Traumatic Shock. Ii. the Preparation of Cystine, Methionine, and Homocystine Containing Radioactive Sulfur

Total Page:16

File Type:pdf, Size:1020Kb

Traumatic Shock. Ii. the Preparation of Cystine, Methionine, and Homocystine Containing Radioactive Sulfur TRAUMATIC SHOCK. II. THE PREPARATION OF CYSTINE, METHIONINE, AND HOMOCYSTINE CONTAINING RADIOACTIVE SULFUR Arnold M. Seligman, … , Alexander M. Rutenburg, Henry Banks J Clin Invest. 1943;22(2):275-279. https://doi.org/10.1172/JCI101393. Research Article Find the latest version: https://jci.me/101393/pdf TRAUMATIC SHOCK. II. THE PREPARATION OF CYSTINE, METHIONINE, AND HOMOCYSTINE CONTAINING RADIOACTIVE SULFUR By ARNOLD M. SELIGMAN, ALEXANDER M. RUTENBURG, AND HENRY BANKS 1 (From the Surgical Research Department of the Beth Israel Hospital and the Department of Surgery, Harvard Medical School, Boston) (Received for publication November 12, 1942) In order to prepare, from radioactive sulfur, the benzyl mercaptan (I) (0.6 moles), reported by sulfur-containing amino acids of a high order of Wood and du Vigneaud (4) in 23 per cent yield, specific activity for biological experiments such was found to give a 21.5 per cent yield when 0.06 as those described in the foregoing publication, it mole was used. Reduction of benzylcysteine was necessary (owing to the cost of radioactive (VIII) to cysteine with sodium and butyl alcohol sulfur) to investigate the efficiency of utilization did not give good yields; therefore, sodium and of small amounts of sulfur. The synthetic meth- liquid ammonia were used. Since radioactive ods utilized are not novel, but are described be- benzyl mercaptan is necessary for the synthesis of low because of the data obtained on yields in all three amino acids, a method of preparation of numerous small scale preparations. Since pres- the mercaptan from hydrogen sulfide, other than ent methods of preparing radioactive sulfur from that described by Tarver and Schmidt, in 70 per neutron bombardment of carbon tetrachloride in- cent yield, was investigated. Elementary sulfur volve its isolation and purification as BaSO, (1), was prepared from hydrogen sulfide by oxidation the schema of synthesis used for the preparation with iodine, and this was treated with benzylmag- of three sulfur containing amino acids begins with nesium chloride. The yield of benzyl mercaptan barium sulfate (Figure 1). was 80 per cent. It was found that the yield by The synthesis of radioactive methionine (VI) the method of Tarver and Schmidt could be raised from radioactive sulfur (0.05 moles) was reported 4 per cent if the small amount of dibenzylsulfide by Tarver and Schmidt (2), using a modification formed in their reaction was reduced to benzyl of the synthesis of homocystine (V) reported by mercaptan with sodium in liquid ammonia. Patterson and du Vigneaud (3). The same The Fischer synthesis (5) of cystine from f8- yields as they report were obtained in preparing chloroaminopropionic acid with barium hydro- homocystine from 0.06 moles of sulfur. How- sulfide was investigated under various conditions. ever, in the methylation of homocysteine, we were Much poorer yields than the 5 to 10 per cent re- unable to obtain the anticipated yields. It was ported on the basis of chloroaminopropionic acid found that for preparing homocystine, the more were obtained when sulfur was not used in large convenient reduction of benzylhomocysteine (IV) excess. with sodium and butyl alcohol gave as good yields Attempts to prepare radioactive cystine by re- as reduction with sodium and liquid ammonia. placement reactions of cysteine and radioactive For the preparation of methionine, treatment of hydrogen sulfide have been described by Tuck the resultant sodium salt of homocysteine with (6) and Tarver and Schmidt (2). In a rein- methyl iodide did not give as good yields as re- vestigation of the problem, no more than 0.3 per ported by Tarver and Schmidt, whether reduction cent of available radioactivity was incorporated in was conducted in liquid ammonia or butyl alcohol. cystine (two crystallizations) obtained after heat- Attempted methylation with dimethyl sulfate and ing cysteine hydrochloride with radioactive hy- diazomethane did not proceed well. drogen sulfide in aqueous solution at 1050 C. for The method of synthesis of cystine (IX) from 10 hours. Heating for longer intervals, at higher temperatures, or at alkaline pH, resulted in de- 1 Part of this work was done in partial fulfillment of struction of a large fraction of the cysteine. the Bachelor's Degree with honors in biochemistry, Har- The enzymatic preparation of cysteine from vard University. radioactive hydrogen sulfide has been reported by 275 -276 ARNOLD M. SELIGMAN, ALEXANDER M. RUTENBURG, AND HENRY BANKS S 98% ° 3a504- 13P04 Ea ~ % 15 UR PI 0~ .U off?,(X2--a 68%' (010)a 4Rol ciM2s m1201 laO-COD 0~~~~FS ..' i t. Tit C02K. .tI 42% .* 28 2II Na82 c M t .11s w 0 as tc 0 It J I o -so"C 'IT 's2 12E 75% *a8 CO COO COOK 01201,I 4EI .8- CE2¢S Co0X 8t-0Iw .0001 2ECa 8-I' O )932 VI .M; 2 V Ix FIG. 1. SCHEME FOR SYNTHESIS OF CYSTINE, METHIONINE, AND HOMOCYSTINE FROM RADIOACTrIVE SULFUR Smythe and Halliday (7). The isolation of electric oven 15 inches in length. The temperature was glutathione, from yeast grown on media contain- determined once by means of a thermocouple. Escaping gas was bubbled through ammoniacal cadmium sulfate ing radioactive magnesium sulfate, has been re- solution, protected by a trap to eliminate the danger of ported by Franklin (8). sucking back. The barium sulfate was spread over the bottom of a porcelain boat, avoiding a layer more than EXPERIMENTAL 3 mm. in depth. In a characteristic run, 3.14 grams of barium sulfate were reduced for 5 hours. The loss of Reduction of BaSO4 was accomplished by passing H, weight due to water formed amounted to 85 per cent of over finely ground barium sulfate at 7500 C. The rate the theoretical amount. The sintered barium sulfide was of hydrogen flow was determined by bubbling the gas ground to a powder and the reduction continued for an- through concentrated sulfuric acid. A Vicor glass tube, other 3 hours. The additional water loss amounted to 5 1 inch in diameter, was heated by means of an encircling per cent of the theoretical amount, and the cadmium sul- PREPARATION OF AMINO ACIDS CONTAINING RADIOACTIVE SULFUR 277 fide formed from the escaping gas amounted to 7.8 per reported a yield of 70 per cent on the basis of the titration cent; total yield of both sulfides, 97.8 per cent. The of an aliquot. oxidation and hydrolysis of barium sulfide was prevented by sealing under glass. SYNTHESIS OF HOMOCYSTINE Hydrogen sulfide production occurred more rapidly at the beginning of reduction when water was seen condens- Benzylthioethyl chloride (II). To the concen- ing in the cold part of the tube. trated reaction mixture containing benzyl mer- Sulfur. Hydrogen sulfide was generated from barium captan in 74 per cent yield as described above, was sulfide with 30 per cent phosphoric acid and from cad- added an equivalent of sodium methylate in the mium sulfide with concentrated hydrochloric acid. The cold. Ten moles of ethylene dichloride (50 gas was swept out of the reaction flask with nitrogen and bubbled through two absorption tubes, containing slightly grams) were added and the mixture was allowed more than. an equivalent of iodine dissolved in 20 per cent to stand overnight. It was then heated to the potassium iodide. The excess iodine was reduced with a boiling point, cooled, acidified, and washed with little sodium bisulfite and the mixture was neutralized water. The washings were extracted with a small with ammonium hydroxide. The mixture was then heated amount of ethylene chloride. The combined or- at 1000 C. for 1 hour to convert the amorphous sulfur to the crystalline form. It was ground to a powder, col- ganic layer was dried with anhydrous sodium sul- lected, and washed with water, alcohol, and ether. The fate, and the ethylene dichloride distilled at at- yield was quantitative. mospheric pressure. The pressure was lowered Benzyl mercaptan (I) from sulfur. Benzyl magnesium and the fraction boiling at 100 to 1100 C. at 3 mm. chloride, prepared from 0.12 mole of benzyl chloride and was taken. The yield was 8 grams (90 per cent) 0.13 mole of magnesium, was allowed to remain in the presence of the excess magnesium overnight to ensure of pale yellow oil. complete reaction of the benzyl chloride. To this was Benzylthioethyl phthalimidomalonic ester (III). added 2.1 grams (0.065 mole) of sulfur. The mixture The above oil was heated with 18 grams of sodium was agitated for 24 hours until the sulfur had disappeared. phthalimidomalonate (9), at 1700 C. for 5 hours. The reaction product was then decomposed with ice and The product was obtained by extraction with ammonium chloride, extracted with ether, washed, dried, and distilled. Benzyl mercaptan (6.5 grams, 80 per cent toluene. yield) distilled as a colorless liquid (b.p. 1940). The S-Benzylhomocysteine (IV). The oily prod- residue, 2.2 grams (b.p. 2 mm. 1300 C.), after reduction uct was refluxed with 20 cc. alcohol and 35 cc. with sodium in liquid ammonia failed to give further 5 N NaOH for 30 minutes. Water (100 cc.) mercaptan. and 20 cc. concentrated HC1 were added and re- Benzyl mercaptan (I) from hydrogen sulfide. Hydro- was continued for 30 minutes. After the gen sulfide, passed over a small amount of anhydrous fluxing calcium chloride, was absorbed in an equivalent of cold addition of 50 cc. concentrated HCI, refluxing was 2 N alcoholic potassium hydroxide (0.065 mole). An continued for 1 hour. The solution was then equivalent of benzyl chloride dissolved in 2 volumes of cooled and extracted with ether, and the aqueous dry ether was added at once. A fluffy precipitate of portion was evaporated to dryness at reduced potassium hydrosulfide formed, and was gradually re- pressure.
Recommended publications
  • Crown Chemical Resistance Chart
    Crown Polymers, Corp. 11111 Kiley Drive Huntley, IL. 60142 USA www.crownpolymers.com 847-659-0300 phone 847-659-0310 facisimile 888-732-1270 toll free Chemical Resistance Chart Crown Polymers Floor and Secondary Containment Systems Products: CrownShield covers the following five (4) formulas: CrownShield 50, Product No. 320 CrownCote, Product No. 401 CrownShield 40-2, Product No. 323 CrownShield 28, Product No. 322 CrownPro AcidShield, Product No. 350 CrownCote AcidShield, Product No. 430 CrownPro SolventShield, Product No. 351 CrownCote SolventShield, Product No. 440 This chart shows chemical resistance of Crown Polymers foundational floor and secondary containment product line that would be exposed to chemical spill or immersion conditions. The chart was designed to provide general product information. For specific applications, contact your local Crown Polymers Floor and Secondary Containment Representative or call direct to the factory. ; Resistant to chemical immersion up to 7 days followed by wash down with water 6 Spillage environments that will be cleaned up within 72 hours after initial exposure. 9 Not Recommended Chemical CrownShield SolventShield AcidShield Chemical CrownShield SolventShield AcidShield 1, 4-Dichloro-2-butene 9 6 6 Aluminum Bromate ; ; ; 1, 4-Dioxane 9 6 6 Aluminum Bromide ; ; ; 1-1-1 Trichloroethane 9 ; ; Aluminum Chloride ; ; ; 2, 4-Pentanedione 6 ; 6 Aluminum Fluoride (25%) ; ; ; 3, 4-Dichloro-1-butene 6 6 6 Aluminum Hydroxide ; ; ; 4-Picoline (0-50%) 9 6 6 Aluminum Iodine ; ; ; Acetic Acid (0-15%) 9 6 6
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • The List of Extremely Hazardous Substances)
    APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5-
    [Show full text]
  • The Institute of Paper Chemistry
    The Institute of Paper Chemistry Appleton, Wisconsin Doctor's Dissertation Reaction Products of Lignin Model Compounds and Sodium Hydrosulfide Thomas G. Zentner June, 1953 A STUDY OF THE REACTION PRODUCTS OF LIGNIN MODEL COMPOUNDS AND SODIUM HYDROSULFIDE A thesis submitted by Thomas G. Zentner B.S. 1948, Texas A & M College M.S. 1950, Lawrence College in partial fulfillment of the requirements of The Institute of Paper Chemistry for the degree of Doctor of Philosophy from Lawrence College, Appleton, Wisconsin June, 1952 TABLE OF CONTENTS INTRODUCTION 1 HISTORICAL REVIEW 2 PRESENTATION OF THE PROBLEM 8 EXPERIMENTAL PROCEDURES 10 Synthesis of Compounds 10 Synthesis of 1-(4-Hydroxy-3-methoxyphenyl)-l-propanol 10 Synthesis of 1-(4-Benzoxy-3-methoxyphenyl)-l-propanol 11 Reaction of 1-(4-Benzoxy-3-methoxyphenyl) l-propanol with Benzyl Chloride 12 Synthesis of Propiovanillone 14 Synthesis of (-(4-Acetyl-2-methoxyphenoxy)acetovanillone 17 Attempted Synthesis of a-(2-Methoxy-4-methylphehoxy)- propiovanillone 17 Attempted Synthesis of 4-[l-(2-Methoxy-4-methylphenoxy)- l-propyl]guaiacol 21 Synthesis of 2t,4-Dihydroxy-3-methoxychalcone 23 Synthesis of 4,4'-Dihydroxy-3,3 -dimethoxychalcone 24 Synthesis of 4-Propionylpyrocatechol 24 Synthesis of Bis[l-(4-hydroxy-3-methoxyphenyl)-1- propyl] Disulfide 26 Reaction of Isolated Native Lignin with Potassium Hydrosulfide 27 Sodium Hydrosulfide Cooks 28 Cooking Liquor 28 General Procedures 30 Propiovanillone' 32 iii 2 ,4-Dihydroxy-3-methoxychalcone 34 4,4'-Dihydroxy-3,3 '-methoxychalcohe 37 4'-Hydroxy-3t-methoxyflavanone 39 2-Vanillylidene-3-coumaranone 41 Vanillin 44 G- (4-Acetyl-2-methoxyphenoxy)acetovanillone 45 1-(4-Hydroxy-3-methoxyphenyl)-1-propanol 49 DISCUSSION 58 SUMMARY AND CONCLUSIONS 69 LITERATURE CITED 71 INTRODUCTION Although the kraft process has been in use for many years, there is no sound explanation of the role played by the sulfide ion in the cook.
    [Show full text]
  • Benzyl Chlorid Final
    Survey of benzyl chloride (CAS no. 100-44-7) Part of the LOUS-review [Series Title and year] Consultation draft Title: Editing: Survey of benzyl chloride (CAS no. 100-44-7) Pia Brunn Poulsen, FORCE Technology Maria Strandesen, FORCE Technology Anders Schmidt, FORCE Technology Published by: Photography: The Danish Environmental Protection Agency [Name] Strandgade 29 1401 Copenhagen K Denmark Illustration: www.mst.dk/english [Name] Year: Map: [xxxx] [Name] ISBN no. [xxxxxx] Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, The Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor FORCE Technology or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. Sources must be acknowledged. 2 Survey of benzyl chloride (CAS no. 100-44-7) Contents Preface ...................................................................................................................... 6 Summary and conclusions ......................................................................................... 8 Sammenfatning og konklusion ...............................................................................
    [Show full text]
  • The Preparation of Certain Organic Chloroformates and Carbonates
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1947-04-01 The preparation of certain organic chloroformates and carbonates Robert E. Brailsford Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Brailsford, Robert E., "The preparation of certain organic chloroformates and carbonates" (1947). Theses and Dissertations. 8175. https://scholarsarchive.byu.edu/etd/8175 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. THE PREPARATI OH OF CERTAI N 0RG.1NIC CHLOROFORJ.'\Ll.TES AND CARBON T Thesis ubmitted to the Department of Chemistry Brigham Young University ~ .. ... "') .~ . ~ . "'). ... .. .. .. .. , ... .. ... : : ....: . ..-. ~ ..·.: : ..: ...• : ·.. ~ . : ,.. .~ : :. : ·: : ··.... ; ~ : ·. : : .: . : . : : : ••• .... •." •,.r_·: -••• ~ .... In Parti a l Fulfillment of the Re~uirements for the Degree Master of cienoe 147143 by Robert E. Brailsford .tipril 1947 This Thesis by Robert E. Brailsford is accepted in its present farm by the Department of Chemistry of Brigham Young University as satisfying the ·rhesis requirement for the degree of Master of Science. PREFACE flhile working for the Hooker Electrochemical Company of Niagara Falls , New York , from April 3 , 1943 , to January 30 , 1946 , the writer became interested in organic chloroformates and. carbonates , an interest instigated by requests from B. F . Goodrich Company for a number of samples . fter returning to Brigham Young University that preliminary interest was revived and the experi - mental work of this thesis was performed. under the direction of Dr . Charles ' . :Maw and Professor Joseph K.
    [Show full text]
  • Benzyl Chloroformate (CHLOROFORMIC ACID, BENZYL ESTER)
    Rev B Benzyl Chloroformate (CHLOROFORMIC ACID, BENZYL ESTER) C8H7O2Cl Molecular Weight = 170.6 CAS# 501‐53‐1 SPECIFICATIONS Assay: 98.% min. Color (APHA): 50 max. Benzyl Alcohol: 0.1% max. Hydrogen Chloride: 0.1% max. Benzyl Chloride: 1.5% max. Phosgene: 0.1% max. Dibenzyl Carbonate: 0.5% max. Iron: 1.5 PPM max. PHYSICAL PROPERTIES Appearance: Clear liquid free of visible contaminants BP: Decomposes at elevated temperature Odor: Pungent Density: 1.195 ‐1.22 MP/Range: ‐30°C Flash Point: 126°C NOTICE: The technical information and suggestions for use made herein are based on VanDeMark’s research and experience and are believed to be reliable, but such information and suggestions do not constitute a warranty, and no patent liability can be assumed. This publication is not to be taken as a license to operate under or infringe on any patents. Since VanDeMark has no control over the conditions under which the product is transported, stored, handled, used or applied, buyer must determine for himself by preliminary tests or otherwise, the suitability of the product for his purposes. VanDeMark’s liability on any basis is limited to the price of the product used. The information in this bulletin supersedes all previously issued bulletins on the subject matter covered. VanDeMark Benzyl Chloroformate APPLICATIONS SPILLS AND DISPOSAL Benzyl Chloroformate is a reactive chemical intermediate Use personal protective equipment (see MSDS). used in the synthesis of pharmaceutical and agrochemical Evacuate personnel to safe areas. Dike far ahead of products. It is used as a reagent in peptide synthesis to liquid spill for later disposal.
    [Show full text]
  • Benzyl Chloride
    Right to Know Hazardous Substance Fact Sheet Common Name: BENZYL CHLORIDE Synonyms: Chloromethyl Benzene; alpha-Chlorotoluene CAS Number: 100-44-7 Chemical Name: Benzene, (Chloromethyl)- RTK Substance Number: 0217 Date: July 2002 Revision: November 2010 DOT Number: UN 1738 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Benzyl Chloride is a colorless liquid with a strong, irritating Hazard Summary odor that causes tearing of the eyes. It is used in making dyes, Hazard Rating NJDOH NFPA plasticizers, drugs, lubricants, resins and cosmetics. HEALTH - 3 FLAMMABILITY - 2 f ODOR THRESHOLD = 0.041 ppm REACTIVITY - 1 f Odor thresholds vary greatly. Do not rely on odor alone to determine potentially hazardous exposures. CARCINOGEN CORROSIVE POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; 4=severe f Benzyl Chloride is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, f Benzyl Chloride can affect you when inhaled and may be NIOSH, DEP, IARC, IRIS, NFPA and EPA. absorbed through the skin. f This chemical is on the Special Health Hazard Substance f Benzyl Chloride is a CARCINOGEN and MUTAGEN. List. HANDLE WITH EXTREME CAUTION. f Benzyl Chloride is a CORROSIVE CHEMICAL and contact can severely irritate and burn the skin and eyes with possible eye damage. SEE GLOSSARY ON PAGE 5. f Inhaling Benzyl Chloride can irritate the nose and throat. f Inhaling Benzyl Chloride can irritate the lungs. Higher FIRST AID exposures may cause a build-up of fluid in the lungs Eye Contact (pulmonary edema), a medical emergency.
    [Show full text]
  • Chemical Resistance 100% SOLIDS EPOXY SYSTEMS
    Chemical Resistance 100% SOLIDS EPOXY SYSTEMS CHEMICAL 8300 SYSTEM 8200 SYSTEM 8000 SYSTEM OVERKOTE PLUS HD OVERKOTE HD OVERKRETE HD BASED ON ONE YEAR IMMERSION TESTING –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Acetic Acid (0-15%) G II Acetonitrile LLG L Continuous Immersion Acetone (0-20%) LLL Acetone (20-30%) Suitable for continuous immersion in that chemical (based on LLG Acetone (30-50%) L G I ONE YEAR testing) to assure unlimited service life. Acetone (50-100%) G II Acrylamide (0-50%) LLL G Short-Term Exposure Adipic Acid Solution LLL Alcohol, Isopropyl LLL Suitable for short-term exposure to that chemical such as Alcohol, Ethyl LLG secondary containment (72 hours) or splash and spill Alcohol, Methyl LLI (immediate clean-up). Allyl Chloride LLI Allylamine (0-20%) L L I Allylamine (20-30%) L G I I Not Suitable Allylamine (30-50%) GGI Not suitable for any exposure to that chemical. Aluminum Bromide LL– Aluminum Chloride L L – Aluminum Fluoride (0-25%) L L – This chart shows chemical resistance of our various Aluminum Hydroxide LLL 1 topping materials (90 mils – ⁄4"). These ratings are based on Aluminum Iodide LL– temperatures being ambient. At higher temperatures, chemical Aluminum Nitrate LL– resistance may be effected. When chemical exposure is Aluminum Sodium Chloride L L – minimal to non-existent, a 9000 System–FlorClad™ HD or Aluminum Sulfate LLL 4600 System– BriteCast™ HD may be used. Alums L L L 2-Aminoethoxyethanol Resistance data is listed with the assumption that the material GGG has properly cured for at least four days, at recommended Ammonia – Wet L L – temperatures, prior to any chemical exposure.
    [Show full text]
  • Corrosion-2020) (461 Event of the European Federation of Corrosion)
    European Federation of Corrosion National Academy of Sciences of Ukraine Ministry of Education and Science of Ukraine Ukrainian Association of Corrosionists Karpenko Physico-Mechanical Institute Ivan Franko Lviv National University Ivano-Frankivsk National Technical University of Oil and Gas ХV International Conference «Problems of corrosion and corrosion protection of materials» (Corrosion-2020) (461 event of the European Federation of Corrosion) ABSTRACT BOOK October 15–16, 2020 Lviv, Ukraine UДC 539.3, 620.193, 620.194, 620.179, 620.197, 621.181:669.018, 621.785. XV International Conference “Problems of Corrosion and Corrosion Protection of Materials“ (Corrosion-2020). October 15-16, 2020, Lviv, Ukraine: Book of Abstract / Karpenko Physico-Mechanical Institute of NAS of Ukraine; S. Korniy, М.-О. Danyliak, Yu. Maksishko (Eds.). – Lviv, 2020. – 121 p. XV International Conference “Problems of Corrosion and Corrosion Protection of Materials“ (Corrosion-2020) was held at Lviv Palace of Arts on October 15-16, 2020. This Book of Abstract contains the results of studies are devoted to fundamentals of corrosion and corrosion assisted mechanical fracture; hydrogen and gas corrosion; new corrosion resistant materials; thermal spray, electroplated and other coatings; inhibitor, biocidal and electrochemical protection; testing methods and corrosion control; corrosion protection of oil and gas industry and chemical equipment. In the authors edition. Editorial board: S. Korniy, М.-О. Danyliak, Yu. Maksishko ©Karpenko Physico-Mechanical Institute of NAS of Ukraine, Lviv, 2020 CONFERENCE TOPICS: fundamentals of corrosion and corrosion assisted mechanical fracture; hydrogen and gas corrosion; new corrosion resistant materials and coatings; inhibitor and biocidal protection; electrochemical protection; testing methods and corrosion control; corrosion protected equipment of the oil and gas, chemical and energy industries.
    [Show full text]
  • 230 Subpart K—Indirect Discharge Point Sources
    § 414.110 40 CFR Ch. I (7±1±00 Edition) [52 FR 42568, Nov. 5, 1987, as amended at 58 PSES and PSNS 1 FR 36893, July 9, 1993] Maximum Effluent characteristics Maximum for any for any monthly Subpart KÐIndirect Discharge one day average Point Sources Acenaphthene ................................... 47 19 Anthracene ........................................ 47 19 SOURCE: 58 FR 36893, July 9, 1993, unless Benzene ............................................ 134 57 otherwise noted. Bis(2-ethylhexyl) phthalate ................ 258 95 Carbon Tetrachloride ......................... 380 142 § 414.110 Applicability; description of Chlorobenzene .................................. 380 142 Chloroethane ..................................... 295 110 the subcategory of indirect dis- Chloroform ......................................... 325 111 charge point sources. Di-n-butyl phthalate ........................... 43 20 1,2-Dichlorobenzene .......................... 794 196 The provisions of this subpart are ap- 1,3-Dichlorobenzene .......................... 380 142 plicable to the process wastewater dis- 1,4-Dichlorobenzene .......................... 380 142 charges resulting from the manufac- 1,1-Dichloroethane ............................ 59 22 ture of the OCPSF products and prod- 1,2-Dichloroethane ............................ 574 180 1,1-Dichloroethylene .......................... 60 22 uct groups defined by § 414.11 from any 1,2-trans-Dichloroethylene ................. 66 25 indirect discharge point source. 1,2-Dichloropropane .........................
    [Show full text]