Council Member Guest Editorial in the Last 12 Months, There Has Been Considerable Progress and Change in the World of Plant Conservation in New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

Council Member Guest Editorial in the Last 12 Months, There Has Been Considerable Progress and Change in the World of Plant Conservation in New Zealand E-NEWSLETTER: NO 105. AUGUST 2012 Deadline for next issue: Friday 14 September 2012 Council member guest editorial In the last 12 months, there has been considerable progress and change in the world of plant conservation in New Zealand. The Department of Conservation, despite the challenge of a major restructure, has led a review of the threat status of vascular plants and, significantly, lichens now have their own conservation status assessment (de Lange et al., 2012). Important and on-going research continues to shed light on our flora (see, for example, Heidi Meudt’s article about her review of Plantago taxonomy). Many new threatened plant discoveries are also being made (see Astrid van Meeuwen-Dijkgraaf’s article). And, on a sad note, one of the countries strongest advocates for native plants – Muriel Fisher – has died at the age of 96 (see article in this newsletter). Having just spent two weeks glued to the television watching athletes perform at the Olympics, I have wondered how we would fare if an environmental Olympics existed? It would be nice to think that New Zealand would make a clean sweep and bag 100 medals, for all the right reasons, and eclipse Australia, China and Britain. “Clean and green, 100% Pure”, New Zealand should be topping the table, shouldn’t it? Taking a closer look at our environmental achievements reveals some disturbing trends about the on-going biodiversity crisis, the lack of action on climate change and our inability to protect natural capital despite its critical importance to our economy, our culture and our sense of place. As well as winning gold for pest control on islands we would probably do best in community and landowner involvement in the protection of the environment. With approximately 1000 Enviroschools, at least 3500 community restoration groups and over 4000 private covenants established by landowners to protect biodiversity, we would almost certainly deserve a medal. The existence of so many non-governmental groups protecting our environment makes clear that New Zealanders are determined to reverse the environmental declines that have been occurring for a generation. For that reason, Nature Space (www.naturespace.org.nz) is an important initiative launched to support community and private landowners with their ecological restoration efforts and has doubled in size in three months (see article in this newsletter). But, while the gold medals are being handed out, there are a few that we would receive for the wrong reasons. The downsizing by government departments of our capacity to achieve plant conservation outcomes is something we should all be concerned about. The number of extinct and threatened species places us firmly on the medal podium. We live in one of the world’s 30 global biodiversity hotspots and, with close to 3000 species of plant, animal and fungi on the verge of extinction, we are Olympic champions in destroying our unique natural heritage. In an international review in 2010 evaluating the relative environmental impact of different countries, Corey Bradshaw and his team found that New Zealand came 18th from the bottom of a list of 179 countries, just below China (Bradshaw et al., 2010). We have the knowledge and the technology to fix practically all our environmental problems, and we also have the human capacity and energy since most New Zealanders truly care about their land and want to do the right thing. The concept of a “stadium of four million people”, which worked during the Rugby World Cup, must be harnessed to act positively for the benefit of our natural heritage. 1 PLANT OF THE MONTH – CARDIOMANES RENIFORME Plant of the Month for August is Cardiomanes reniforme (kidney fern, konehu, kopakopa, raurenga). Cardiomanes reniforme is a creeping fern with rhizomes that form spreading interwoven patches. Its distinctive reniform (kidney shaped) fronds are bright yellow-green to dark green, glossy and often have a rather attractive, almost translucent quality. The sori (structures producing and containing spores) are prominently crowded along margins of the fronds. Cardiomanes reniforme is a New Zealand endemic, found throughout the country from the coast to the mountains, usually in dense forest but also on boulders, rock falls Cardiomanes reniforme. Photo: Jeremy Rolfe. and cliff faces. It is difficult in cultivation, not appreciating disturbances or extreme variations in seasonal temperatures and moisture levels; it can be seen to almost completely disappear when drier only to reappear during wetter periods. Cardioman reniforme is not threatened, but because it is difficult to cultivate should not be removed from the wild. The Network fact sheet for C. reniforme may be found at: www.nzpcn.org. nz/flora_details.asp?ID=1322 Just as we evaluated our waistlines during the Olympics, if you evaluated your personal “plant conservation impact factor” over the last 6 months how would you fare? Have you planted a native tree, shrub, herb or fern? Have you nominated someone for a Plant Network Award (see the call for nominations in this newsletter)? Have you attended a committee meeting for your neighbourhood’s community restoration group? Have you killed a stoat, possum, rat, deer or goat in a reserve, or in your back garden? Have you recorded a plant observation or answered a forum article on the Network website or sent in images to be added to the online database? Have you written an article for the Network newsletter about what you have discovered, what you have restored, what you want to see happen? Have you given a talk to inspire a group of people to get involved in plant conservation? Have you recruited someone to join the Network? Have you written to your local MP seeking greater protection for native plants? I hope you would all win a medal for your environmental achievements as it is too easy to be an armchair critic of New Zealand’s environmental record. The Network has some exciting initiatives underway this spring including a programme of seed collection into the national threatened plant seed bank, the addition of lichens and macroalgae (seaweeds) to the Network website, the on-going promotion of the Network’s online flora mapping system (fabulous posters are still available on request). Planning is now underway for the Network’s 10th anniversary conference to be held in Auckland in May 2013. The Network’s new website strategy has led to a new design to be launched shortly that will improve interaction with plant information. 2 Now the Olympics are over, it is time for us all to get back out there, especially me. With sports, you know at the end of the race whether you won or lost but our environmental race is one we cannot lose. And it certainly feels as though we never win, or at least every generation must learn to win the same race over and over. As an ecologist, I look at the environmental scoreboard and know that we are failing, not only ourselves but future generations. This is a wounded planet and many indicators point to problems ahead. Our young people need to stay fit and healthy so they must be encouraged to keep at sports, win Olympic medals and make us all proud. But, in the long term, we must encourage their active and sustained involvement in activities to protect their environment. This must be the ultimate gold medal pursuit for any country ahead of any sporting endeavour. References Bradshaw, C.J.A., .X. Giam, N.S. Sodhi. 2010. Evaluating the relative environmental impact of countries. PLoS One 5(5): e10440. doi:10.1371/journal.pone.0010440 de Lange, P. J., Galloway, D. J. Blanchon, D. J., Knight, A., Rolfe, J. R., Crowcroft, G. M. & Hitchmough, R. 2012: Conservation status of New Zealand lichens. New Zealand Journal of Botany. www.tandfonline.com/doi/abs/10. 1080/0028825X.2012.691426 John Sawyer, Network Committee Member A preview of the new-look homepage soon to be launched at www.nzpcn.org.nz 3 New Zealand native Plantago taxonomy revised Heidi Meudt, Museum of New Zealand Te Papa Tongarewa ([email protected]) Plantago is a large genus with over 200 wind-pollinated species found throughout the world, including about 20 species in New Zealand, eight of which are not native but are now naturalised weeds (Sykes 1988b). In a recent article revising the taxonomy of the native New Zealand species of Plantago, I recognise 11 native species (Meudt 2012): P. aucklandica, P. lanigera, P. novae-zelandiae, P. obconica, P. picta, P. raoulii, P. spathulata, P. triandra, P. triantha, P. udicola sp. nov. and P. unibracteata. This new revision is the culmination of several years’ research by myself and collaborators and was based on the analysis of novel morphological data combined with other data from cytology (Murray et al. 2010 and references therein), AFLP DNA fingerprinting (Meudt 2011), molecular phylogenetic data (Tay et al. 2010a, b), and molecular cytogenetics (Wong 2011). I will now outline some of the main taxonomic changes in the recent revision relative to previous treatments. First, I recognise Plantago picta and P. novae-zelandiae at the species level, instead of as a subspecies of P. spathulata and a synonym of P. lanigera, respectively. There is ample morphological and genetic evidence separating P. picta from P. spathulata and P. novae- zelandiae from P. lanigera, which justifies specific rank in both cases. Plantago picta is restricted to coastal mudstone or sandstone habitats between Gisborne and East Cape, and its conservation status is ‘At Risk/ Naturally Uncommon’. Two other species, P. aucklandica Plantago lanigera (top) and Plantago triantha. and P. obconica, have the same conservation status. Photos: John Barkla. Second, I treat P. masoniae as a synonym of P.
Recommended publications
  • Frugivory of Yellow-Eared Bulbul (Pycnonotus Penicillatus)
    IJMS 2019 vol. 6 (2): 34 - 47 International Journal of Multidisciplinary Studies (IJMS) Volume 6, Issue 1, 2019 DOI: http://doi.org/10.4038/ijms.v6i1.90 Frugivory of Yellow-eared Bulbul (Pycnonotus penicillatus) and Seasonal Variation of Fruiting Phenology in Tropical Montane Cloud Forests of Horton Plains National Park, Sri Lanka Chandrasiri P.H.S.P and Mahaulpatha W.A.D* Department of Zoology, University of Sri Jayewardenepura, Sri Lanka ABSTRACT This study was conducted on a frugivorous bird species, Yellow-eared Bulbul (Pycnonotus penicillatus) which is an endemic and threatened species, at Horton Plains National Park (HPNP), from September 2015 to November 2017. Direct methods as focal animal sampling and faecal analysis were used to identify food items of P. penicillatus. Feeding plants were identified using field guides. To find out the fruit phenology, ten individuals per plant species were tagged. Fruit cover was estimated in the each tagged tree. According to the present findings, P. penicillatus mainly consumed, 16 species of feeding plants belonging to eleven families. Among them six endemic, eight native and one introduced species were observed. P. penicillatus consumed Rubus ellipticus as their major fruit source. There were seeds of nine plant species were identified by faecal analysis. Maximum ripen fruit cover was recorded from Solanum mauritianum in the northeast monsoon season, first inter-monsoon season and second inter- monsoon season. However, in the southwest monsoon season highest ripen fruit cover was recorded from Berberis ceylanica. There was a correlation between number of feeding attempts and ripen fruit cover, of Symplocos bractealis, S. mauritianum and Strobilanthes viscosa.
    [Show full text]
  • Consolidated List of Environmental Weeds in New Zealand
    Consolidated list of environmental weeds in New Zealand Clayson Howell DOC RESEARCH & DEVELOPMENT SERIES 292 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright May 2008, New Zealand Department of Conservation ISSN 1176–8886 (hardcopy) ISSN 1177–9306 (web PDF) ISBN 978–0–478–14412–3 (hardcopy) ISBN 978–0–478–14413–0 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing by Sue Hallas and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Environmental weed lists 7 2.1 Weeds in national parks and reserves 1983 7 2.2 Problem weeds in protected natural areas 1990 7 2.3 Problem weeds in forest and scrub reserves 1991 8 2.4 Weeds in protected natural areas 1995 8 2.5 Ecological weeds on conservation land 1996 9 2.6 DOC weeds 2002 9 2.7 Additional lists 9 2.7.1 Weeds on Raoul Island 1996 9 2.7.2 Problem weeds on New Zealand islands 1997 9 2.7.3 Ecological weeds on DOC-managed land 1997 10 2.7.4 Weeds affecting threatened plants 1998 10 2.7.5 ‘Weed manager’ 2000 10 2.7.6 South Island wilding conifers 2001 10 3.
    [Show full text]
  • Arboretum News Armstrong News & Featured Publications
    Georgia Southern University Digital Commons@Georgia Southern Arboretum News Armstrong News & Featured Publications Arboretum News Number 5, Summer 2006 Armstrong State University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/armstrong-arbor- news Recommended Citation Armstrong State University, "Arboretum News" (2006). Arboretum News. 5. https://digitalcommons.georgiasouthern.edu/armstrong-arbor-news/5 This newsletter is brought to you for free and open access by the Armstrong News & Featured Publications at Digital Commons@Georgia Southern. It has been accepted for inclusion in Arboretum News by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Arboretum News A Newsletter of the Armstrong Atlantic State University Arboretum Issue 5 Summer 2006 Watch Your Step in the Primitive Garden Arboretum News Arboretum News, published by the Grounds Department Plants from the Past of Armstrong Atlantic State University, is distributed to Living Relatives of Ancient faculty, staff, students, and friends of the Arboretum. The Arboretum Plants in the Primitive Garden encompasses Armstrong’s 268- acre campus and displays a wide By Philip Schretter variety of shrubs and other woody plants. Developed areas of campus he Primitive Garden, contain native and introduced Tlocated next to Jenkins species of trees and shrubs, the Hall on the Armstrong majority of which are labeled. Atlantic State University Natural areas of campus contain campus, allows you to take plants typical in Georgia’s coastal a walk through time by broadleaf evergreen forests such as displaying living relatives of live oak, southern magnolia, red ancient plants. The following bay, horse sugar, and sparkleberry.
    [Show full text]
  • Food Plant Records of Aphidini (Aphidinae: Aphididae: Hemiptera
    Journal of Entomology and Zoology Studies 2017; 5(2): 1280-1302 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(2): 1280-1302 Food plant records of Aphidini (Aphidinae: © 2017 JEZS Aphididae: Hemiptera) in India Received: 24-01-2017 Accepted: 25-02-2017 Garima Singh Garima Singh and Rajendra Singh Department of Zoology, Rajasthan Universityersity, Jaipur, Rajasthan, India Abstract The Aphidini is one of the 2 tribes of the subfamily Aphidinae (Aphididae: Hemiptera) containing about Rajendra Singh 830 species/subspecies assigned to 33 genera. Out of these, only 9 genera and 70 species/subspecies were Department of Zoology, D.D.U. recorded from India infesting 940 plant species belonging to 138 families, out of which only 19 families Gorakhpur Universityersity, are monocot. Indian Aphidini are recorded mostly on the plant family Asteraceae (102 plant species), Gorakhpur, U.P, India followed by Fabaceae (96 plant species), Poaceae (92 plant species), Lamiaceae (46 plant species), Rosaceae (38 plant species), Solanaceae (34 plant species), Apocyanaceae (28 plant species), Rubiaceae (26 plant species), Malvaceae (25 plant species), Rutaceae (22 plant species), Cucurbitaceae (22 plant species), Polygonaceae (21 plant species), etc. Out of 70 described species of Aphidini from India, 14 species are monophagous; 40 species are oligophagous infesting 2 to 20 plant species; and 8 species are moderately polyphagous infesting 21 to 55 plant species while 8 species are highly polyphagous feeding on 55 upto 569 plant species. The present contribution provides updated checklist of Indian Aphidini with the valid scientific name of the aphids as well as their food plants. Keywords: Aphidinae, Aphidini, food plant, aphids, checklist Introduction Aphids (Insecta: Homoptera : Aphididae), popularly known as plant-lice or ant-cows are tiny plant sap sucking insects varying in size between 0.7 and 7.0 mm in length [1].
    [Show full text]
  • Genetic Analysis of Redundant and Diverged MADS-Box Genes
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/29878 Please be advised that this information was generated on 2021-10-04 and may be subject to change. bw.royaert 24-10-2006 11:51 Pagina 1 Genetic Analysis of Redundant and Diverged MADS-box Genes Involved in Floral Development in Petunia hybrida bw.royaert 24-10-2006 11:51 Pagina 2 bw.royaert 24-10-2006 11:51 Pagina 3 Genetic Analysis of Redundant and Diverged MADS-box Genes Involved in Floral Development in Petunia hybrida Een wetenschappelijke proeve op het gebied van Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de Rector Magnificus prof. dr. C.W.P.M. Blom, volgens besluit van het College van Decanen in het openbaar te verdedigen op maandag 18 december 2006, om 10.30 uur precies door Stefan Emiel Royaert geboren op 30 augustus 1972 te Zottegem, België bw.royaert 24-10-2006 11:51 Pagina 4 Promotor: Prof. dr. T. Gerats Manuscriptcommissie: Prof. dr. G.C. Angenent Prof. dr. R. Koes, Vrije Universiteit Amsterdam Dr. C. Martin, John Innes Centre, England Cover: ‘Flower (in) Development’, by Mieke Koenen (http://www.miekekoenen.nl/) Design: Martien Frijns ISBN-10: 90-9021316-3 ISBN-13: 978-90-9021316-3 Printed by: PrintPartners Ipskamp B.V., Enschede, the Netherlands bw.royaert 24-10-2006 11:51 Pagina 5 The vast universe,
    [Show full text]
  • Contribution to the Floristic Knowledge of the Sierra Mazateca of Oaxaca,Mexico
    NUMBER 20 MUNN-ESTRADA: FLORA OF THE SIERRA MAZATECA OF OAXACA, MEXICO 25 CONTRIBUTION TO THE FLORISTIC KNOWLEDGE OF THE SIERRA MAZATECA OF OAXACA,MEXICO Diana Xochitl Munn-Estrada Harvard Museums of Science & Culture, 26 Oxford St., Cambridge, Massachusetts 02138 Email: [email protected] Abstract: The Sierra Mazateca is located in the northern mountainous region of Oaxaca, Mexico, between the Valley of Tehuaca´n-Cuicatla´n and the Gulf Coastal Plains of Veracruz. It is part of the more extensive Sierra Madre de Oaxaca, a priority region for biological research and conservation efforts because of its high levels of biodiversity. A floristic study was conducted in the highlands of the Sierra Mazateca (at altitudes of ca. 1,000–2,750 m) between September 1999 and April 2002, with the objective of producing an inventory of the vascular plants found in this region. Cloud forests are the predominant vegetation type in the highland areas, but due to widespread changes in land use, these are found in different levels of succession. This contribution presents a general description of the sampled area and a checklist of the vascular flora collected during this study that includes 648 species distributed among 136 families and 389 genera. The five most species-rich angiosperm families found in the region are: Asteraceae, Orchidaceae, Rubiaceae, Melastomataceae, and Piperaceae, while the largest fern family is Polypodiaceae. Resumen: La Sierra Mazateca se ubica en el noreste de Oaxaca, Mexico,´ entre el Valle de Tehuaca´n-Cuicatla´n y la Planicie Costera del Golfo de Mexico.´ La region´ forma parte de una ma´s extensa, la Sierra Madre de Oaxaca, que por su alta biodiversidad es considerada como prioritaria para la investigacion´ biologica´ y la conservacion.´ Se realizo´ un estudio en la Sierra Mazateca (a alturas de ca.
    [Show full text]
  • New Zealand Naturalised Vascular Plant Checklist
    NEW ZEALAND NATURALISED VASCULAR PLANT CHECKLIST Clayson Howell; ISBN 0-473-11306-6 John W.D. Sawyer New Zealand Plant Conservation Network November 2006 9 780473 113063 New Zealand naturalised vascular plant checklist November 2006 Clayson J. Howell, John W.D. Sawyer New Zealand Plant Conservation Network P.O. Box 16-102 Wellington New Zealand 6242 E-mail: [email protected] www.nzpcn.org.nz Cover photos (by Jeremy Rolfe): Selaginella kraussiana (Lycophytes), Cestrum elegans (Dicot. trees & shrubs), Cyperus eragrostis (Monocot. herbs: Sedges), Cerastium glomeratum (Dicot. herbs other than composites), Dipogon lignosus (Dicot lianes), Berberis darwinii (Dicot. trees & shrubs), Lonicera japonica (Dicot. lianes), Bomarea caldasii (Monocot. lianes), Pinus radiata (Gymnosperm trees & shrubs), Lilium formosanum (Monocot. herbs other than grasses, orchids, rushes, sedges), Poa annua (Monocot. herbs: Grasses), Clematis vitalba (Dicot. lianes), Adiantum raddianum (Ferns) Main photo: Senecio diaschides (Dicot herbs: Composites). Title page: Asparagus scandens seedling in kauri forest. © Clayson J. Howell, John W.D. Sawyer 2006 ISBN-10: 0-473-12300-2 ISBN-13: 978-0-473-12300-0 Published by: New Zealand Plant Conservation Network P.O. Box 16-102 Wellington 6242 New Zealand E-mail: [email protected] www.nzpcn.org.nz CONTENTS Introduction 1 New Zealand adventive flora – Summary statistics 2 Naturalised plant records in the Flora of New Zealand 2 Naturalised plant checklists in the New Zealand Journal of Botany 2 Species outside Flora or checklists 2 Acknowledgements 4 Bibliography 4 New Zealand naturalised vascular plant checklist – alphabetical 6 iii Cortaderia selloana, one of two species of pampas that are fully naturalised in New Zealand.
    [Show full text]
  • The Absence of Arabidopsis-Type Telomeres in Cestrum and Closely Related Genera Vestia and Sessea (Solanaceae): ®Rst Evidence from Eudicots
    The Plant Journal (2003) 34, 283±291 The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): ®rst evidence from eudicots Eva Sykorova1,2,y, Kar Yoong Lim1,y, Mark W. Chase3, Sandra Knapp4, Ilia Judith Leitch3, Andrew Rowland Leitch1,Ã and Jiri Fajkus2 1School of Biological Sciences, Queen Mary University of London, London E1 4NS, UK, 2Institute of Biophysics, Academy of Sciences of the Czech Republic and Masaryk University of Brno, Brno, Czech Republic, 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK, and 4Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK Received 2 October 2002; accepted 24 January 2003. ÃFor correspondence (fax 44 208 983 0973; e-mail [email protected]). yJoint ®rst author. Summary Using slot-blot and ¯uorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum spe- cies we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini. An analysis of related genera Vestia and Sessea indicates that they too lack the Arabidopsis-type telomere, and the sequences were lost in the common ancestor of these genera. We found that the Cestrum species investigated had particularly large mean chromosome sizes.
    [Show full text]
  • Abstract Lista De La Flora Vascular De Una Porción De La Región
    JORGE A. MEAVE1*, ARMANDO RINCÓN-GUTIÉRREZ1, GUILLERMO IBARRA- MANRÍQUEZ2, CLAUDIA GALLARDO-HERNÁNDEZ1,3 AND MARCO ANTONIO ROMERO-ROMERO1 Botanical Sciences Abstract 95 (4): 722-759, 2017 Background: La Chinantla, a topographically and geomorphologically complex region, and probably the most humid in the country, hosts a diverse but largely unknown biota, particularly at higher elevations. DOI: 10.17129/botsci.1812 Questions: How many plant species are present in La Chinantla? How are these species distributed along the eleva- Received: tional gradient encompassed in the region? August 15th, 2017 Studied species: Lycopodiophyta, Pteridophyta, Gimnospermopsida, Magnoliidae, Eudicots, Monocots. Accepted: Study sites and years of study: We studied the fora of the La Chinantla hyper-humid region, Northern Oaxaca Range, southern Mexico, from 1993 to 2017. October 2nd, 2017 Methods: We collected 2,654 specimens in 73 main localities distributed across an elevational range from 250 to 3,020 Associated Editor: m (but concentrated above 800 m). Numerous experts in plant taxonomy examined the specimens and provided or Juan Núñez Farfán confrmed identifcations. Results: The checklist of the vascular plants includes 1,021 species, 471 genera and 162 families of vascular plants. The specimens/species ratio (2.6) refected a satisfactory collecting effort. The most diverse families were Asteraceae, Ru- biaceae, and Orchidaceae, whereas the most speciose genera were Peperomia, Miconia and Piper. Most listed species are herbs (47.3 % of the total) and trees (35.2 %), whereas the terrestrial (85.4 %) and epiphytic (15.9 %) growth habits were the most frequent ones (some species presented more than one growth form or growth habit category).
    [Show full text]
  • Foraging Behaviour of Sri Lanka Yellow-Eared Bulbul (Pycnonotus Penicillatus) in the Montane Cloud Forests of Horton Plains National Park, Sri Lanka
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Foraging Behaviour of Sri Lanka Yellow-eared Bulbul (Pycnonotus penicillatus) in the Montane Cloud Forests of Horton Plains National Park, Sri Lanka P. H. S. P. Chandrasiri1, W. A. D. Mahaulpatha2* 1, 2Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka Abstract: Foraging behaviour of Sri Lanka Yellow-eared Bulbul (Pycnonotus penicillatus) was studied in the tropical montane cloud forests of Horton Plains national park, situated in the highland plateau of the Nuwara Eliya District at the eastern extremity of the central highlands from September 2015 to April 2017. Line transects and opportunistic observations were used to obtain data. Foraging individuals were observed directly or through a binocular from 0600h to 1800h, on three consecutive days per month. Foraging plant types were identified by using field guides. They flew approximately 50.4 ± 34.2 (Mean ± Standard Deviation) meters per minute in search of food with 1.4 ± 0.7 stops per minute. Maximum hopping (57%) was recorded when the birds moved between foraging sites. Maximum number of foraging observations (95%) were recorded from cloud forest habitat and least number of foraging observations (5%) were recorded from grassland habitats. Observed foraging height was 3.6 ± 2.9m above ground, and distance to canopy above the bird was 0.8 ± 0.6m. Foraging tree height was 4.5 ± 3.1m. Majority of the birds (48%) were feeding within “middle” horizontal position of the trees. P. penicillatus highly utilized (28%) „moderate density foliage cover‟ when foraging.
    [Show full text]
  • Genetic Analysis of Redundant and Diverged MADS-Box Genes Involved in Floral
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/29878 Please be advised that this information was generated on 2021-10-06 and may be subject to change. bw.royaert 24-10-2006 11:51 Pagina 1 Genetic Analysis of Redundant and Diverged MADS-box Genes Involved in Floral Development in Petunia hybrida bw.royaert 24-10-2006 11:51 Pagina 2 bw.royaert 24-10-2006 11:51 Pagina 3 Genetic Analysis of Redundant and Diverged MADS-box Genes Involved in Floral Development in Petunia hybrida Een wetenschappelijke proeve op het gebied van Natuurwetenschappen, Wiskunde en Informatica Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de Rector Magnificus prof. dr. C.W.P.M. Blom, volgens besluit van het College van Decanen in het openbaar te verdedigen op maandag 18 december 2006, om 10.30 uur precies door Stefan Emiel Royaert geboren op 30 augustus 1972 te Zottegem, België bw.royaert 24-10-2006 11:51 Pagina 4 Promotor: Prof. dr. T. Gerats Manuscriptcommissie: Prof. dr. G.C. Angenent Prof. dr. R. Koes, Vrije Universiteit Amsterdam Dr. C. Martin, John Innes Centre, England Cover: ‘Flower (in) Development’, by Mieke Koenen (http://www.miekekoenen.nl/) Design: Martien Frijns ISBN-10: 90-9021316-3 ISBN-13: 978-90-9021316-3 Printed by: PrintPartners Ipskamp B.V., Enschede, the Netherlands bw.royaert 24-10-2006 11:51 Pagina 5 The vast universe,
    [Show full text]
  • Biography of D
    ©Institut für Biologie, Institutsbereich Geobotanik und Botanischer Garten der Martin-Luther-Universität Halle-Wittenberg Schlechtendalia 31 (2017) Biography of D. F. L. von Schlechtendal and type material of his new taxa preserved in the herbarium of Martin Luther University Halle-Wittenberg (HAL) and other botanical collections Bettina HEUCHERT, Uwe BRAUN, Natalia TKACH, Denise MARX & Martin RÖSER Abstract: Heuchert, B., Braun, U., Tkach, N., Marx, D. & Röser, M. 2017: Biography of D. F. L. von Schlechtendal and type material of his new taxa preserved in the herbarium of Martin Luther University Halle-Wittenberg (HAL) and other botanical collections. Schlechtendalia 31: 1–143. D. F. L. von Schlechtendal (1794–1866) was professor of botany and director of the botanical garden in Halle (Saale) from 1833 to 1866. He was one of the leading and most productive German botanists of the 19th century, who, inter alia, introduced about 1,600 new taxa, most of them new species, including 78 new genera. Schlechtendal‟s private herbarium was purchased by the university after his death from his widow and represents the historical nucleus of the present-day herbarium of the Martin Luther University (HAL). Based on Schubert‟s (1964) unpublished dissertation and other sources, Schlechtendal‟s life and work is outlined. All taxa described by Schlechtendal are summarized in an annotated list, including details of type collections preserved in the herbarium of Martin Luther University Halle- Wittenberg and in other botanical collections. Previous typifications of the taxa concerned were scrutinized in the light of the rules of the Internal Code of Nomenclature for Algae, Fungi, and Plants.
    [Show full text]