The Role of Notothenioid Fish in the Food Web of the Ross Sea Shelf Waters

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Notothenioid Fish in the Food Web of the Ross Sea Shelf Waters Polar Biol (2004) 27: 321–338 DOI 10.1007/s00300-004-0599-z REVIEW M. La Mesa Æ J. T. Eastman Æ M. Vacchi The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review Received: 27 June 2003 / Accepted: 23 January 2004 / Published online: 12 March 2004 Ó Springer-Verlag 2004 Abstract The Ross Sea, a large, high-latitude (72–78°S) are benthic predators on fish while smaller species feed embayment of the Antarctic continental shelf, averages mainly on benthic crustaceans. Channichthyids are less 500 m deep, with troughs to 1,200 m and the shelf break dependent on the bottom for food than other notothe- at 700 m. It is covered by pack ice for 9 months of the nioids. Some species combine benthic and pelagic life year. The fish fauna of about 80 species includes pri- styles; others are predominantly pelagic and all consume marily 4 families and 53 species of the endemic perci- euphausiids and/or fish. South polar skuas, Antarctic form suborder Notothenioidei. This review focuses on petrels, Ade´lie and emperor penguins, Weddell seals and the diet and role in the food web of notothenioids and minke and killer whales are the higher vertebrate com- top-level bird and mammal predators, and also includes ponents of the food web, and all prey on notothenioids new information on the diets of artedidraconids and to some extent. Based on the frequency of occurrence of bathydraconids. Although principally a benthic group, prey items in the stomachs of fish, bird and mammal notothenioids have diversified to form an adaptive predators, P. antarcticum and ice krill E. crystallorophias radiation that includes pelagic and semipelagic species. are the key species in the food web of the Ross Sea. In the southern Ross Sea, notothenioids dominate the P. antarcticum is a component of the diet of at least 11 fish fauna at levels of abundance and biomass >90% species of nototheniid, bathydraconid and channichth- and are, therefore, inordinately important in the food yid fish and, at frequencies of occurrence from 71 to web. Antarctic krill (Euphausia superba) and mesope- 100%, is especially important for Dissostichus mawsoni, lagic fishes are virtually absent from the shelf waters of Gvozdarus svetovidovi and some channichthyids. At least the Ross Sea. Of the four notothenioid families, noto- 16 species of notothenioids serve as prey for bird and theniids show the most ecological and dietary diversifi- mammal predators, but P. antarcticum is the most cation, with pelagic, cryopelagic, epibenthic and benthic important and is a major component of the diet of south species. Neutrally buoyant Pleuragramma antarcticum polar skua, Ade´lie and emperor penguins and Weddell constitutes >90% of both the abundance and biomass seals, at frequencies of occurrence from 26 to 100%. of the midwater fish fauna. Most benthic nototheniids E. crystallorophias is consumed by some nototheniid and are opportunistic and feed on seasonally or locally channichthyid fish and can be of importance in the diet abundant zooplanktonic prey. Artedidraconids are of emperor and Ade´lie penguins, although in the latter benthic sit-and-wait predators. Larger bathydraconids case, this is dependent on location and time of year. Unlike the linear phytoplankton fi E. super- ba fi consumers of the E. superba food chain hypothe- M. La Mesa (&) sized for much of the Southern Ocean, the food web of Istituto di Ricerche sulla Pesca Marittima, CNR, the Ross Sea shelf is non-linear, with complex prey- Largo Fiera della Pesca 1, predator interactions. Notothenioid fish play a key role: 60125 Ancona, Italy as predators, they occupy most of the trophic niches E-mail: [email protected] Fax: +39-071-55313 available in the ecosystem, relying on benthic, zoo- planktonic and nektonic organisms; as prey, they are J. T. Eastman important food resources for each other and for most Department of Biomedical Sciences, College of Osteopathic Medicine, top predators living and foraging on the shelf. They also Ohio University, Athens, OH 45701-2979, USA constitute the major link between lower (invertebrates) M. Vacchi and higher (birds and mammals) levels of the food web. ICRAM, Istituto Centrale per la Ricerca Scientifica e Tecnologica This is especially true for P. antarcticum. Along with Applicata al Mare, Via Casalotti 300, 00166 Rome, Italy E. crystallorophias, its ecological role in the Ross Sea is 322 equivalent to that of myctophids and E. superba else- the genera Notothenia and Lepidonotothen, as well as by where in the Southern Ocean. harpagiferids, bathydraconids and channichthyids. Finally, the High-Antarctic Zone is that region immediately adjacent to the continent which is covered by ice for most of the year. The fish fauna is similar to Introduction that of the Seasonal Pack-ice Zone, at least for the pe- lagic fauna. However, the benthic fauna is greatly re- The Southern Ocean consists of the southern parts of stricted in diversity of higher taxa, and characterized by the Atlantic, Indian and Pacific oceans (Lutjeharms nototheniids of the genus Trematomus and a high pro- 1990). The northern boundary of the Southern Ocean portion of other notothenioids, such as artedidraconids, is the Antarctic Polar Front, located at about 50°Sin bathydraconids and channichthyids. In the Antarctic, the Atlantic and Indian sectors and 60°S in the Pacific fish species diversity, especially that of notothenioids, sector (Hureau 1994; Lutjeharms 1990). The Antarctic generally increases with latitude, although biomass Polar Front is characterized by a sudden drop of sur- decreases farther south. For example, fish biomass is 10- face temperature of 3–4°C, as well as by changes in to 20-fold higher in the Seasonal Pack-ice Zone near other oceanographic parameters like salinity. At the Elephant Island than in the High-Antarctic southern front, northward-flowing Antarctic Surface Water sinks Weddell Sea, but indices of species diversity and even- beneath warmer Subantarctic Surface Water, generat- ness are lower at Elephant Island than at comparable ing a transition zone between surface water masses of depths on the High-Antarctic shelf (Tiedtke and Kock different temperatures (Eastman 1993). From an 1989). oceanographic perspective, the surface circulation In high-latitude shelf areas like the Ross Sea, the around Antarctica consists of two main currents. Close overwhelming dominance by a single taxonomic group is to the Antarctic Continent, easterly winds generate a unparalleled in the fish fauna of any other marine eco- counterclockwise water circulation, i.e. the Antarctic system. As documented by benthic trawling at depths Coastal Current or East Wind Drift. North of 60°S, of 107–1,191 m in the southwestern Ross Sea (73–77°S), westerly winds produce a clockwise and northward notothenioids comprise 76.6% of species, 91.6% of water flow, known as Antarctic Circumpolar Current abundance and 91.2% of biomass (Eastman and Hubold or West Wind Drift, representing the major current in 1999). Non-notothenioids are represented by Rajidae, the Southern Ocean. In large embayments of the Ant- Muraenolepidae, Liparidae and Zoarcidae, accounting arctic Continent, particularly the Weddell and Ross for 8.4% of abundance and 8.5% of frequency of Seas, the Antarctic Coastal Current forms clockwise occurrence (Eastman and Hubold 1999). Since noto- gyres, which probably concentrate nutrients like sili- thenioids are the only fish group of significant biomass, cate, phosphate and nitrate (Lutjeharms 1990). Unlike they obviously play a major role in the food web. other areas of Antarctica, the continental shelves of the There is a historical or evolutionary hypothesis for Weddell and Ross Seas are wide and 500–600 m deep, this phenomenon—notothenioids reach these levels of with inner shelf depressions reaching depths of over dominance because they occupy niches filled by taxo- 1,200 m (Anderson 1999). Furthermore, much of the nomically diverse groups of fishes in temperate shelf Antarctic coastline is covered by ice shelves, which are areas, groups not represented on the Antarctic shelf exceptionally large in the Weddell and Ross Seas. (Eastman 2000). The fossil record indicates that over the During much of the year, the adjacent shelf waters are past 40 million years, there has been a nearly complete covered by pack ice. replacement of the Antarctic fish fauna. A diverse cos- Based on the distribution of the pelagic and demersal mopolitan temperate fauna from the late Eocene was fishes, three main ichthyofaunal subregions are recog- replaced by the highly endemic, cold-adapted modern nized in the Southern Ocean: from north to south, the fauna. Although the specific factors responsible for the Ice-free Zone, the Seasonal Pack-ice Zone and the High- replacement are not completely understood, the Antarctic Zone (Kock 1992). grounding of the ice sheet on the continental shelf and The Ice-free Zone, where ice cover is absent all year, changing trophic conditions may have played a role. In a lies between the Antarctic Polar Front and the northern habitat with few other fishes and reduced competition, limit of the pack ice in winter/spring. It is deep sea, notothenioids underwent a depth-related diversification almost exclusively inhabited by mesopelagic and directed away from the ancestral benthic habitat toward bathypelagic fish, and most of these are cosmopolitan pelagic or partially pelagic zooplanktivory and pisci- rather than members of the indigenous Antarctic perci- vory. Although they lack swim bladders, in a few spe- form suborder Notothenioidei. cies, density reduction to neutral buoyancy has been The Seasonal Pack-ice Zone extends between the achieved through a combination of reduced skeletal limit of pack ice in winter/spring and in autumn/sum- mineralization and lipid deposition, with paedomor- mer, including the islands north of the maximum limit of phosis being one of the mechanisms facilitating such a the pack ice.
Recommended publications
  • Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among Three Antarctic Fish Species
    Comparative Proteomic Analysis of Erythropoiesis Tissue Head Kidney Among three Antarctic Fish Species Ruonan Jia Shanghai Ocean University Shaojun Huang Shanghai Ocean University Wanying Zhai Shanghai Ocean University Shouwen Jiang Shanghai Ocean University Wenhao Li Shanghai Ocean University Faxiang Wang Shanghai Ocean University Qianghua Xu ( [email protected] ) Shanghai Ocean University https://orcid.org/0000-0003-0351-1765 Research Article Keywords: Antarctic icesh, erythropoiesis, hematopoiesis, head kidney, immunity Posted Date: June 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-504121/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/17 Abstract Antarctic icesh is the only known vertebrate species that lacks oxygen-carrying hemoglobin and functional erythrocytes. To reveal the unique hematopoietic process of icesh, we used an integrated approach including tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify the dynamic changes in the head kidney whole proteome of a white-blooded icesh, Chionodraco hamatus, compared to those in two other red-blooded Antarctic sh, Trematomus bernacchii and Notothenia coriiceps. Of the 4,672 identied proteins, in the Antarctic ice sh head kidney, 123 proteins were signicantly up-regulated and 95 proteins were down-regulated. The functional grouping of differentially expressed proteins based on KEGG pathway analysis shows that white blood sh and red blood sh have signicant differences in erythropoiesis, heme biogenesis, leucocyte and platelet cell development. The proteins involved in the hematopoietic process in icesh showed a clear trend of downregulation of erythroid lineage marker proteins and upregulation of lymphoid and megakaryocytic lineage marker proteins, including CD9, ITGB2, and MTOR, which suggests a shift in hematopoiesis in the icesh head kidney due to the loss of erythrocytes.
    [Show full text]
  • High Seas Bottom Trawl Fisheries and Their Impacts on the Biodiversity Of
    High Seas Bottom Trawl Fisheries and their Impacts on the Biodiversity of Vulnerable Deep-Sea Ecosystems: Options for International Action Matthew Gianni Cover Photography The author wishes to thank the following contributors for use of their photography. Clockwise from top right: A rare anglerfish or sea toad (Chaunacidae: Bathychaunax coloratus), measuring 20.5 cm in total length, on the Davidson Seamount (2461 meters). Small, globular, reddish, cirri or hairy protrusions cover the body. The lure on the forehead is used to attract prey. Credit: NOAA/MBARI 2002 Industrial fisheries of Orange roughy. Emptying a mesh full of Orange roughy into a trawler. © WWF / AFMA, Credit: Australian Fisheries Management Authority White mushroom sponge (Caulophecus sp). on the Davidson Seamount (1949 meters). Credit: NOAA/MBARI 2002 Bubblegum coral (Paragorgia sp.) and stylasterid coral (Stylaster sp.) at 150 meters depth off Adak Island, Alaska. Credit: Alberto Lindner/NOAA Cover design: James Oliver, IUCN Global Marine Programme Printing of this publication was made possible through the generous support of HIGH SEAS BOTTOM TRAWL FISHERIES AND THEIR IMPACTS ON THE BIODIVERSITY OF VULNERABLE DEEP-SEA ECOSYSTEMS: OPTIONS FOR INTERNATIONAL ACTION Matthew Gianni IUCN – The World Conservation Union 2004 Report prepared for IUCN - The World Conservation Union Natural Resources Defense Council WWF International Conservation International The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, WWF, Conservation International or Natural Resources Defense Council concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • F!L3ljnew CITATIONS in COASTAL TOPICS • a
    ·/f1!f!!II:. f!l3lJNEW CITATIONS IN COASTAL TOPICS • A ., Addis, R.P.; Garstand, M., and Emmitt, G.D., J9R4. Downdrafts from tropical oceanic cumuli. Boundary-Layer Meteorology. 28(1-2).23-49. Admiraal, W.; Laane, R.W.P.M., and Peletier, H., 1984. Participation of diotoms in the amino-acid cycle of coastal waters­ uptake and excretion in cultures. Marine Ecology - Prowess Sf-ries. I ~(:1I. :lO:1-306. Ahmed, 8.T.; King, 8. L., and Clayton, J.R., 1984. Organic-mattler diagenesis in the anoxic sediments of Saanich Inlet. British Columbia. Canada - a case for highly evolved community interactions. Marine Chemistry. 14(3),233-252 Ajebouri, M.M. and Trollope, D.H., 1984. Indicator hacte'ia in fresh water and marine moUusks. HydrobioloRY, 111 (2), 9:l-1 02. Alam, M.; Piper, D.J.W., and Cooke, H.B.8., 198:\. Late Quaternarv stratigraphy and paleooceanography of the Crand Banks continental margin, eastern Canada. Boreas. \2(41. 25:1-2GI AIdabas, M.A.; Hybbard, F.H. , and McManus, J., 1984. The shell of Mytilus as an indicator of zonal variations of water quality within an estuary. Estuarine. Coastal and SI"'lf Science. I H(:ll. 2G:I-270. Allen, D.M., 1984. Population dynamics of the mysid shrimp Mysidop.,i., bili,-loll'i Tattersall. W.M. in a tern perate estuary. Jour­ nal of Crustacean Biology_ 4( 1).25':14 Allen, L.G. and Demartin, E.E., 198:\. Temporal and spatial patterns of nearshore distribution and abundance of the pelagic fishes off San Onofre Oceanside. Califol1lia. Fishery Rulll·tin, RI(:11.
    [Show full text]
  • Reproductive Strategy of Deep-Sea and Antarctic Octopods of the Genera Graneledone, Adelieledone and Muusoctopus (Mollusca: Cephalopoda)
    Vol. 18: 21–29, 2013 AQUATIC BIOLOGY Published online January 23 doi: 10.3354/ab00486 Aquat Biol Reproductive strategy of deep-sea and Antarctic octopods of the genera Graneledone, Adelieledone and Muusoctopus (Mollusca: Cephalopoda) Vladimir Laptikhovsky* Falkland Islands Government Fisheries Department, Stanley FIQQ 1ZZ, Falkland Islands ABSTRACT: Reproductive systems of spent brooding octopodid females of Muusoctopus longi- brachus akambei, Adelieledone polymorpha and Graneledone macrotyla (Eledoninae) were col- lected in Southwest Atlantic and Antarctic waters. Their study demonstrated that the size distribu- tion of post-ovulatory follicles (POF) is mostly unimodal, suggesting that they only lay 1 batch of eggs. These data, together with a reevaluation of the literature, revealed that deep-sea and polar benthic octopods are generally not multiple spawners. Females spawn a single egg mass simulta- neously or as a series of several consequent mini-batches separated by short periods of time, mak- ing it difficult to distinguish them by either size or condition of their POF. Analysis of the length−frequency distribution of POF is a useful tool to reconstruct the spawning history of brood- ing females of cold-water octopods. KEY WORDS: Octopus · Spawning · Post-ovulatory follicle · POF · Reproductive strategy · Deep sea · Antarctic Resale or republication not permitted without written consent of the publisher INTRODUCTION 2008). Growth of ovarian eggs is generally synchro- nous, although in maturing females the oocyte size Most benthic octopods brood a single egg mass, and distribution might be bimodal or polymodal (Kuehl the female dies as the eggs hatch. This egg mass 1988, Laptikhovsky 1999a, 2001, Önsoy & Salman (clutch) might be laid in one bout or in several consec- 2004, Bello 2006, Barratt et al.
    [Show full text]
  • 1 We Thank the Referees for Their Careful Review
    We thank the referees for their careful review and thoughtful comments. Below please see our point-by-point responses and changes made to the manuscript. Referee report #1 Thank you for responding to my comments. It is now clearer what is going on, but some additional enhancements are desirable. You need to state clearly in the abstract and probably in the manuscript as well that you are using pre-industrial conditions to examine sea-ice generated Antarctic precipitation variability in the absence of anthropogenic forcing. This should appear explicitly in the first sentence of the abstract, I think, rather than being implicit here and throughout the manuscript. I am recommending minor revisions, but think that this is a very important aspect to address comprehensively to make the intent and methodology of your extensive work obvious to the reader. Done as suggested. Now the first sentence of the abstract reads “We conduct sensitivity experiments using a general circulation model that has an explicit water source tagging capability forced by prescribed composites of pre-industrial sea ice concentrations (SIC) and corresponding sea surface temperatures (SST) to understand the impact of sea ice anomalies on regional evaporation, moisture transport, and source–receptor relationships for Antarctic precipitation in the absence of anthropogenic forcing.” A similar statement is also made in the summary paragraph of the Introduction section: “In this study, we aim to understand the impact of SO sea ice anomalies associated with internal variability (in the absence of anthropogenic forcing) on local evaporation, moisture transport and source–receptor relationships for moisture and precipitation over Antarctica using a GCM that has an explicit water source tagging capability.” Section 3.2: You attribute southerly katabatic flow to the polar high.
    [Show full text]
  • Variable Expression of Myoglobin Among the Hemoglobinless Antarctic Icefishes (Channichthyidae͞oxygen Transport͞phylogenetics)
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 3420–3424, April 1997 Physiology Variable expression of myoglobin among the hemoglobinless Antarctic icefishes (Channichthyidaeyoxygen transportyphylogenetics) BRUCE D. SIDELL*†‡,MICHAEL E. VAYDA*†,DEENA J. SMALL†,THOMAS J. MOYLAN*, RICHARD L. LONDRAVILLE*§, MENG-LAN YUAN†¶,KENNETH J. RODNICK*i,ZOE A. EPPLEY*, AND LORI COSTELLO† *School of Marine Sciences and Department of Zoology, †Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono, ME 04469 Communicated by George N. Somero, Stanford University, Pacific Grove, CA, January 13, 1997 (received for review October 24, 1996) ABSTRACT The important intracellular oxygen-binding Icefishes exhibit several unique physiological features. Car- protein, myoglobin (Mb), is thought to be absent from oxi- diovascular adaptations to compensate for lack of hemoglobin dative muscle tissues of the family of hemoglobinless Antarctic in the circulation include lower blood viscosity, increased heart icefishes, Channichthyidae. Within this family of fishes, which size, greater cardiac output, and increased blood volume is endemic to the Southern Ocean surrounding Antarctica, compared with their red-blooded notothenioid relatives (2, there exist 15 known species and 11 genera. To date, we have 14–16). Combined with the high aqueous solubility of oxygen examined eight species of icefish (representing seven genera) at severely cold body temperature, these cardiovascular fea- using immunoblot analyses. Results indicate that Mb is tures are considered necessary to ensure that tissues obtain present in heart ventricles from five of these species of icefish. adequate amounts of oxygen carried in physical solution by the Mb is absent from heart auricle and oxidative skeletal muscle plasma.
    [Show full text]
  • Jan Jansen, Dipl.-Biol
    The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen, Dipl.-Biol. Under the supervision of Craig R. Johnson Nicole A. Hill Piers K. Dunstan and John McKinlay Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Quantitative Antarctic Science Institute for Marine and Antarctic Studies (IMAS), University of Tasmania May 2019 In loving memory of my dad, whose passion for adventure, sport and all of nature’s life and diversity inspired so many kids, including me, whose positive and generous attitude touched so many people’s lives, and whose love for the ocean has carried over to me. The spatial, temporal and structural distribution of Antarctic seafloor biodiversity by Jan Jansen Abstract Biodiversity is nature’s most valuable resource. The Southern Ocean contains significant levels of marine biodiversity as a result of its isolated history and a combination of exceptional environmental conditions. However, little is known about the spatial and temporal distribution of biodiversity on the Antarctic continental shelf, hindering informed marine spatial planning, policy development underpinning regulation of human activity, and predicting the response of Antarctic marine ecosystems to environmental change. In this thesis, I provide detailed insight into the spatial and temporal distribution of Antarctic benthic macrofaunal and demersal fish biodiversity. Using data from the George V shelf region in East Antarctica, I address some of the main issues currently hindering understanding of the functioning of the Antarctic ecosystem and the distribution of biodiversity at the seafloor. The focus is on spatial biodiversity prediction with particular consideration given to previously unavailable environmental factors that are integral in determining where species are able to live, and the poor relationships often found between species distributions and other environmental factors.
    [Show full text]
  • Age-Length Composition of Mackerel Icefish (Champsocephalus Gunnari, Perciformes, Notothenioidei, Channichthyidae) from Different Parts of the South Georgia Shelf
    CCAMLR Scieilce, Vol. 8 (2001): 133-146 AGE-LENGTH COMPOSITION OF MACKEREL ICEFISH (CHAMPSOCEPHALUS GUNNARI, PERCIFORMES, NOTOTHENIOIDEI, CHANNICHTHYIDAE) FROM DIFFERENT PARTS OF THE SOUTH GEORGIA SHELF G.A. Frolkina AtlantNIRO 5 Dmitry Donskoy Street Kaliningrad 236000, Russia Email - atlantQbaltnet.ru Abstract Biostatistical data obtained by Soviet research and commercial vessels from 1970 to 1991 have been used to determine tlne age-length composition of mackerel icefish (Chnnzpsoceplzalus g~~izllnrl)from different parts of the South Georgia area. An analysis of the spatial distribution of C. giirzrznri size and age groups over the eastern, northern, western and soutlnern parts of tlne shelf, and near Shag Rocks, revealed a similar age-leingtl~composition for young fish inhabiting areas to the west of the island and near Shag Rocks. Differences were observed between those t~7ogroups and the easterin group. The larger number of mature fish in the west is related to the migration of maturing individuals from the eastern and western parts of the area. It is implied that part of tlne western group migrates towards Shag Rocks at the age of 2-3 years. It has been found that, by number, recruits represent the largest part of tlne population, whether a fishery is operating or not. As a result of this, as well as the species' ability to live not only in off- bottom, but also in pelagic waters, an earlier age of sexual maturity compared to other nototheniids, and favourable oceanographic conditions, the C. g~lrliznrl stock could potentially recover quickly from declines in stock size and inay become abundant in the area, as has bee11 demonstrated on several occasions in the 1970s and 1980s.
    [Show full text]
  • A GUIDE to IDENTIFICATION of FISHES CAUGHT ALONG with the ANTARCTIC KRILL Author(S) 1) Iwami, T
    Document No. [ to be completed by the Secretariat ] WG-EMM-07/32 Date submitted [ to be completed by the Secretariat ] 1 July 2007 Language [ to be completed by the Secretariat ] Original: English Agenda Agenda Item No(s): 4.3 Title A GUIDE TO IDENTIFICATION OF FISHES CAUGHT ALONG WITH THE ANTARCTIC KRILL Author(s) 1) Iwami, T. and 2) M. Naganobu Affiliation(s) 1) Laboratory of Biology, Tokyo Kasei Gakuin University 2) National Research Institute of Far Seas Fisheries Published or accepted for publication elsewhere? Yes No x If published, give details ABSTRACT A field key to early life stages of Antarctic fish caught along with the Antarctic krill is produced. The key includes 8 families and 28 species mainly from the Atlantic sector of the Southern Ocean and uses distinguished characters which permit rapid field identification. In some cases, however, it is impossible to discriminate among species of the same family by remarkable characters. A species key is not shown for such resemble species and a brief summary of the main morphological features of species and genera is provided. SUMMARY OF FINDINGS AS RELATED TO NOMINATED AGENDA ITEMS Agenda Item Finding 4.3 We are producing a practical field key to juvenile fish caught along with the Antarctic Scientific krill. To our knowledge more than 40 species of fish have been found as by-catch. Observation However, the number of dominant fish species found in the krill catch never exceeds 20 species. An useful and practical identification key to these dominant species maybe facilitate the quantitative assessment of fish in the krill catch.
    [Show full text]
  • Fishes of the Eastern Ross Sea, Antarctica
    Polar Biol (2004) 27: 637–650 DOI 10.1007/s00300-004-0632-2 REVIEW Joseph Donnelly Æ Joseph J. Torres Tracey T. Sutton Æ Christina Simoniello Fishes of the eastern Ross Sea, Antarctica Received: 26 November 2003 / Revised: 16 April 2004 / Accepted: 20 April 2004 / Published online: 16 June 2004 Ó Springer-Verlag 2004 Abstract Antarctic fishes were sampled with 41 midwater in Antarctica is dominated by a few fish families and 6 benthic trawls during the 1999–2000 austral (Bathylagidae, Gonostomatidae, Myctophidae and summer in the eastern Ross Sea. The oceanic pelagic Paralepididae) with faunal diversity decreasing south assemblage (0–1,000 m) contained Electrona antarctica, from the Antarctic Polar Front to the continent (Ever- Gymnoscopelus opisthopterus, Bathylagus antarcticus, son 1984; Kock 1992; Kellermann 1996). South of the Cyclothone kobayashii and Notolepis coatsi. These were Polar Front, the majority of meso- and bathypelagic replaced over the shelf by notothenioids, primarily Ple- fishes have circum-Antarctic distributions (McGinnis uragramma antarcticum. Pelagic biomass was low and 1982; Gon and Heemstra 1990). Taken collectively, the concentrated below 500 m. The demersal assemblage fishes are significant contributors to the pelagic biomass was characteristic of East Antarctica and included seven and are important trophic elements, both as predators species each of Artedidraconidae, Bathydraconidae and and prey (Rowedder 1979; Hopkins and Torres 1989; Channichthyidae, ten species of Nototheniidae, and Lancraft et al. 1989, 1991; Duhamel 1998). Over the three species each of Rajidae and Zoarcidae. Common continental slope and shelf, notothenioids dominate the species were Trematomus eulepidotus (36.5%), T. scotti ichthyofauna (DeWitt 1970). Most members of this (32.0%), Prionodraco evansii (4.9%), T.
    [Show full text]
  • Ancient Climate Change, Antifreeze, and the Evolutionary Diversification
    Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes Thomas J. Neara,b,1, Alex Dornburgb, Kristen L. Kuhnb, Joseph T. Eastmanc, Jillian N. Penningtonb,d, Tomaso Patarnelloe, Lorenzo Zanef, Daniel A. Fernándezg, and Christopher D. Jonesh aPeabody Museum of Natural History and bDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520 cDepartment of Biomedical Sciences, College of Osteopathic Medicine, Ohio University, Athens, OH 45701; dEzra Stiles College, Yale University, New Haven, CT 06520 eDepartment of Public Health, Comparative Pathology and Veterinary Hygiene, Università di Padova, 35020 Legnaro, Italy; fDepartment of Biology, Università di Padova, 35131 Padua, Italy; gCentro Austral de Investigaciones Científicas, 9410 Ushuaia, Argentina; and hAntarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration National Marine Fisheries Service, La Jolla, CA 92037 Edited by David M. Hillis, University of Texas, Austin, TX, and approved January 25, 2012 (received for review September 15, 2011) The Southern Ocean around Antarctica is among the most rapidly they are more species-rich than their non-Antarctic sister line- warming regions on Earth, but has experienced episodic climate age (approximately 100 vs. one species) (9). Molecular di- change during the past 40 million years. It remains unclear how vergence time analyses have attempted to correlate the origin of ancient periods of climate change have shaped Antarctic bio- the AFGP-bearing Antarctic notothenioids with a period of diversity. The origin of antifreeze glycoproteins (AFGPs) in Ant- global cooling and widespread glaciation of Antarctica that be- arctic notothenioid fishes has become a classic example of how the gan at the onset of the Eocene–Oligocene boundary (14, 15), evolution of a key innovation in response to climate change can approximately 35 Ma (16, 17), leading to the conclusion that the drive adaptive radiation.
    [Show full text]
  • Contribution to the Knowledge of the Parasitic Fauna of Fish Off Adelie Land, Antarctica
    vol. 34, no. 4, pp. 429–435, 2013 doi: 10.2478/popore−2013−0023 Contribution to the knowledge of the parasitic fauna of fish off Adelie Land, Antarctica Krzysztof ZDZITOWIECKI 1 and Catherine OZOUF−COSTAZ 2 1 Instytut Parazytologii, Polska Akademia Nauk, ul. Twarda 51/55, 00−818 Warszawa, Poland <[email protected] > 2 Muséum National d’Histoire Naturelle, 43 Rue Cuvier, 75231 Paris Cedex 05, France <[email protected]> Abstract: In total, 42 fish belonging to 16 species were examined. All fish were infected. Parasitic worms were endoparasites: Digenea (eight species), Cestoda (three mixed groups of larval forms), Acanthocephala (two species) and Nematoda (one species in adult and one in larval stage, and two Contracaecum spp. in larval stage). Undetermined parasitic Cope− poda and Hirudinea were external parasites. Summing up previous and new data 25 species and mixed groups were found. Parasites in larval stage using fish as intermediate or paratenic hosts were more numerous than species maturing in fish. For example, 1913 nem− atodes Contracaecum spp. were recorded in one fish, whereas the digenean, Genolinea bowersi, was the most numerous maturing parasite (168 specimens in one fish). Key words: Antarctica, Adelie Land, fish parasites. Introduction Only limited data on the occurrence of helminths in fish at Adelie Land have previously been published. Ten species were recorded in fish examined in neigh− bouring sub−coastal waters, but without numerical data regarding infections (Johnston and Best 1937; Johnston 1938; Johnston and Mawson 1945; Prudhoe 1969; Prudhoe and Bray 1973). Recently Zdzitowiecki (1998, 2001), Zdzito− wiecki et al. (1998) and Laskowski et al.
    [Show full text]