2019 Weddell Sea Expedition

Total Page:16

File Type:pdf, Size:1020Kb

2019 Weddell Sea Expedition Initial Environmental Evaluation SA Agulhas II in sea ice. Image: Johan Viljoen 1 Submitted to the Polar Regions Department, Foreign and Commonwealth Office, as part of an application for a permit / approval under the UK Antarctic Act 1994. Submitted by: Mr. Oliver Plunket Director Maritime Archaeology Consultants Switzerland AG c/o: Maritime Archaeology Consultants Switzerland AG Baarerstrasse 8, Zug, 6300, Switzerland Final version submitted: September 2018 IEE Prepared by: Dr. Neil Gilbert Director Constantia Consulting Ltd. Christchurch New Zealand 2 Table of contents Table of contents ________________________________________________________________ 3 List of Figures ___________________________________________________________________ 6 List of Tables ___________________________________________________________________ 8 Non-Technical Summary __________________________________________________________ 9 1. Introduction _________________________________________________________________ 18 2. Environmental Impact Assessment Process ________________________________________ 20 2.1 International Requirements ________________________________________________________ 20 2.2 National Requirements ____________________________________________________________ 21 2.3 Applicable ATCM Measures and Resolutions __________________________________________ 22 2.3.1 Non-governmental activities and general operations in Antarctica _______________________________ 22 2.3.2 Scientific research in Antarctica __________________________________________________________ 23 2.3.3 Human heritage in Antarctica ____________________________________________________________ 23 2.4 Applicable CCAMLR Conservation Measures ___________________________________________ 24 2.5 Other applicable Antarctic-specific guidance material ___________________________________ 24 3. Scope of the Initial Environmental Evaluation ______________________________________ 25 3.1 Activities that are included _________________________________________________________ 25 3.2 Activities that are excluded ________________________________________________________ 25 4. Description of the Planned Activities _____________________________________________ 27 4.1 Operations and Logistics ___________________________________________________________ 27 4.1.1 Expedition personnel ___________________________________________________________________ 27 4.1.2 Air transport __________________________________________________________________________ 31 4.1.3 Marine transport ______________________________________________________________________ 32 4.1.3.1 SA Agulhas II details ________________________________________________________________ 33 4.1.3.2 Vessel safety ______________________________________________________________________ 34 4.1.3.3 Vessel route ______________________________________________________________________ 36 4.1.3.4 Personnel safety and briefings ________________________________________________________ 38 4.1.4 Summary of expedition itinerary __________________________________________________________ 38 4.2 Marine Research _________________________________________________________________ 39 4.2.1 Aims and objectives ____________________________________________________________________ 39 4.2.2 Research equipment ___________________________________________________________________ 40 4.2.2.1 Underwater vehicles _______________________________________________________________ 40 4.2.2.2 Remotely piloted aircraft systems _____________________________________________________ 42 4.2.2.3 Marine sampling equipment _________________________________________________________ 45 4.2.1 Sub-surface ice-shelf profiling ____________________________________________________________ 49 4.2.2 Benthic survey ________________________________________________________________________ 51 4.2.3 Sea ice ______________________________________________________________________________ 53 4.2.4 Oceanography and marine ecology ________________________________________________________ 54 4.3 Research Cooperation with the AlFred Wegener Institute, Germany _______________________ 56 4.4 Marine Archaeology ______________________________________________________________ 57 3 5. Alternatives _________________________________________________________________ 62 5.1 Do not proceed __________________________________________________________________ 62 5.2 Alternative locations ______________________________________________________________ 63 5.2.1 Alternative ice shelf locations ____________________________________________________________ 63 5.2.2 Alternative marine archaeological location _________________________________________________ 64 5.3 Alternative vessels _______________________________________________________________ 64 5.3.1 MS Murmansk ________________________________________________________________________ 64 5.3.2 Oden ________________________________________________________________________________ 65 5.4 Alternative timing ________________________________________________________________ 66 5.5 Reduced period of operation _______________________________________________________ 67 5.6 Reduced scale of the research programme ____________________________________________ 67 5.6.1 Reduce the spatial scale ________________________________________________________________ 67 5.6.2 Fewer people _________________________________________________________________________ 68 5.6.3 Less or no invasive sampling _____________________________________________________________ 68 6. Description of the Existing Environmental State ____________________________________ 70 6.1 Introduction and early discoveries ___________________________________________________ 70 6.2 Bathymetry and Geomorphology ____________________________________________________ 72 6.3 Oceanography ___________________________________________________________________ 74 6.4 Sea ice _________________________________________________________________________ 76 6.5 Glaciology / Ice shelves ____________________________________________________________ 77 6.6 Ecosystems _____________________________________________________________________ 79 6.6.1 Pelagic ecosystem _____________________________________________________________________ 79 6.6.2 Benthic ecosystem _____________________________________________________________________ 81 6.7 Megafauna ______________________________________________________________________ 83 6.7.1 Pinnipeds and cetaceans ________________________________________________________________ 83 6.7.2 Penguins and Sea birds _________________________________________________________________ 86 6.8 Protected and Managed Areas ______________________________________________________ 90 6.8.1 Antarctic Specially Protected and Specially Managed Areas ____________________________________ 90 6.8.2 Historic sites or monuments _____________________________________________________________ 91 6.8.3 CCAMLR marine spatial protection measures ________________________________________________ 92 6.8.3.1 Marine Protected Areas (MPAs) ______________________________________________________ 92 6.8.3.2 CCAMLR Ecosystem Monitoring Programme (CEMP) sites __________________________________ 93 6.8.3.3 Vulnerable Marine Ecosystems (VMEs) _________________________________________________ 94 6.8.3.4 Special Areas for Scientific Study ______________________________________________________ 94 7. Assessment of the Environmental Impacts ________________________________________ 96 7.1 Methods and Data ________________________________________________________________ 96 7.2 Outputs ________________________________________________________________________ 96 7.3 Exposures _______________________________________________________________________ 98 7.4 Impacts and Mitigation Measures ___________________________________________________ 99 7.4.1 Ship operations _______________________________________________________________________ 99 7.4.1.1 Potential impact: atmospheric emissions. _______________________________________________ 99 7.4.1.2 Potential impact: noise including marine noise _________________________________________ 102 7.4.1.3 Potential impact: accidental release of fuel. ____________________________________________ 102 7.4.1.4 Potential impact: production and release of waste ______________________________________ 103 7.4.1.5 Potential impact: water turbulence ___________________________________________________ 104 4 7.4.1.6 Potential impact: introduction of non-native species _____________________________________ 105 7.4.2 Research activity: Deployment of AUVs and ROV ____________________________________________ 106 7.4.2.1 Potential impact: noise, light and heat emissions ________________________________________ 106 7.4.2.2 Potential impact: equipment failure leading to loss of underwater vehicles ___________________ 107 7.4.2.3 Potential impact: water turbulence ___________________________________________________ 109 7.4.2.4 Potential impact: introduction of non-native species _____________________________________ 109 7.4.3 Research activity: Deployment of sediment and benthic sampling equipment _____________________ 110 7.4.3.1 Potential impact: physical disturbance of benthos _______________________________________ 110 7.4.3.2 Potential impact: loss of sampling equipment __________________________________________ 111 7.4.3.3 Potential impact: introduction of non-native species _____________________________________ 112 7.4.3.4 Potential impact: removal of native fauna and micro-flora
Recommended publications
  • The Antarctic Treaty System And
    The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord".
    [Show full text]
  • Biennial Review 1969/70 Bedford Institute Dartmouth, Nova Scotia Ocean Science Reviews 1969/70 A
    (This page Blank in the original) ii Bedford Institute. ii Biennial Review 1969/70 Bedford Institute Dartmouth, Nova Scotia Ocean Science Reviews 1969/70 A Atlantic Oceanographic Laboratory Marine Sciences Branch Department of Energy, Mines and Resources’ B Marine Ecology Laboratory Fisheries Research Board of Canada C *As of June 11, 1971, Department of Environment (see forward), iii (This page Blank in the original) iv Foreword This Biennial Review continues our established practice of issuing a single document to report upon the work of the Bedford Institute as a whole. A new feature introduced in this edition is a section containing four essays: The HUDSON 70 Expedition by C.R. Mann Earth Sciences Studies in Arctic Marine Waters, 1970 by B.R. Pelletier Analysis of Marine Ecosystems by K.H. Mann Operation Oil by C.S. Mason and Wm. L. Ford They serve as an overview of the focal interests of the past two years in contrast to the body of the Review, which is basically a series of individual progress reports. The search for petroleum on the continental shelves of Eastern Canada and Arctic intensified considerably with several drilling rigs and many geophysical exploration teams in the field. To provide a regional depository for the mandatory core samples required from all drilling, the first stage of a core storage and archival laboratory was completed in 1970. This new addition to the Institute is operated by the Resource Administration Division of the Department of Energy, Mines & Resources. In a related move the Geological Survey of Canada undertook to establish at the Institute a new team whose primary function will be the stratigraphic mapping of the continental shelf.
    [Show full text]
  • Navigation on Shackleton's Voyage to Antarctica
    Records of the Canterbury Museum, 2019 Vol. 33: 5–22 © Canterbury Museum 2019 5 Navigation on Shackleton’s voyage to Antarctica Lars Bergman1 and Robin G Stuart2 1Saltsjöbaden, Sweden 2Valhalla, New York, USA Email: [email protected] On 19 January 1915, the Imperial Trans-Antarctic Expedition, under the leadership of Sir Ernest Shackleton, became trapped in their vessel Endurance in the ice pack of the Weddell Sea. The subsequent ordeal and efforts that lead to the successful rescue of all expedition members are the stuff of legend and have been extensively discussed elsewhere. Prior to that time, however, the voyage had proceeded relatively uneventfully and was dutifully recorded in Captain Frank Worsley’s log and work book. This provides a window into the navigational methods used in the day-to- day running of the ship by a master mariner under normal circumstances in the early twentieth century. The conclusions that can be gleaned from a careful inspection of the log book over this period are described here. Keywords: celestial navigation, dead reckoning, double altitudes, Ernest Shackleton, Frank Worsley, Imperial Trans-Antarctic Expedition, Mercator sailing, time sight Introduction On 8 August 1914, the Imperial Trans-Antarctic passage in the 22½ foot (6.9 m) James Caird to Expedition under the leadership of Sir Ernest seek rescue from South Georgia. It is ultimately Shackleton set sail aboard their vessel the steam a tribute to Shackleton’s leadership and Worsley’s yacht (S.Y.) Endurance from Plymouth, England, navigational skills that all survived their ordeal. with the goal of traversing the Antarctic Captain Frank Worsley’s original log books continent from the Weddell to Ross Seas.
    [Show full text]
  • F!L3ljnew CITATIONS in COASTAL TOPICS • a
    ·/f1!f!!II:. f!l3lJNEW CITATIONS IN COASTAL TOPICS • A ., Addis, R.P.; Garstand, M., and Emmitt, G.D., J9R4. Downdrafts from tropical oceanic cumuli. Boundary-Layer Meteorology. 28(1-2).23-49. Admiraal, W.; Laane, R.W.P.M., and Peletier, H., 1984. Participation of diotoms in the amino-acid cycle of coastal waters­ uptake and excretion in cultures. Marine Ecology - Prowess Sf-ries. I ~(:1I. :lO:1-306. Ahmed, 8.T.; King, 8. L., and Clayton, J.R., 1984. Organic-mattler diagenesis in the anoxic sediments of Saanich Inlet. British Columbia. Canada - a case for highly evolved community interactions. Marine Chemistry. 14(3),233-252 Ajebouri, M.M. and Trollope, D.H., 1984. Indicator hacte'ia in fresh water and marine moUusks. HydrobioloRY, 111 (2), 9:l-1 02. Alam, M.; Piper, D.J.W., and Cooke, H.B.8., 198:\. Late Quaternarv stratigraphy and paleooceanography of the Crand Banks continental margin, eastern Canada. Boreas. \2(41. 25:1-2GI AIdabas, M.A.; Hybbard, F.H. , and McManus, J., 1984. The shell of Mytilus as an indicator of zonal variations of water quality within an estuary. Estuarine. Coastal and SI"'lf Science. I H(:ll. 2G:I-270. Allen, D.M., 1984. Population dynamics of the mysid shrimp Mysidop.,i., bili,-loll'i Tattersall. W.M. in a tern perate estuary. Jour­ nal of Crustacean Biology_ 4( 1).25':14 Allen, L.G. and Demartin, E.E., 198:\. Temporal and spatial patterns of nearshore distribution and abundance of the pelagic fishes off San Onofre Oceanside. Califol1lia. Fishery Rulll·tin, RI(:11.
    [Show full text]
  • 1 We Thank the Referees for Their Careful Review
    We thank the referees for their careful review and thoughtful comments. Below please see our point-by-point responses and changes made to the manuscript. Referee report #1 Thank you for responding to my comments. It is now clearer what is going on, but some additional enhancements are desirable. You need to state clearly in the abstract and probably in the manuscript as well that you are using pre-industrial conditions to examine sea-ice generated Antarctic precipitation variability in the absence of anthropogenic forcing. This should appear explicitly in the first sentence of the abstract, I think, rather than being implicit here and throughout the manuscript. I am recommending minor revisions, but think that this is a very important aspect to address comprehensively to make the intent and methodology of your extensive work obvious to the reader. Done as suggested. Now the first sentence of the abstract reads “We conduct sensitivity experiments using a general circulation model that has an explicit water source tagging capability forced by prescribed composites of pre-industrial sea ice concentrations (SIC) and corresponding sea surface temperatures (SST) to understand the impact of sea ice anomalies on regional evaporation, moisture transport, and source–receptor relationships for Antarctic precipitation in the absence of anthropogenic forcing.” A similar statement is also made in the summary paragraph of the Introduction section: “In this study, we aim to understand the impact of SO sea ice anomalies associated with internal variability (in the absence of anthropogenic forcing) on local evaporation, moisture transport and source–receptor relationships for moisture and precipitation over Antarctica using a GCM that has an explicit water source tagging capability.” Section 3.2: You attribute southerly katabatic flow to the polar high.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Antarctic Treaty Handbook: Tourism
    TOURISM AND OTHER NON-GOVERNMENTAL ACTIVITIES Introductory note Commercial tourism Until 1966 virtually all expeditions to the Antarctic had been organized by governments or had some measure of governmental backing. In that year there appeared in Antarctica for the first time a commercially organized, ship-borne tourist expedition. In subsequent years commercial tourism increased, using ships and aircraft. The area most frequently visited by sea was the Antarctic Peninsula. Regular airborne tourism began in 1977 and developed using long range passenger aircraft flying from Australia and New Zealand. Almost all of these flights overflew parts of Antarctica and returned home without landing. Airborne tourism diminished considerably following the tragic crash on Mount Erebus, Ross Island, on 28 November 1979 with the loss of 257 lives. Non-governmental non-tourist expeditions Such expeditions also began to appear in the Antarctic in 1966. The preparedness of such expeditions has varied; the consequent requests for assistance from governmental expeditions have sometimes caused disruption to scientific programs. A major aim of the consideration engendered by these expeditions within the Treaty fora has been to encourage such private expeditions to be adequately prepared and fully self-sufficient. Antarctic Treaty Recommendations XXI: Resolution 3 (1997) Standard Form for Advance Notification and Post-Visit Reporting on Tourism and Non-Governmental Activities in Antarctica The Representatives, Recalling Resolution 3 (1995) which agreed that there would be an advantage in standardized reporting of information on tourism and non-governmental activity in Antarctica; Noting that Attachment A to Recommendation 1 (1994) outlines the requirements for Advance Notice of tourism and non-governmental activities, and that Resolution 3 (1995) outlines requirements for post-activity reports; Recalling that Parties agreed at ATCM XX to trial a standard form for Advance Notification and Post-Visit Reporting during the 1996/97 Antarctic season.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Reproductive Success in Antarctic Marine Invertebrates
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF SCIENCE School of Ocean and Earth Science Reproductive Success in Antarctic Marine Invertebrates By Laura Joanne Grange (BSc. Hons) Thesis for the degree of Doctor of Philosophy July 2005 Dedicated to my Mum, Dad, Sam and my one and only Mike. UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF SCIENCE SCHOOL OF OCEAN AND EARTH SCIENCE Doctor of Philosophy REPRODUCTIVE SUCCESS IN ANTARCTIC MARINE INVERTEBRATES By Laura Joanne Grange The nearshore Antarctic marine environment is unique, characterised by low but constant temperatures that contrast with an intense peak in productivity. As a result of this stenothermal environment, energy input has a profound ecological effect. These conditions have developed over several millions of years and have resulted in an animal physiology that is highly stenothermal and sometimes closely coupled with the seasonal food supply, e.g.
    [Show full text]