The Absence of Arabidopsis-Type Telomeres in Cestrum and Closely Related Genera Vestia and Sessea (Solanaceae): ®Rst Evidence from Eudicots

Total Page:16

File Type:pdf, Size:1020Kb

The Absence of Arabidopsis-Type Telomeres in Cestrum and Closely Related Genera Vestia and Sessea (Solanaceae): ®Rst Evidence from Eudicots The Plant Journal (2003) 34, 283±291 The absence of Arabidopsis-type telomeres in Cestrum and closely related genera Vestia and Sessea (Solanaceae): ®rst evidence from eudicots Eva Sykorova1,2,y, Kar Yoong Lim1,y, Mark W. Chase3, Sandra Knapp4, Ilia Judith Leitch3, Andrew Rowland Leitch1,à and Jiri Fajkus2 1School of Biological Sciences, Queen Mary University of London, London E1 4NS, UK, 2Institute of Biophysics, Academy of Sciences of the Czech Republic and Masaryk University of Brno, Brno, Czech Republic, 3Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK, and 4Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK Received 2 October 2002; accepted 24 January 2003. ÃFor correspondence (fax 44 208 983 0973; e-mail [email protected]). yJoint ®rst author. Summary Using slot-blot and ¯uorescent in situ hybridization (FISH), we found no evidence for the presence of the Arabidopsis-type telomeric sequence (TTTAGGG)n at the chromosome termini in any of the Cestrum spe- cies we investigated. Probing for the human-type telomere (TTAGGG)n also revealed no signal. However, polymerase chain reaction experiments indicated that there are short lengths of the sequence TTTAGGG dispersed in the genome but that these sequences are almost certainly too short to act as functional telomeres even if they were at the chromosome termini. An analysis of related genera Vestia and Sessea indicates that they too lack the Arabidopsis-type telomere, and the sequences were lost in the common ancestor of these genera. We found that the Cestrum species investigated had particularly large mean chromosome sizes. We discuss whether this is a consequence of alternative telomere end maintenance systems. Keywords: absence of TTTAGGG telomere, dicot, chromosome, FISH. Introduction The ends of eukaryotic chromosomes frequently, but not of chromosome ends degraded by incomplete lagging ubiquitously, have TnGn rich minisatellite sequences occur- strand synthesis during the S phase of the cell cycle. ring in tandem arrays of many hundreds or thousands of However, the highly conserved minisatellite telomeric repeats. In higher plants, the consensus sequence cloned sequence is not universally found. Sahara et al. (1999) used from Arabidopsis thaliana is (TTTAGGG)n (Richards and Southern hybridization to show that the species in four Ausubel, 1988). Similar minisatellite sequences are con- orders of insects (Diptera, Coleoptera, Heteroptera, and served in vertebrates, as in human, in which the consensus Dermaptera) and a spider lacked the insect consensus sequence is (TTAGGG)n (Moyzis et al., 1988), whereas in sequence (TTAGG)n. Of the nine species of Coleoptera many insects it is (TTAGG)n (Okazaki et al., 1993). Telo- investigated, four lacked (TTAGG)n. If these numbers are meres distinguish the natural chromosome ends from in any way representative of Coleoptera, it could be pre- unrepaired chromosome breaks and are thought to per- dicted that there may be millions of beetle species without form the following functions: (i) prevention of end-to-end the insect consensus sequence. In Drosophila melanoga- fusions of chromosomes; (ii) binding of speci®c telomere- ster (Diptera), the telomeres contain Het-A and TART that associated proteins involved in DNA folding producing a preferentially retrotranspose to the chromosome termini, stable structure that may interact with the nuclear envel- whereas in D. virilis and other species in the virilis group, ope, be involved in chromosome disposition, and per- as well as in the genus Chironomus (Diptera), complex haps prevent chromosome fusions; and (iii) re-synthesis satellite DNA sequences, presumed to be elongated by a ß 2003 Blackwell Publishing Ltd 283 284 Eva Sykorova et al. homologous recombination mechanism, are located at the appear to be absent from the chromosome termini and telomeres (Biessmann et al., 2000). therefore are not telomere sequences. Thus, this paper In plants too, there is evidence that the plant consensus provides evidence of an absence of Arabidopsis-type telo- sequence (TTTAGGG)n is lacking in some groups. Fuchs meres in eudicot plants. et al. (1995) showed that it was absent in Allium, Nothos- cordum, and Tulbaghia of the monocotyledonous family Results Alliaceae. Further analysis showed that the sequence was most likely replaced by rDNA, a satellite sequence or retro- Pich and Schubert (1998) and Adams et al. (2000) demon- transposable element(s) at the end of the chromosome strated an absence of Arabidopsis-type telomeric (Pich and Schubert, 1998; Pich et al., 1996a,b). Adams et al. sequences in the monocot genera Aloe and Allium using (2000) showed that Aloe in Asphodelaceae also lacked several methods: (i) ¯uorescent in situ hybridization (FISH) (TTTAGGG)n.AsAllium and Aloe are distantly related using a PCR-generated concatemer of the Arabidopsis con- members of the order Asparagales, this led to an investiga- sensus sequence (TTTAGGG)5 as a probe; (ii) Southern/ tion of other related genera. Many other species were found slot-blot hybridization analysis using the TTTAGGG con- to lack the sequence suggesting that an absence of the catemer probe; and (iii) elongation or asymmetric PCR Arabidopsis-type repeat was common in Asparagales using the forward primer only of the oligonucleotide (Adams et al., 2000) although the human-type of telomere sequence (TTTAGGG)4. Variations on these approaches (TTAGGG)n occurs in some of the species in its place (Weiss were used on Cestrum. and Scherthan, 2002). For the purpose of this paper, it is important to clarify the Absence of Arabidopsis-type telomeres using FISH terms Arabidopsis-type telomeric sequence, which de®nes the minisatellite (TTTAGGG)n sequence, as distinct from Fluorescent in situ hybridization experiments using a bio- the Arabidopsis-type telomere, which describes a telomere tin-labelled concatemer of the Arabidopsis-type telomeric formed by this sequence. Here we provide evidence that sequence (TTTAGGG)5 (Cox et al., 1993; Ijdo et al., 1991), whereas short lengths of the Arabidopsis-type sequence detected by avidin-Cy3, revealed that there was an absence are dispersed in some species of the closely related genera of probe labelling to the ends of chromosomes in Cestrum Cestrum, Vestia and Sessea (Solanaceae), these sequences parqui (Figure 1a,b) and Vestia foetida (Figure 1d,e) Figure 1. FISH to metaphase spreads of Cestrum parqui (a±c), Vestia foetida (d±f) and Nicotiana sylvestris (g,h), stained with DAPI for DNA (blue (a,d,g)) and probed with avidin-labelled Arabidopsis-type telomere probe detected with Cy3 (red (b,e,h)). Note only N. sylvestris shows strong labelling at the ends of the chromosomes. For a positive control, the metaphases of C. parqui and V. foetida are probed with digoxigenin-labelled 18±26S rDNA (c) and 5S rDNA (f), respectively (yellow-green). The intensity of the FITC signal for 18±26S rDNA in C. parqui (c) has resulted in some light coming through the Cy3 ®lter block and is thus visible in (b). Scale bar 10 mm. ß Blackwell Publishing Ltd, The Plant Journal, (2003), 34, 283±291 Loss of TTTAGGGn-type telomeres in a eudicot group 285 metaphase cell spreads. Ribosomal DNA (18±26S or 5S rDNA) was used as a positive control for the ef®cacy of the in situ methods (Figure 1c,e). Clear signals were observed using the Arabidopsis-type telomeric sequence on control metaphase spreads of Nicotiana sylvestris as expected (Figure 1g,h). FISH may be a low-sensitivity method for detecting sequences, as less than 1 kb of con- tiguous sequence may not be detectable (Gill and Friebe, 1998). For this reason, the results were complemented by slot-blot and PCR approaches. Slot-blot analysis of genomic DNA Using slot-blot hybridization and the labelled ATSB probe, we analysed genomic DNAs from eight Cestrum species and a hybrid (Table 1) for the presence of Arabidopsis-type Figure 2. Slot-blot hybridization with radioactive-labelled telomere primer telomeric sequences (Figure 2a). The negative control used (a) ATSB or (b) HUSB as the probe. in the experiment was genomic DNAs of Allium cepa, and Control DNAs are Nicotiana sylvestris (S), Silene latifolia (R), Homo sapiens the positive controls were genomic DNAs of N. sylvestris (Q), Allium cepa (V) and N. otophora (Y). Species investigated in the Sola- naceae are Cestrum aurantiacum (A), C. elegans (B), C. fasciculatum (C), and Silene latifolia, the latter having relatively short telo- C. nocturnum (D), C. psittacinum (E), C. purpureum (F), C. roseum (G), mere repeats with approximately 2.5±4.5 kb of Arabidopsis- C. parqui (T), C. parqui  C. aurantiacum (U), Streptosolen jamesonii (H), type telomeric sequence per chromosome terminus (Riha Solanum betaceum (I), Physalis alkekengi (J), Iochroma australe (K), Lycium barbarum (L), L. cestroides (M), Withania coagulans (N), Vestia foetida (O), et al., 1998). All membranes were re-probed with 18S rDNA Nicandra physaloides (P), and Sessea stipulata (X). to ensure transfer of genomic DNA (data not shown). Greater sensitivity may be obtained using Southern hybri- dization because the method can potentially separate telo- and control DNA from S. latifolia were analysed by this mere repeat sequences from the bulk of genomic DNA. technique for the presence of Arabidopsis-type telomeric Therefore, genomic DNAs of Cestrum parqui, C. elegans sequences. No signal was obtained in Cestrum DNAs, but Table 1 The species used Species Herbarium voucher specimen Seed/plant source Allium cepa L. cv. Ailsa Craig RBG, Kew Arabidopsis thaliana L. cv. Columbia Queen Mary, London Cestrum aurantiacum Lindl. Chase 12216 (K) RBG, Kew Cestrum elegans (Brongn.) Schltdl. Lim 002 (BM) Ginkgo Nursery, London, UK Cestrum fasciculatum (Schltdl.) Miers Chase 12218 (K) RBG, Kew Cestrum nocturnum L. Chase 12219 (K) RBG, Kew Cestrum parqui L'Her. Chelsea Physic Garden, London, UK Cestrum parqui  Cestrum aurantiacum Saikia 001 (BM) Ginkgo Nursery, London, UK Cestrum psittacinum Stapf.
Recommended publications
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Green Cestrum Cestrum Parqui
    Invasive plant Green cestrum Cestrum parqui Green cestrum is an escaped garden plant, which has The plant grows vigorously if neglected. On alluvial flats become a weed of roadsides, creeks and neglected sites it has been known to outcompete most other vegetation. in central and South East Queensland. The roots, seeds, stems and leaves are toxic to many domestic animals. Green cestrum needs careful control because its extensive, shallow rooty system can produce many new Generally dispersed by birds, seeds are also spread plants from suckers, particularly after root disturbance by water movement. Plants can also regrow from cut or injury. root pieces. Seedlings will not readily establish under conditions of vigorous competition with other plants. Green cestrum is poisonous to animals including cattle, Life cycle sheep, horses, pigs and poultry. Its effect on native fauna is unknown. Two alkaloids, parquine and solasonine, have Seeds germinate in autumn. Plants flower after two years been isolated from green cestrum and it is thought that and produce flow¬ers for several months through summer these substances could be responsible for its toxic effects. and autumn. Green cestrum is long-lived, producing new growth in spring. Seeds remain dormant in the soil for Symptoms in cattle include fever, loss of appetite, many years. increased thirst and eventually, general paralysis. Poultry develop acute kidney and liver damage. Post-mortem examination of poisoned animals usually reveals extensive Prevention internal haemorrhaging. Newly established plants should be destroyed before they flower and produce berries. Birds eat the berries, dispersing Time of death varies from mere hours to three days after the seed to new areas.
    [Show full text]
  • Green Cestrum
    OCTOBER 2008 PRIMEFACT 718 REPLACES AGFACT P7.6.44 Green cestrum Neil Griffiths Impact District Agronomist, NSW DPI, Tocal, Paterson Green cestrum is a vigorous plant that can out- compete other vegetation. Green cestrum is toxic to Dr Chris Bourke animals including cattle, sheep, horse, pigs, poultry Principal Research Scientist (Poisonous Plants), and humans. NSW DPI, Orange Agricultural Institute Habitat Green cestrum is normally found along watercourses and in non-crop areas where it usually grows in small to medium-sized thickets. Introduction Distribution Green cestrum (Cestrum parqui) is a large poisonous shrub belonging to the Solanaceae family. In NSW, green cestrum is found in the Hunter Valley, The plant is also known as green poison berry or the outer metropolitan areas of Sydney, the North Coast and the north-west, central west and south- Chilean cestrum. west of the State. Green cestrum was originally introduced into Australia from South America as an ornamental shrub for Description gardens. Since that time, it has become naturalised in Green cestrum is a medium-sized perennial areas of south-eastern Queensland, eastern New South shrub growing 2–3 m (Figure 2). It usually has many Wales (NSW) and parts of Victoria and South Australia. light-green, brittle stems. Figure 1. Green cestrum is a Class 3 noxious weed in NSW. Photo: G. Wisemantel. Leaves Fruit The shiny-green leaves are 20–30 mm wide and Clusters of shiny, black, egg-shaped berries 80–100 mm long. They have smooth edges, are 7–10 mm long are produced during summer and pointed at each end and are arranged alternately autumn (Figure 4).
    [Show full text]
  • Antimicrobial Activity of the Essential Oil of Cestrum Diurnum (L.) (Solanales: Solanaceae)
    African Journal of Biotechnology Vol. 4 (4), pp. 371-374, April 2005 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2005 Academic Journals Short Communication Antimicrobial activity of the essential oil of Cestrum diurnum (L.) (Solanales: Solanaceae) Bhattacharjee I., Ghosh A. and Chandra G. Mosquito Research Unit, Department of Zoology, The Burdwan University, India – 713104. Accepted 22 February, 2005 Cestrum diurnum (Solanaceae: Solanales) is a single or multistemmed shrub that is also known as Day Jasmine. The essential oil of the mature leaves of C. diurnum was analyzed by GLC and GLC-MS and altogether 14 components were detected. The main constituents were palmitic acid (27.62%), stearic acid (4.62%) and oleic acid (3.06%). The essential oil of mature leaves of C. diurnum were evaluated for antimicrobial activity against pathogenic strains of Gram positive (Staphylococcus aureus, Bacillus subtilis) and Gram negative (Escherichia Coli, Pseudomonas aeruginosa) bacteria. The oil showed strong in vitro activity against P. aeruginosa and S. aureus. Key words: Cestrum diurnum, antimicrobial activity, essential oil, Gram positive bacteria, Gram negative bacteria. INTRODUCTION The development of bacterial resistance to presently shrub that is also known as Day Jasmine. There are available antibiotics has necessitated the search for new several application of the plant that have been well antibacterial agents. The gram positive bacterium such documented in several literatures and the toxicity of the as Staphylococcus aureus is mainly responsible for post species to humans and livestock has been frequently operative wound infections, toxic shock syndrome, reported (Stone, 1970; Little et al., 1974). The leaves endocarditis, osteomyelitis and food poisoning (Mylotte, contain a calcinogenic glycoside called 1,25- 1987).
    [Show full text]
  • FV-30558.Pdf
    UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE VETERINARIA INTOXICACIÓN EXPERIMENTAL POR Sessea vestioides EN OVINOS “por” Rosmari DOMÍNGUEZ DÍAZ TESIS DE GRADO presentada como uno de los requisitos para obtener el título de Doctor en Ciencias Veterinarias Orientación: Producción Animal MODALIDAD: Ensayo experimental MONTEVIDEO URUGUAY 2013 1 PÁGINA DE APROBACIÓN Presidente de Mesa: ………………………………………….. Segundo Miembro (Tutor): ........................................................... Dra. Carmen García y Santos Tercer Miembro: ........................................................... Cuarto Miembro ……………………………………… Fecha: ………………........................................... Autor: ............................................................ Rosmari Dominguez Diaz 2 AGRADECIMIENTOS A mi madre por enseñarme los valores de la vida e incentivarme a realizar una carrera. A mi hijo Bautista disculpas por los nervios de los exámenes y horas de estudio compartidas. A Carmen García y Santos por ser la tutora del trabajo y del tramo final de mi carrera, gracias por los consejos en momentos difíciles. A Alejandra Capelli una gran compañera de trabajo y amiga por darme la oportunidad de realizar este trabajo y acompañarme. A Santiago Sosa compañero y amigo por los consejos y correcciones realizadas. A Graciela Pedrana, Helen Biotti y Mónica Viqueira por la gran ayuda en los preparados histológicos y fotografía. A Jorge Moraes por ser co-tutor del trabajo. A la Facultad de Veterinaria por formarme como profesional y ofrecerme oportunidades de crecimiento personal. A la Biblioteca y su personal por la dedicación y comprensión en las búsquedas. A Rosina por la amabilidad y dedicación incondicional. A mis hermanos por todo el apoyo durante la carrera e incentivarme a seguir firme. A Adriana Cauci por la gran ayuda en la traducción. 3 TABLA DE CONTENIDO Página PAGINA DE APROBACIÓN………………………………………………………. 2 AGRADECIMIENTOS……………………………………………………………… 3 LISTA DE CUADROS Y FIGURAS ….………...………………………………….
    [Show full text]
  • 2641-3182 08 Catalogo1 Dicotyledoneae4 Pag2641 ONAG
    2962 - Simaroubaceae Dicotyledoneae Quassia glabra (Engl.) Noot. = Simaba glabra Engl. SIPARUNACEAE Referencias: Pirani, J. R., 1987. Autores: Hausner, G. & Renner, S. S. Quassia praecox (Hassl.) Noot. = Simaba praecox Hassl. Referencias: Pirani, J. R., 1987. 1 género, 1 especie. Quassia trichilioides (A. St.-Hil.) D. Dietr. = Simaba trichilioides A. St.-Hil. Siparuna Aubl. Referencias: Pirani, J. R., 1987. Número de especies: 1 Siparuna guianensis Aubl. Simaba Aubl. Referencias: Renner, S. S. & Hausner, G., 2005. Número de especies: 3, 1 endémica Arbusto o arbolito. Nativa. 0–600 m. Países: PRY(AMA). Simaba glabra Engl. Ejemplares de referencia: PRY[Hassler, E. 11960 (F, G, GH, Sin.: Quassia glabra (Engl.) Noot., Simaba glabra Engl. K, NY)]. subsp. trijuga Hassl., Simaba glabra Engl. var. emarginata Hassl., Simaba glabra Engl. var. inaequilatera Hassl. Referencias: Basualdo, I. Z. & Soria Rey, N., 2002; Fernández Casas, F. J., 1988; Pirani, J. R., 1987, 2002c; SOLANACEAE Sleumer, H. O., 1953b. Arbusto o árbol. Nativa. 0–500 m. Coordinador: Barboza, G. E. Países: ARG(MIS); PRY(AMA, CAA, CON). Autores: Stehmann, J. R. & Semir, J. (Calibrachoa y Ejemplares de referencia: ARG[Molfino, J. F. s.n. (BA)]; Petunia), Matesevach, M., Barboza, G. E., Spooner, PRY[Hassler, E. 10569 (G, LIL, P)]. D. M., Clausen, A. M. & Peralta, I. E. (Solanum sect. Petota), Barboza, G. E., Matesevach, M. & Simaba glabra Engl. var. emarginata Hassl. = Simaba Mentz, L. A. glabra Engl. Referencias: Pirani, J. R., 1987. 41 géneros, 500 especies, 250 especies endémicas, 7 Simaba glabra Engl. var. inaequilatera Hassl. = Simaba especies introducidas. glabra Engl. Referencias: Pirani, J. R., 1987. Acnistus Schott Número de especies: 1 Simaba glabra Engl.
    [Show full text]
  • Frugivory of Yellow-Eared Bulbul (Pycnonotus Penicillatus)
    IJMS 2019 vol. 6 (2): 34 - 47 International Journal of Multidisciplinary Studies (IJMS) Volume 6, Issue 1, 2019 DOI: http://doi.org/10.4038/ijms.v6i1.90 Frugivory of Yellow-eared Bulbul (Pycnonotus penicillatus) and Seasonal Variation of Fruiting Phenology in Tropical Montane Cloud Forests of Horton Plains National Park, Sri Lanka Chandrasiri P.H.S.P and Mahaulpatha W.A.D* Department of Zoology, University of Sri Jayewardenepura, Sri Lanka ABSTRACT This study was conducted on a frugivorous bird species, Yellow-eared Bulbul (Pycnonotus penicillatus) which is an endemic and threatened species, at Horton Plains National Park (HPNP), from September 2015 to November 2017. Direct methods as focal animal sampling and faecal analysis were used to identify food items of P. penicillatus. Feeding plants were identified using field guides. To find out the fruit phenology, ten individuals per plant species were tagged. Fruit cover was estimated in the each tagged tree. According to the present findings, P. penicillatus mainly consumed, 16 species of feeding plants belonging to eleven families. Among them six endemic, eight native and one introduced species were observed. P. penicillatus consumed Rubus ellipticus as their major fruit source. There were seeds of nine plant species were identified by faecal analysis. Maximum ripen fruit cover was recorded from Solanum mauritianum in the northeast monsoon season, first inter-monsoon season and second inter- monsoon season. However, in the southwest monsoon season highest ripen fruit cover was recorded from Berberis ceylanica. There was a correlation between number of feeding attempts and ripen fruit cover, of Symplocos bractealis, S. mauritianum and Strobilanthes viscosa.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Antimicrobial Activity of Cestrum Aurantiacum L
    Int.J.Curr.Microbiol.App.Sci (2015) 4(3): 830-834 ISSN: 2319-7706 Volume 4 Number 3 (2015) pp. 830-834 http://www.ijcmas.com Original Research Article Antimicrobial Activity of Cestrum aurantiacum L. B.Sivaraj, C.Vidya, S.Nandini and R.Sanil* Department of Zoology, Government Arts College, Udhagamandalam 643002, The Nilgiris, India *Corresponding author A B S T R A C T Antimicrobial studies were conducted in the Cestrum aurentiacum which is K e y w o r d s commonly called orange Cestrum, an exotic plant common in the Nilgiris. The plant material was collected fresh from the Nilgiris and the root, the leaf and the Cestrum, flower were separated. All these plant materials were dried at 37oC and extracted in Antimicrobial ethyl alcohol. Antimicrobial activity of the extract was carried out against activity, Kliebsella, Proteus, Staphylococcus, E. coli, & Pseudomonas. Among the extract Proteus, of various plant parts, the flower extract shows maximum antimicrobial activity. Pseudomonas The report that the Cestrum aurentiacum can be used as an antimicrobial agent is a new one. The active principle behind this may be alkaloid or saponin, but to prove this, more study has to be conducted. Introduction Cestrum aurantiacum L. (Capraria large acutish lober strongly reflexed. It is lanceolata), also called orange Cestrum, claimed to be a poisonous plant and all the orange Jessamine, orange flowering plant part if ingested is considered to be Jessamine and yellow Cestrum) is an poisonous. However, it attracts a lot of bees, invasive species native to North and South birds etc. The studies in the related species America belongs to Solanacea family.
    [Show full text]
  • Solanum Mauritianum (Woolly Nightshade)
    ERMA New Zealand Evaluation and Review Report Application for approval to import for release of any New Organisms under section 34(1)(a) of the Hazardous Substances and New Organisms Act 1996 Application for approval to import for release Gargaphia decoris (Hemiptera, Tingidae), for the biological control of Solanum mauritianum (woolly nightshade). Application NOR08003 Prepared for the Environmental Risk Management Authority Summary This application is for the import and release of Gargaphia decoris (lace bug) for use as a biological control agent for the control of Solanum mauritianum (woolly nightshade). Woolly nightshade is a rapid growing small (10m) tree that grows in agricultural, coastal and forest areas. It flowers year round, and produces high numbers of seeds that are able to survive for long periods before germinating. It forms dense stands that inhibit the growth of other species through overcrowding, shading and production of inhibitory substances. It is an unwanted organism and is listed on the National Pest Plant Accord. The woolly nightshade lace bug (lace bug) is native to South America, and was introduced to South Africa as a biological control agent for woolly nightshade in 1995. Success of the control programme in South Africa has been limited to date. The lace bug has been selected as a biological control agent because of its high fecundity, high feeding rates, gregarious behaviours and preference for the target plant. Host range testing has indicated that the lace bug has a physiological host range limited to species within the genus Solanum, and that in choice tests woolly nightshade is the preferred host by a significant margin.
    [Show full text]
  • Consolidated List of Environmental Weeds in New Zealand
    Consolidated list of environmental weeds in New Zealand Clayson Howell DOC RESEARCH & DEVELOPMENT SERIES 292 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. Individual contributions to the series are first released on the departmental website in pdf form. Hardcopy is printed, bound, and distributed at regular intervals. Titles are also listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright May 2008, New Zealand Department of Conservation ISSN 1176–8886 (hardcopy) ISSN 1177–9306 (web PDF) ISBN 978–0–478–14412–3 (hardcopy) ISBN 978–0–478–14413–0 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing by Sue Hallas and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2. Environmental weed lists 7 2.1 Weeds in national parks and reserves 1983 7 2.2 Problem weeds in protected natural areas 1990 7 2.3 Problem weeds in forest and scrub reserves 1991 8 2.4 Weeds in protected natural areas 1995 8 2.5 Ecological weeds on conservation land 1996 9 2.6 DOC weeds 2002 9 2.7 Additional lists 9 2.7.1 Weeds on Raoul Island 1996 9 2.7.2 Problem weeds on New Zealand islands 1997 9 2.7.3 Ecological weeds on DOC-managed land 1997 10 2.7.4 Weeds affecting threatened plants 1998 10 2.7.5 ‘Weed manager’ 2000 10 2.7.6 South Island wilding conifers 2001 10 3.
    [Show full text]
  • Arboretum News Armstrong News & Featured Publications
    Georgia Southern University Digital Commons@Georgia Southern Arboretum News Armstrong News & Featured Publications Arboretum News Number 5, Summer 2006 Armstrong State University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/armstrong-arbor- news Recommended Citation Armstrong State University, "Arboretum News" (2006). Arboretum News. 5. https://digitalcommons.georgiasouthern.edu/armstrong-arbor-news/5 This newsletter is brought to you for free and open access by the Armstrong News & Featured Publications at Digital Commons@Georgia Southern. It has been accepted for inclusion in Arboretum News by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Arboretum News A Newsletter of the Armstrong Atlantic State University Arboretum Issue 5 Summer 2006 Watch Your Step in the Primitive Garden Arboretum News Arboretum News, published by the Grounds Department Plants from the Past of Armstrong Atlantic State University, is distributed to Living Relatives of Ancient faculty, staff, students, and friends of the Arboretum. The Arboretum Plants in the Primitive Garden encompasses Armstrong’s 268- acre campus and displays a wide By Philip Schretter variety of shrubs and other woody plants. Developed areas of campus he Primitive Garden, contain native and introduced Tlocated next to Jenkins species of trees and shrubs, the Hall on the Armstrong majority of which are labeled. Atlantic State University Natural areas of campus contain campus, allows you to take plants typical in Georgia’s coastal a walk through time by broadleaf evergreen forests such as displaying living relatives of live oak, southern magnolia, red ancient plants. The following bay, horse sugar, and sparkleberry.
    [Show full text]