -
Morphine Julie Brousseau a Thesis Submitted
Synthesis of Carbocycles Using Coinage Metal Catalysis and Formal Synthesis of (±)-Morphine Julie Brousseau A thesis submitted in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Chemistry Department of Chemistry and Biomolecular Sciences Faculty of Science University of Ottawa © Julie Brousseau, Ottawa, Canada, 2020 ABSTRACT Coinage metals such as copper, silver and gold have captivated mankind with their desirable qualities and social value. Recently, these metals have peaked the interests of scientists, where organic chemists have used them extensively in the homogenous catalysis of organic transformations. In our laboratory, we exploited their � -Lewis acidic properties to activate alkyne to induce intramolecular cyclization of nucleophilic enol ethers. We discovered that modulating the steric and electronic profiles of the ancillary ligand on the cationic metal complexes allowed for the regioselective control of such reactions. During the exploration of the substrate dependency of these transformations, we discovered that unsubstituted alkynes undergo a 6-endo-dig/acetalization/Prins reaction cascade in the presence of a silver salt such as [(BrettPhos)Ag(MeCN)]SbF6, resulting in the formation of highly strained polycycles. We have demonstrated that the formation of these products is initiated by a selective 6-endo-dig cyclization. Further mechanistic studies suggested that the reaction may occur through silver dual catalysis using deuterium-labelling experiments, however, single activation of the starting material would lead to the same product and thus both mechanisms were proposed. The further reactivity of these interesting polycyclic products was also explored. ii OTIPS R2 O OTIPS R1 [(BrettPhos)Ag(MeCN)]SbF6 (10 mol%) DCM, 60°C, 36h R1 9 Examples O R2 23-95% Yields Via O H/[Ag] R1 [Ag] O R2 Total synthesis of natural products is often referred to as an art, as it defines the boundaries of organic chemistry. -
St. John's Wort 2018
ONLINE SERIES MONOGRAPHS The Scientific Foundation for Herbal Medicinal Products Hyperici herba St. John's Wort 2018 www.escop.com The Scientific Foundation for Herbal Medicinal Products HYPERICI HERBA St. John's Wort 2018 ESCOP Monographs were first published in loose-leaf form progressively from 1996 to 1999 as Fascicules 1-6, each of 10 monographs © ESCOP 1996, 1997, 1999 Second Edition, completely revised and expanded © ESCOP 2003 Second Edition, Supplement 2009 © ESCOP 2009 ONLINE SERIES ISBN 978-1-901964-61-5 Hyperici herba - St. John's Wort © ESCOP 2018 Published by the European Scientific Cooperative on Phytotherapy (ESCOP) Notaries House, Chapel Street, Exeter EX1 1EZ, United Kingdom www.escop.com All rights reserved Except for the purposes of private study, research, criticism or review no part of this text may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, without the written permission of the publisher. Important Note: Medical knowledge is ever-changing. As new research and clinical experience broaden our knowledge, changes in treatment may be required. In their efforts to provide information on the efficacy and safety of herbal drugs and herbal preparations, presented as a substantial overview together with summaries of relevant data, the authors of the material herein have consulted comprehensive sources believed to be reliable. However, in view of the possibility of human error by the authors or publisher of the work herein, or changes in medical knowledge, neither the authors nor the publisher, nor any other party involved in the preparation of this work, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for results obtained by the use of such information. -
A Systematic Review on Main Chemical Constituents of Papaver Bracteatum
Journal of Medicinal Plants A Systematic Review on Main Chemical Constituents of Papaver bracteatum Soleymankhani M (Ph.D. student), Khalighi-Sigaroodi F (Ph.D.)*, Hajiaghaee R (Ph.D.), Naghdi Badi H (Ph.D.), Mehrafarin A (Ph.D.), Ghorbani Nohooji M (Ph.D.) Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O.Box: 33651/66571, Karaj, Iran Tel: +98 - 26 - 34764010-9, Fax: +98 - 26-34764021 E-mail: [email protected] Received: 17 April 2013 Accepted: 12 Oct. 2014 Abstract Papaver bracteatum Lindly (Papaveraceae) is an endemic species of Iran which has economic importance in drug industries. The main alkaloid of the plant is thebaine which is used as a precursor of the semi-synthetic and synthetic compounds including codeine and naloxone, respectively. This systematic review focuses on main component of Papaver bracteatum and methods used to determine thebaine. All studies which assessed the potential effect of the whole plant or its extract on clinical or preclinical studies were reviewed. In addition, methods for determination of the main components, especially thebaine, which have been published from 1948 to March 2013, were included. Exclusion criteria were agricultural studies that did not assess. This study has listed alkaloids identified in P. bracteatum which reported since 1948 to 2013. Also, the biological activities of main compounds of Papaver bracteatum including thebaine, isothebaine, (-)-nuciferine have been reviewed. As thebaine has many medicinal and industrial values, determination methods of thebaine in P. bracteatum were summarized. The methods have being used for determination of thebaine include chromatographic (HPLC, GC and TLC) and non chromatographic methods. -
Ancestral Class-Promiscuity As a Driver of Functional Diversity in the BAHD
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ancestral class-promiscuity as a driver of functional diversity in the 2 BAHD acyltransferase family in plants 3 Lars H. Kruse1, Austin T. Weigle3, Jesús Martínez-Gómez1,2, Jason D. Chobirko1,5, Jason 4 E. Schaffer6, Alexandra A. Bennett1,7, Chelsea D. Specht1,2, Joseph M. Jez6, Diwakar 5 Shukla4, Gaurav D. Moghe1* 6 Footnotes: 7 1 Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, 8 NY, 14853, USA 9 2 L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA 10 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, 11 USA 12 4 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- 13 Champaign, Urbana, IL, 61801, USA 14 5 Present address: Department of Molecular Biology and Genetics, Cornell University, 15 Ithaca, NY, 14853, USA 16 6 Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA 17 7 Present address: Institute of Analytical Chemistry, Universität für Bodenkultur Wien, 18 Vienna, 1190, Austria 19 20 * Corresponding author: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. -
In Vitro Regeneration of Persian Poppy (Papaver Bracteatum)
Biologia 65/4: 647—652, 2010 Section Cellular and Molecular Biology DOI: 10.2478/s11756-010-0079-6 In vitro regeneration of Persian poppy (Papaver bracteatum) Sara Rostampour1,2,HalehHashemi Sohi1*&AliDehestani3 1Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14155–6343 Tehran, Iran; e-mail: [email protected] 2Department of Agronomy and Plant Breeding, University of Zabol, Zabol, Iran 3Department of Plant Breeding, Faculty of Agronomic Sciences, Sari Agricultural Sciences and Natural Resources Univer- sity, Sari, Iran Abstract: Persian poppy (Papaver bracteatum Lindl.) is an important commercial source of medicinal opiates and related compounds. In this research, calli were induced from seeds, roots, cotyledons and hypocotyls of P. bracteatum at a high efficiency. The optimized callus induction media consisted of the Murashige and Skoog (MS) basic media supplemented with 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2,4-D), 0.1 mg/L kinetin and 15 mg/L ascorbic acid. The concentrations of 2,4-D and ascorbic acid were found critical to callus induction and proliferation. Subsequent subcultures resulted in excellent callus proliferation. Ascorbic acid at concentration 15 mg/L increased the callus proliferation significantly. Maximum callus growth was achieved when the explants were incubated at 25 ◦C. MS salts at full strength were found inhibitory for callus induction, while ľ MS salts were found to favor callus induction. Shoot regeneration of calli in vitro wasachievedonľ MS medium containing 0.5 mg/L benzylamine purine and 1.0 mg/L naphthalene acetic acid. Analysis of alkaloid extracts from Persian poppy tissues by high-performance liquid chromatography showed that thebaine accumulated in the tissues of plants.