Análisis De Las Relaciones Tróficas Entre Peces Y Vertebrados

Total Page:16

File Type:pdf, Size:1020Kb

Análisis De Las Relaciones Tróficas Entre Peces Y Vertebrados Tesis Doctoral Análisis de las relaciones tróficas entre peces y vertebrados ictiófagos de las Islas Orcadas del Sur, Antártida: Hacia el conocimiento integral del ecosistema y el manejo racional de los recursos Autora: Lic. Maria Lila Bertolin Director: Dr. Ricardo J. Casaux Co-director: Dr. Carlos Darrieu Facultad de Ciencias Naturales y Museo Universidad de La Plata 2012 Dedico este trabajo a mis padres Agradezco a la gente de postgrado de la Facultad de Ciencias Naturales y Museo de La Plata por la enorme paciencia y buena atención que me han dedicado estos 5 años, a la gente de becas de CONICET por el buen trato y la buena resolución frente a las dificultades y consultas, al Dr. Esteban Barrera-Oro por sus aportes y buena predisposición hacia todas mis dudas y al Dr. Fernando Momo por su rapidez y brillante ayuda. Índice de contenidos Resumen (español) i Resumen (inglés) v Capítulo I Introducción general 1 El continente antártico 1 Características físicas y biológicas 1 Aspecto geopolítico 9 La actividad pesquera en Antártida 9 La regulación del manejo de los recursos naturales y el medio-ambiente en Antártida 11 La importancia del desarrollo de políticas de manejo 13 Objetivos generales 14 Referencias bibliográficas 16 Capítulo II Composición general de la dieta 23 Introducción 23 Materiales y métodos 24 Área de estudio 24 Recopilación de información bibliográfica 25 Análisis de datos 25 Resultados 29 Composición general de la dieta, Islas Orcadas del Sur 29 Aves 29 Mamíferos 50 Composición general de la dieta, Islas Shetland del Sur 56 Aves 56 Discusión 58 Composición general de la dieta 58 Aves 58 Mamíferos 68 Aspectos metodológicos 71 Conclusiones generales 72 Referencias bibliográficas 74 Capítulo III Selección del alimento 84 Introducción 84 Materiales y métodos 85 Recopilación de datos de la fauna ictícola de las Islas Orcadas del Sur 85 Análisis de datos 87 Resultados 90 Estructura poblacional de la ictiofauna de las Islas Orcadas del Sur: Abundancia y distribución de la biomasa 90 Selección de presas 95 Distribución de la abundancia de tallas 108 Diversidad en el consumo de peces 114 Discusión 115 Composición y distribución de los peces en las Islas Orcadas del Sur 115 Análisis de selección de presas de los predadores tope en las Islas Orcadas del Sur 117 Diversidad en el consumo de 4 predadores tope de las Islas Orcadas del Sur 120 Conclusiones generales 121 Referencias bibliográficas 122 Capítulo IV Estrategias de alimentación 125 Introducción 125 Materiales y métodos 126 Descripción y categorización de los hábitos de forrajeo 126 Análisis del solapamiento de la dieta entre predadores tope y dentro de la comunidad de las IOS 127 Resultados 131 Hábitos de forrajeo de los predadores tope de las Islas Orcadas del Sur 131 Aves 131 Mamíferos 140 Solapamiento de dieta en la comunidad de predadores tope de las Islas Orcadas del Sur 148 Discusión 151 Estrategias de forrajeo 151 Solapamiento y Re-ocurrencia de presas en la dieta de los predadores tope 154 Conclusiones generales 156 Referencias bibliográficas 158 Anexo de tablas 168 Capítulo V Requerimientos energéticos 177 Introducción 177 Materiales y métodos 179 Recopilación de datos 179 Análisis de datos 180 Resultados 186 Consumo de las poblaciones de predadores de las Islas Orcadas del Sur 186 Consideraciones generales 186 Consumo anual de presas para la comunidad de predadores tope de la Isla Laurie 189 Consumo anual de presas para la comunidad de predadores tope de Islas Orcadas del Sur 197 Regulación de la pesca en el área de estudio 202 Discusión 218 Conclusiones generales 212 Referencias bibliográficas 214 Capítulo VI Modelización ecotrófica 219 Introducción 219 Materiales y métodos 220 Resultados 222 Discusión 224 Referencias bibliográficas 227 Capítulo VII Conclusiones finales 229 Índice de tablas y figuras Capítulo I Introducción general Figura I.1: Mapa de la Península Antártica y archipiélagos adyacentes 2 Figura I.2: Diagrama de la trama trófica antártica 4 Tabla I.1: Relaciones entre tipo de alimentación y zona de distribución de los peces 8 Figura I.3: Áreas estadísticas de pesca 13 Capítulo II Composición general de la dieta Figura II.1: Islas Orcadas del Sur (IOS) 25 Tabla II.1: Resumen de la información sobre la composición de la dieta de los predadores de las IOS 26 Tabla II.2: Resumen de la información sobre la composición de la dieta de los predadores de las Islas Shetlands del Sur 27 Tabla II.3: Detalle de la nomenclatura y abreviaciones utilizadas 27 Tabla II.4: Composición general de la dieta de los predadores de IOS (%M media) 30 Tabla II.5: Composición general de la dieta del P. de Adelia (Isla Laurie) 30 Tabla II.6: Composición general de la dieta del P. de Adelia (Isla Signy) 31 Tabla II.7: Composición general de la dieta del P. de Barbijo 31 Tabla II.8: Composición general de la dieta del P. Papúa (Isla Laurie) 32 Figura II.2: Contribución en biomasa (%) de las presas representadas en contenidos estomacales del P. Papúa 34 Tabla II.9: Contribución de los peces a la dieta del P. Papúa 35 Tabla II.10: Tallas de los peces representados en los contenidos estomacales del P. Papúa 36 Figura II.3: Correlación entre las tallas medias de T. newnesi y L. nudifrons representadas en la dieta del P. Papúa 37 Tabla II.11: Composición de la dieta del P. Damero 38 Tabla II.12: Contribución de los peces a la dieta del P. Damero 39 Tabla II.13: Contribución de los peces a la dieta de adultos y pichones del P. Damero 39 Tabla II.14: Tallas (medias en cm., desvío estándar DE y rango) de los peces representados en la dieta del P. Damero 40 Tabla II.15: Composición de la dieta del P. Gigante 42 Tabla II.16: Composición general de la dieta del P. de las Nieves 42 Tabla II.17: Peces representados en la dieta del P. de las Nieves 43 Tabla II.18: Composición general de la dieta del C. de Georgias 45 Tabla II.19: Composición general de la dieta del C. de Georgias durante la temporada reproductiva 1994/95 45 Tabla II.20: Peces representados en la dieta del C. de Georgias 46 Tabla II.21: Peces representados en la dieta del C. de Georgias durante la temporada reproductiva 1994/95 47 Tabla II.22: Tallas medias y rangos de los peces representados en la dieta del C. de Georgias 47 Tabla II.23: Cambios en las tallas medias y rangos de los peces representados en la dieta del C. de Georgias a lo largo de la temporada reproductiva 1994/95 48 Tabla II.24: Composición general de la dieta del E. Marrón 50 Tabla II.25: Peces representados en la dieta del E. Marrón 50 Tabla II.26: Composición general de la dieta de la F. de Weddell 51 Tabla II.27: Peces representados en la dieta de la F. de Weddell 52 Tabla II.28: Composición general de la dieta de la F. Cangrejera 53 Figura II.4: Contribución en términos de biomasa de las presas representadas en la dieta del LFA 54 Figura II.5: Contribución en términos de biomasa de los peces representados en la dieta del LFA 54 Figura II.6: Correlación entre el porcentaje en masa de krill y la biomasa relativa de myctóphidos obtenidas del análisis de la dieta del LFA 55 Tabla II.29: Contribución en peso y talla de los peces representados en la dieta del P. de las Tormentas 56 Tabla II.30: Composición general de la dieta del P. de las Tormentas 56 Tabla II.31: Composición general de la dieta del G. Antártico 57 Tabla II.32: Tallas de las presas representadas en la dieta del G. Antártico 58 Tabla II.33: Especies de predadores tope de las IOS agrupados según los “Grupos tróficos” definidos previamente 72 Tabla II.34: Composición general de la dieta del LFA 82 Tabla II.35: Contribución de los peces a la dieta del LFA 82 Tabla II.36: Tallas de los peces representados en las feces del LFA 83 Capítulo III Selección del alimento Figura III.1: Estaciones de captura de los cruceros de investigación 86 Tabla III.1: Grupos Tróficos y predadores elegidas para el análisis de selección del alimento en las IOS 87 Tabla III.2: Temporadas de muestreos de la dieta y referencias utilizadas para el cálculo de I 88 Figura III.2: Composición específica de las capturas realizadas durante la campaña “Antártida 8611” 90 Figura III.3: Detalle por estrato de la composición específica de las capturas (“Antártida 8611”) 91 Figura III.4: Composición específica de las capturas realizadas durante la campaña “US AMLR 99” 91 Figura III.5: Detalle por estrato de la composición específica de las capturas (“US AMLR 99”) 92 Tabla III.3: Talla media, rango, moda, porcentaje de abundancia por estrato de profundidad y abundancia de 16 especies de peces de los cruceros “Antártida 8611” y “US AMLR 99” 92 Tabla III.4: Biomasa de las especies capturadas durante la campaña “Antártida 8611” 93 Tabla III.5: Detalle de las capturas (N) de 11 especies de peces durante la campaña “Antártida 8611” 94 Tabla III.6: Análisis de la selectividad de presas para el P. de Adelia en I. Laurie a partir de los resultados de las capturas del crucero "Antártida 8611” 96 Tabla III.7: Análisis de la selectividad de presas para el P. de Adelia y el P. de Barbijo en I. Laurie a partir de los resultados de las capturas del crucero “US AMLR 99” 97 Tabla III.8: Análisis de la selectividad de presas para el P.
Recommended publications
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Fishes of the Eastern Ross Sea, Antarctica
    Polar Biol (2004) 27: 637–650 DOI 10.1007/s00300-004-0632-2 REVIEW Joseph Donnelly Æ Joseph J. Torres Tracey T. Sutton Æ Christina Simoniello Fishes of the eastern Ross Sea, Antarctica Received: 26 November 2003 / Revised: 16 April 2004 / Accepted: 20 April 2004 / Published online: 16 June 2004 Ó Springer-Verlag 2004 Abstract Antarctic fishes were sampled with 41 midwater in Antarctica is dominated by a few fish families and 6 benthic trawls during the 1999–2000 austral (Bathylagidae, Gonostomatidae, Myctophidae and summer in the eastern Ross Sea. The oceanic pelagic Paralepididae) with faunal diversity decreasing south assemblage (0–1,000 m) contained Electrona antarctica, from the Antarctic Polar Front to the continent (Ever- Gymnoscopelus opisthopterus, Bathylagus antarcticus, son 1984; Kock 1992; Kellermann 1996). South of the Cyclothone kobayashii and Notolepis coatsi. These were Polar Front, the majority of meso- and bathypelagic replaced over the shelf by notothenioids, primarily Ple- fishes have circum-Antarctic distributions (McGinnis uragramma antarcticum. Pelagic biomass was low and 1982; Gon and Heemstra 1990). Taken collectively, the concentrated below 500 m. The demersal assemblage fishes are significant contributors to the pelagic biomass was characteristic of East Antarctica and included seven and are important trophic elements, both as predators species each of Artedidraconidae, Bathydraconidae and and prey (Rowedder 1979; Hopkins and Torres 1989; Channichthyidae, ten species of Nototheniidae, and Lancraft et al. 1989, 1991; Duhamel 1998). Over the three species each of Rajidae and Zoarcidae. Common continental slope and shelf, notothenioids dominate the species were Trematomus eulepidotus (36.5%), T. scotti ichthyofauna (DeWitt 1970). Most members of this (32.0%), Prionodraco evansii (4.9%), T.
    [Show full text]
  • Advances in MARINE BIOLOGY
    Advances in MARINE BIOLOGY VOLUME 46 ThisPageIntentionallyLeftBlank Advances in MARINE BIOLOGY Edited by A. J. SOUTHWARD Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK P. A. TYLER School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, European Way, Southampton, SO14 3ZH, UK C. M. YOUNG Oregon Institute of Marine Biology, University of Oregon P.O. Box 5389, Charleston, Oregon 97420, USA and L. A. FUIMAN Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373, USA Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo This book is printed on acid-free paper. ß 2003 Elsevier Science Ltd. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.
    [Show full text]
  • Of RV Upolarsternu in 1998 Edited by Wolf E. Arntz And
    The Expedition ANTARKTIS W3(EASIZ 11) of RV uPolarsternuin 1998 Edited by Wolf E. Arntz and Julian Gutt with contributions of the participants Ber. Polarforsch. 301 (1999) ISSN 0176 - 5027 Contents 1 Page INTRODUCTION........................................................................................................... 1 Objectives of the Cruise ................................................................................................l Summary Review of Results .........................................................................................2 Itinerary .....................................................................................................................10 Meteorological Conditions .........................................................................................12 RESULTS ...................................................................................................................15 Benthic Resilience: Effect of Iceberg Scouring On Benthos and Fish .........................15 Study On Benthic Resilience of the Macro- and Megabenthos by Imaging Methods .............................................................................................17 Effects of Iceberg Scouring On the Fish Community and the Role of Trematomus spp as Predator on the Benthic Community in Early Successional Stages ...............22 Effect of Iceberg Scouring on the Infauna and other Macrobenthos ..........................26 Begin of a Long-Term Experiment of Benthic Colonisation and Succession On the High Antarctic
    [Show full text]
  • Ancient Climate Change, Antifreeze, and the Evolutionary Diversification of Antarctic Fishes
    Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes Thomas J. Neara,b,1, Alex Dornburgb, Kristen L. Kuhnb, Joseph T. Eastmanc, Jillian N. Penningtonb,d, Tomaso Patarnelloe, Lorenzo Zanef, Daniel A. Fernándezg, and Christopher D. Jonesh aPeabody Museum of Natural History and bDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 cDepartment of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; dEzra Stiles College, Yale University, New Haven, CT 06520 eDepartment of Public Health, Comparative Pathology and Veterinary Hygiene, Università di Padova, 35020 Legnaro, Italy; fDepartment of Biology, Università di Padova, 35131 Padua, Italy; gCentro Austral de Investigaciones Científicas, 9410 Ushuaia, Argentina; and hAntarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration National Marine Fisheries Service, La Jolla, CA 92037 Edited by David M. Hillis, University of Texas, Austin, TX, and approved January 25, 2012 (received for review September 15, 2011) The Southern Ocean around Antarctica is among the most rapidly they are more species-rich than their non-Antarctic sister line- warming regions on Earth, but has experienced episodic climate age (approximately 100 vs. one species) (9). Molecular di- change during the past 40 million years. It remains unclear how vergence time analyses have attempted to correlate the origin of ancient periods of climate change have shaped Antarctic bio- the AFGP-bearing Antarctic notothenioids with a period of diversity. The origin of antifreeze glycoproteins (AFGPs) in Ant- global cooling and widespread glaciation of Antarctica that be- arctic notothenioid fishes has become a classic example of how the gan at the onset of the Eocene–Oligocene boundary (14, 15), evolution of a key innovation in response to climate change can approximately 35 Ma (16, 17), leading to the conclusion that the drive adaptive radiation.
    [Show full text]
  • 2008-2009 Field Season Report Chapter 9 Antarctic Marine Living Resources Program NOAA-TM-NMFS-SWFSC-445
    2008-2009 Field Season Report Chapter 9 Antarctic Marine Living Resources Program NOAA-TM-NMFS-SWFSC-445 Demersal Finfi sh Survey of the South Orkney Islands Christopher Jones, Malte Damerau, Kim Deitrich, Ryan Driscoll, Karl-Hermann Kock, Kristen Kuhn, Jon Moore, Tina Morgan, Tom Near, Jillian Pennington, and Susanne Schöling Abstract A random, depth-stratifi ed bottom trawl survey of the South Orkney Islands (CCAMLR Subarea 48.2) fi nfi sh populations was completed as part of Leg II of the 2008/09 AMLR Survey. Data collection included abundance, spatial distribution, species and size composition, demographic structure and diet composition of fi nfi sh species within the 500 m isobath of the South Orkney Islands. Additional slope stations were sampled off the shelf of the South Orkney Islands and in the northern Antarctic Peninsula region (Subarea 48.1). During the 2008/09 AMLR Survey: • Seventy-fi ve stations were completed on the South Orkney Island shelf and slope area (63-764 m); • Th ree stations were completed on the northern Antarctic Peninsula slope (623-759 m); • A total of 7,693 kg (31,844 individuals) was processed from 65 fi nfi sh species; • Spatial distribution of standardized fi nfi sh densities demonstrated substantial contrast across the South Orkney Islands shelf area; • Th e highest densities of pooled fi nfi sh biomass occurred on the northwest shelf of the South Orkney Islands, at sta- tions north of Inaccessible and Coronation Islands, and the highest mean densities occurred within the 150-250 m depth stratum; • Th e greatest species diversity of fi nfi sh occurred at deeper stations on the southern shelf region; • Additional data collection of environmental and ecological features of the South Orkney Islands was conducted in order to further investigate Antarctic fi nfi sh in an ecosystem context.
    [Show full text]
  • Biogeographic Atlas of the Southern Ocean
    Census of Antarctic Marine Life SCAR-Marine Biodiversity Information Network BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN CHAPTER 7. BIOGEOGRAPHIC PATTERNS OF FISH. Duhamel G., Hulley P.-A, Causse R., Koubbi P., Vacchi M., Pruvost P., Vigetta S., Irisson J.-O., Mormède S., Belchier M., Dettai A., Detrich H.W., Gutt J., Jones C.D., Kock K.-H., Lopez Abellan L.J., Van de Putte A.P., 2014. In: De Broyer C., Koubbi P., Griffiths H.J., Raymond B., Udekem d’Acoz C. d’, et al. (eds.). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge, pp. 328-362. EDITED BY: Claude DE BROYER & Philippe KOUBBI (chief editors) with Huw GRIFFITHS, Ben RAYMOND, Cédric d’UDEKEM d’ACOZ, Anton VAN DE PUTTE, Bruno DANIS, Bruno DAVID, Susie GRANT, Julian GUTT, Christoph HELD, Graham HOSIE, Falk HUETTMANN, Alexandra POST & Yan ROPERT-COUDERT SCIENTIFIC COMMITTEE ON ANTARCTIC RESEARCH THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN The “Biogeographic Atlas of the Southern Ocean” is a legacy of the International Polar Year 2007-2009 (www.ipy.org) and of the Census of Marine Life 2000-2010 (www.coml.org), contributed by the Census of Antarctic Marine Life (www.caml.aq) and the SCAR Marine Biodiversity Information Network (www.scarmarbin.be; www.biodiversity.aq). The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosys- tem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems). Edited by: Claude De Broyer (Royal Belgian Institute
    [Show full text]
  • Annex 5 Report of the Working Group on Fish
    ANNEX 5 REPORT OF THE WORKING GROUP ON FISH STOCK ASSESSMENT (Hobart, Australia, 9 to 19 October 2000) CONTENTS Page INTRODUCTION ........................................................................................... 283 ORGANISATION OF THE MEETING AND ADOPTION OF THE AGENDA........................ 283 REVIEW OF AVAILABLE INFORMATION .............................................................. 283 Data Requirements Endorsed by the Commission in 1999 ............................................ 283 Data Inventory and Developments in the CCAMLR Database .................................... 283 Database Data Entry and Validation ................................................................. 284 Other .................................................................................................. 285 Fisheries Information .................................................................................... 285 Catch, Effort, Length and Age Data Reported to CCAMLR ...................................... 285 Estimates of Catch and Effort from IUU Fishing .................................................. 286 Landings by all Countries ........................................................................ 286 Estimated Trade in Dissostichus spp. in the 1999/2000 Split-year ............................ 286 Overall Estimates of IUU Catch ................................................................. 287 Indian Ocean Sector .......................................................................... 287 IUU Catches in Assessments ...................................................................
    [Show full text]
  • Об Использовании Критерия Онтогенетического Предшествования На Примере Развития Скелета Нототениевидных Рыб (Notothenioidei, Perciformes, Teleostei)
    Труды Зоологического института РАН Том 314, № 4, 2010, c. 387–404 УДК 57.017.645: 597.58 ОБ ИСПОЛЬЗОВАНИИ КРИТЕРИЯ ОНТОГЕНЕТИЧЕСКОГО ПРЕДШЕСТВОВАНИЯ НА ПРИМЕРЕ РАЗВИТИЯ СКЕЛЕТА НОТОТЕНИЕВИДНЫХ РЫБ (NOTOTHENIOIDEI, PERCIFORMES, TELEOSTEI) О.С. Воскобойникова Зоологический институт Российской академии наук, Университетская наб. 1, 199034 Санкт-Петербург, Россия; e-mail: [email protected] РЕЗЮМЕ Изучение ранних стадий развития скелета окунеобразных рыб из подотрядов Notothenioidei, Percoidei, Blennioidei, Zoarcoidei и Gobioidei выявило сходную последовательность появления скелетных элементов различного происхождения, которая соответствует таковой у других костистых рыб. Первыми в онтогенезе появляются хрящевые элементы черепа, осевого скелета и скелета хвостового плавника. После их возник- новения начинается закладка покровных костей. Позднее появляются замещающие кости. Во многих ко- стях комплексного происхождения покровные элементы также появляются раньше замещающих. Изучение преобразований строения различных отделов скелета в онтогенезе нототениевидных выявило значительно лучше выраженную лабильность костной ткани по сравнению с хрящевой. Показана большая функцио- нальная активность покровных костных элементов по сравнению с замещающими в костях комплексного происхождения. Сделано предположение, что значительная редукция покровного скелета в филогенезе по- звоночных животных во многих случаях была связана с процессом слияния покровных и замещающих ко- стей в комплексные кости, принимающие на себя функции обоих элементов. Последовательность
    [Show full text]
  • The Molecular Evolution of Rhodopsin in Marine-Derived
    THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES by Alexander Van Nynatten A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) THE MOLECULAR EVOLUTION OF RHODOPSIN IN MARINE-DERIVED AND OTHER FRESHWATER FISHES A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Cell and Systems Biology University of Toronto © Copyright by Alexander Van Nynatten (2019) ABSTRACT Visual system evolution can be influenced by the spectral properties of light available in the environment. Variation in the dim-light specialized visual pigment rhodopsin is thought to result in functional shifts that optimize its sensitivity in relation to ambient spectral environments. Marine and freshwater environments have been shown to be characterized by different spectral properties and might be expected to place the spectral sensitivity of rhodopsin under different selection pressures. In Chapter two, I show that the rate ratio of non- synonymous to synonymous substitutions is significantly elevated in the rhodopsin gene of a South American clade of freshwater anchovies with marine ancestry. This signature of positive selection is not observed in the rhodopsin gene of the marine sister clade or in non-visual genes. ii In Chapter three I functionally characterize the effects of positively selected substitutions occurring on another independent invasion of freshwater made by ancestrally marine croakers. In vitro spectroscopic assays on ancestrally resurrected rhodopsin pigments reveal a red-shift in peak spectral sensitivity along the transitional branch, consistent with the wavelengths of light illuminating freshwater environments.
    [Show full text]
  • Ross Sea As a Marine Protected Area
    1 CCAMLR WG-EMM-10/11 ROSS SEA BIOREGIONALIZATION Part I: Validation of the 2007 CCAMLR Bioregionalization Workshop Results Towards Including the Ross Sea in a Representative Network of Marine Protected Areas in the Southern Ocean David G. Ainley1, Grant Ballard2, John Weller3 1H.T. Harvey & Associates, 983 University Avenue, Los Gatos CA 95032; 2PRBO Conservation Science, 3820 Cypress Drive #11, Petaluma, California 94954; 3365 29th Street, Boulder, CO 80305 Weddell seal and pup beneath McMurdo Sound fast ice; photo J. Weller 2 EXECUTIVE SUMMARY This report provides the scientific basis, validating the results of the CCAMLR Bioregionalization Workshop (2007) as well as the report of ASOC (2010), for identifying the Ross Sea as one of 11 areas deserving close scrutiny for inclusion in a network of marine protected areas. CCAMLR (2007) identified the Ross Sea as an area of high biodiversity on the basis of its high physical heterogeneity; ASOC (2010) compared characteristics of the Ross Sea to areas designated under various international agreements instituted to preserve biodiversity. The CCAMLR (2007) subsequently was endorsed in the joint meeting of CCAMLR's Scientific Committee and the Environmental Protocol's Committee on Environmental Protection (ATCM XXXII-CEP XII, Final Report, 2009). Considered herein is the Ross Sea shelf and slope, which is a smaller portion of the area identified in CCAMLR (2007) as “Ross Sea shelf”. Waters overlying the Ross Sea continental shelf and slope comprise ~2.0% of the Southern Ocean, an area inconsequential in size from a global perspective. However, as shown by this summary of information — amassed from the national research programs especially of Italy, New Zealand, United Kindgom (during the “heroic” era), and United States — the Ross Sea not inconsequential is its biodiversity nor its disproportionate contribution to world populations of many well-known iconic Antarctic species.
    [Show full text]
  • Investigating the Larval/Juvenile Notothenioid Fish Species Assemblage in Mcmurdo Sound, Antarctica Using Phylogenetic Reconstruction
    INVESTIGATING THE LARVAL/JUVENILE NOTOTHENIOID FISH SPECIES ASSEMBLAGE IN MCMURDO SOUND, ANTARCTICA USING PHYLOGENETIC RECONSTRUCTION BY KATHERINE R. MURPHY THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology with a concentration in Ecology, Ethology, and Evolution in the Graduate College of the University of Illinois at Urbana-Champaign, 2015 Urbana, Illinois Master’s Committee: Professor Chi-Hing Christina Cheng, Director of Research Professor Emeritus Arthur L. DeVries Professor Ken N. Paige ABSTRACT Aim To investigate and identify the species found within the little-known larval and juvenile notothenioid fish assemblage of McMurdo Sound, Antarctica, and to compare this assemblage to the well-studied local adult community. Location McMurdo Sound, Antarctica. Methods We extracted genomic DNA from larval and juvenile notothenioid fishes collected from McMurdo Sound during the austral summer and used mitochondrial ND2 gene sequencing with phylogenetic reconstruction to make definitive species identifications. We then surveyed the current literature to determine the adult notothenioid communities of McMurdo Sound, Terra Nova Bay, and the Ross Sea, and subsequently compared them to the species identified in our larval/juvenile specimens. Results Of our 151 larval and juvenile fishes, 142 specimens or 94.0% represented seven species from family Nototheniidae. Only one specimen was not matched directly to a reference sequence but instead was placed as sister taxon to Pagothenia borchgrevinki with a bootstrap value of 100 and posterior probability of 1.0. The nine non-nototheniid specimens represented the following six ii species: Pogonophryne scotti, Pagetopsis maculatus, Chionodraco myersi, Chionodraco hamatus, Neopagetopsis ionah, and Psilodraco breviceps.
    [Show full text]