Reproductive Success in Antarctic Marine Invertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antarctic Sessile Marine Benthos: Colonisation and Growth on Artificial Substrata Over Three Years
MARINE ECOLOGY PROGRESS SERIES Vol. 316: 1–16, 2006 Published July 3 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Antarctic sessile marine benthos: colonisation and growth on artificial substrata over three years David A. Bowden*, Andrew Clarke, Lloyd S. Peck, David K. A. Barnes Natural Environment Research Council, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: The development of sessile invertebrate assemblages on hard substrata has been studied exten- sively in temperate and tropical latitudes. Such studies provide insights into a range of ecological processes, and the global similarity of taxa recruiting to these assem- blages affords the potential for regional-scale com- parisons. However, few data exist for high latitude assemblages. This paper presents the first regularly resur- veyed study of benthic colonisation from within the Antarctic Circle. Acrylic panels were deployed horizon- tally on the seabed at 8 and 20 m depths at each of 3 loca- tions in Ryder Bay, Adelaide Island, SW Antarctic Peninsula (67° 35’ S, 68° 10’ W). Assemblages colonising upward- and downward-facing panel surfaces were photographed in situ from February 2001 to March 2004. Assemblages were dominated by bryozoans and spiror- Bowden and co-workers present the first successful benthic bid polychaetes. Total coverage after 3 yr ranged from 6 to colonisation study from within the Antarctic Circle. They 100% on downward-facing surfaces but was <10% on all describe a system governed by extremely slow and highly upward-facing surfaces. Overall colonisation rates were seasonal growth, and a range of post-settlement disturbances in which succession is more predictable than in comparable up to 3 times slower than comparable temperate latitude temperate or tropical assemblages. -
© Terra Antartica Publication Terra Antartica 2001, 8(4), 423-434
© Terra Antartica Publication Terra Antartica 2001, 8(4), 423-434 Palaeogene Macrofossils from CRP-3 Drillhole, Victoria Land Basin, Antarctica M. TAVIANI1* & A.G. BEU2 1Istituto di Geologia Marina, Consiglio Nazionale delle Ricerche, via Gobetti 101, I-40129 Bologna - Italy 2Institute of Geological & Nuclear Sciences, P.O. Box 30 368, Lower Hutt - New Zealand Received 5 March 2001; accepted in revised form 3 July 2001 Abstract - CRP-3 cored Palaeogene strata to 823 metres below the sea floor (mbsf), before passing through Devonian bedrock (Beacon Supergroup) to a depth of 939 mbsf. Palaeogene body fossils have been identified at 239 horizons in the core. The best preserved macrofossils from the core help elucidate the taxonomy, chronology and biogeography of Cenozoic ecosystems of Antarctica, although poor preservation prevents identification to species level in most cases. The lithostratigraphic unit (LSU) of the core top (LSU 1.1) contains an almost monospecific modiolid assemblage, similar to mussel beds recovered in the bottom part of the CRP-2/2A core. These semi-infaunal mussels appear to be conspecific, apparently indicating the same age (Early Oligocene) and environment, i.e., a deep muddy shelf characterized by high turbidity and dysoxic/anoxic bottom conditions (high H2S sediment content). LSU 1.2 contains reasonably diverse assemblages representing inner/middle shelf environments dominated by epifaunal suspension feeders. LSU 2.1 contains low-diversity assemblages of suspension feeders (bivalves, brachiopods and bryzoans), probably indicating inner/middle shelf environments. LSU 3.1 contains assemblages including infaunal and epifaunal suspension feeders (bivalves, including a scallop, ?Adamussium n.sp., and solitary corals) and infaunal deposit-feeders, possibly indicating deposition on a deep muddy shelf. -
Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick -
2019 Weddell Sea Expedition
Initial Environmental Evaluation SA Agulhas II in sea ice. Image: Johan Viljoen 1 Submitted to the Polar Regions Department, Foreign and Commonwealth Office, as part of an application for a permit / approval under the UK Antarctic Act 1994. Submitted by: Mr. Oliver Plunket Director Maritime Archaeology Consultants Switzerland AG c/o: Maritime Archaeology Consultants Switzerland AG Baarerstrasse 8, Zug, 6300, Switzerland Final version submitted: September 2018 IEE Prepared by: Dr. Neil Gilbert Director Constantia Consulting Ltd. Christchurch New Zealand 2 Table of contents Table of contents ________________________________________________________________ 3 List of Figures ___________________________________________________________________ 6 List of Tables ___________________________________________________________________ 8 Non-Technical Summary __________________________________________________________ 9 1. Introduction _________________________________________________________________ 18 2. Environmental Impact Assessment Process ________________________________________ 20 2.1 International Requirements ________________________________________________________ 20 2.2 National Requirements ____________________________________________________________ 21 2.3 Applicable ATCM Measures and Resolutions __________________________________________ 22 2.3.1 Non-governmental activities and general operations in Antarctica _______________________________ 22 2.3.2 Scientific research in Antarctica __________________________________________________________ -
MOLLUSCA Nudibranchs, Pteropods, Gastropods, Bivalves, Chitons, Octopus
UNDERWATER FIELD GUIDE TO ROSS ISLAND & MCMURDO SOUND, ANTARCTICA: MOLLUSCA nudibranchs, pteropods, gastropods, bivalves, chitons, octopus Peter Brueggeman Photographs: Steve Alexander, Rod Budd/Antarctica New Zealand, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva Philipp, Rob Robbins, Steve Rupp/National Science Foundation, Dirk Schories, M Dale Stokes, and Norbert Wu The National Science Foundation's Office of Polar Programs sponsored Norbert Wu on an Artist's and Writer's Grant project, in which Peter Brueggeman participated. One outcome from Wu's endeavor is this Field Guide, which builds upon principal photography by Norbert Wu, with photos from other photographers, who are credited on their photographs and above. This Field Guide is intended to facilitate underwater/topside field identification from visual characters. Organisms were identified from photographs with no specimen collection, and there can be some uncertainty in identifications solely from photographs. © 1998+; text © Peter Brueggeman; photographs © Steve Alexander, Rod Budd/Antarctica New Zealand Pictorial Collection 159687 & 159713, 2001-2002, Peter Brueggeman, Kirsten Carlson/National Science Foundation, Canadian Museum of Nature (Kathleen Conlan), Shawn Harper, Luke Hunt, Henry Kaiser, Mike Lucibella/National Science Foundation, Adam G Marsh, Jim Mastro, Bruce A Miller, Eva -
HSP70 from the Antarctic Sea Urchin Sterechinus Neumayeri: Molecular
HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress Marcelo Gonzalez-Aravena, Camila Calfio, Luis Mercado, Byron Morales-Lange, Jorn Bethke, Julien de Lorgeril, Cesar Cárdenas To cite this version: Marcelo Gonzalez-Aravena, Camila Calfio, Luis Mercado, Byron Morales-Lange, Jorn Bethke, etal.. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expres- sion in response to heat stress. Biological Research, Sociedad de Biología de Chile, 2018, 51, pp.8. 10.1186/s40659-018-0156-9. hal-01759214 HAL Id: hal-01759214 https://hal.archives-ouvertes.fr/hal-01759214 Submitted on 5 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. González-Aravena et al. Biol Res (2018) 51:8 https://doi.org/10.1186/s40659-018-0156-9 Biological Research RESEARCH ARTICLE Open Access HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress Marcelo González‑Aravena1* , Camila Calfo1, Luis Mercado2, Byron Morales‑Lange2, Jorn Bethke2, Julien De Lorgeril3 and César A. Cárdenas1 Abstract Background: Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. -
Terra Nova Bay, Ross Sea
MEASURE 14 - ANNEX Management Plan for Antarctic Specially Protected Area No 161 TERRA NOVA BAY, ROSS SEA 1. Description values to be protected A coastal marine area encompassing 29.4km2 between Adélie Cove and Tethys Bay, Terra Nova Bay, is proposed as an Antarctic Specially Protected Area (ASPA) by Italy on the grounds that it is an important littoral area for well-established and long-term scientific investigations. The Area is confined to a narrow strip of waters extending approximately 9.4km in length immediately to the south of the Mario Zucchelli Station (MZS) and up to a maximum of 7km from the shore. No marine resource harvesting has been, is currently, or is planned to be, conducted within the Area, nor in the immediate surrounding vicinity. The site typically remains ice-free in summer, which is rare for coastal areas in the Ross Sea region, making it an ideal and accessible site for research into the near-shore benthic communities of the region. Extensive marine ecological research has been carried out at Terra Nova Bay since 1986/87, contributing substantially to our understanding of these communities which had not previously been well-described. High diversity at both species and community levels make this Area of high ecological and scientific value. Studies have revealed a complex array of species assemblages, often co-existing in mosaics (Cattaneo-Vietti, 1991; Sarà et al., 1992; Cattaneo-Vietti et al., 1997; 2000b; 2000c; Gambi et al., 1997; Cantone et al., 2000). There exist assemblages with high species richness and complex functioning, such as the sponge and anthozoan communities, alongside loosely structured, low diversity assemblages. -
Unusually High Sea Ice Cover Influences Resource Use by Benthic Invertebrates in Coastal Antarctica
Unusually high sea ice cover influences resource use by benthic invertebrates in coastal Antarctica Loïc N. MICHEL, Philippe DUBOIS, Marc ELEAUME, Jérôme FOURNIER, Cyril GALLUT, Philip JANE & Gilles LEPOINT Contact: [email protected] BASIS 2017 Annual Meeting – 03-04/05/2017 – Utrecht, The Netherlands Context: sea ice in Antarctica Antarctic littoral is circled by a fringe of sea ice (up to 20 millions km2) Sea ice is a major environmental driver in Antarctica, influences ▪ Air/Sea interactions ▪ Water column mixing ▪ Light penetration ▪ Organic matter fluxes ▪ … Sea ice is highly dynamic Sea ice hosts sympagic organisms Image: NASA Context: sea ice in Antarctica Sympagic algae: Mostly diatoms Form thick mats Filaments up to several cm Source: Australian Antarctic Division Seasonal patterns of sea ice cover Source: NOAA Austral winter Austral summer Normal cycle: Thick sea ice cover Thinning and breakup of sea ice Release of sympagic material High productivity events Climate change and sea ice cover West Antarctic T° Peninsula Ice cover T° East Antarctica Ice cover Turner et al. 2005 Int J Climatol 25: 279-294 (Data 1971-2000) Parkinson & Cavalieri 2012 Cryosphere 6: 871-880 Study site: Dumont d’Urville station Austral summer 2007-08 East Antarctica, Adélie Land Petrels Island Study site: Dumont d’Urville station Austral summer 2007-08 Austral summer 2013-14 East Antarctica, Adélie Land Petrels Island 2013-2015: Event of high spatial and temporal sea ice coverage No seasonal breakup during austral summers 2013-14 and 2014-15 Study -
Echinodermata, Ophiuroidea)
Vol. 16: 105–113, 2012 AQUATIC BIOLOGY Published online July 19 doi: 10.3354/ab00435 Aquat Biol Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea) Melody S. Clark*, Terri Souster British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK ABSTRACT: Regeneration of arms in brittle stars is thought to proceed slowly in low temperature environments. Here a survey of natural arm damage and arm regeneration rates is documented in the Antarctic brittle star Ophiura crassa. This relatively small ophiuroid, a detritivore found amongst red macroalgae, displays high levels of natural arm damage and repair. This is largely thought to be due to ice damage in the shallow waters it inhabits. The time scale of arm regener- ation was measured in an aquarium-based 10 mo experiment. There was a delayed regeneration phase of 7 mo before arm growth was detectable in this species. This is 2 mo longer than the longest time previously described, which was in another Antarctic ophiuroid, Ophionotus victo- riae. The subsequent regeneration of arms in O. crassa occurred at a rate of approximately 0.16 mm mo−1. To date, this is the slowest regeneration rate known of any ophiuroid. The confir- mation that such a long delay before arm regeneration occurs in a second Antarctic species pro- vides strong evidence that this phenomenon is yet another characteristic feature of Southern Ocean species, along with deferred maturity, slowed growth and development rates. It is unclear whether delayed initial regeneration phases are adaptations to, or limitations of, low temperature environments. -
Heavy Metals in the Antarctic Scallop Adam Ussium Colbecki
MARINE ECOLOGY PROGRESS SERIES Vol. 67: 27-33, 1990 Published September 20 Mar. Ecol. Prog. Ser. l Heavy metals in the Antarctic scallop Adam ussium colbecki Dipartirnento di Biologia Anirnale, Universita di Modena, via Universita 4,1-41100 Modena, Italy Dipartirnento di Biomedicina Sperimentale Infettiva e Pubblica, Universita di Pisa. via Volta 4.1-56100 Pisa, Italy ABSTRACT: Cu, Fe, Cr. Cd, Mn and Zn concentrations were determined in different organs of the Antarctic scallop Adarnussium colbecki (Smith) and compared with those found in Pecten jacobaeus L., a scallop of temperate waters, and wlth literature values for other Pectinidae. The digestive gland of A. colbeck, was the target organ for Cu, Fe, Cr and Cd, whereas Mn and Zn were found mainly in the kidney. Cd concentration in the digestive gland of A. colbecki was higher than that in the same organ of P. jacobaeus, indicating a marked ability of the Antarctic scallop to concentrate this metal. However, in A. colbecki renal concentrations of both Mn and Zn were considerably lower than those measured in P. lacobaeus and other Pectinidae, and may be related to the scarcity of concretions observed in its kidney. INTRODUCTION Pecten lacobaeus L., a hermaphroditic species of temperate waters, was used for comparison between Better insight into the ecology of the Antarctic is Adarnussiurn colbecki and other non-Antarctic scallops. today of great importance considering the increasing Data on heavy metal levels in other species of Pectinidae interest shown in the resources of this continent. Col- were also used for comparison with A. colbecki. lecting new environmental data will serve as the baseline for evaluating future environmental impact of pollutants in this remote area. -
1 Growth and Production of the Brittle Stars Ophiura Sarsii and Ophiocten Sericeum (Echinodermata: 2 Ophiuroidea)
1 Growth and production of the brittle stars Ophiura sarsii and Ophiocten sericeum (Echinodermata: 2 Ophiuroidea) 3 Alexandra M. Ravelo*1, Brenda Konar1, Bodil Bluhm2, Katrin Iken1 4 *(907) 474-7074 5 [email protected] 6 1School of Fisheries and Ocean Sciences, University of Alaska Fairbanks 7 P.O. Box 757220, Fairbanks, AK 99775, USA 8 2Department of Arctic and Marine Biology, University of Tromsø 9 9037 Tromsø, Norway 10 11 Abstract 12 Dense brittle star assemblages dominate vast areas of the Arctic marine shelves, making them 13 key components of Arctic ecosystem. This study is the first to determine the population dynamics of 14 the dominant shelf brittle star species, Ophiura sarsii and Ophiocten sericeum, through age determination, 15 individual production and total turnover rate (P:B). In the summer of 2013, O. sarsii were collected in 16 the northeastern Chukchi Sea (depth 35 to 65 m), while O. sericeum were collected in the central 17 Beaufort Sea (depth 37 to 200 m). Maximum age was higher for O. sarsii than for O. sericeum (27 and 18 20 years, respectively); however, both species live longer than temperate region congeners. Growth 19 curves for both species had similar initial fast growth, with an inflection period followed by a second 20 phase of fast growth. Predation avoidance in addition to changes in the allocation of energy may be 21 the mechanisms responsible for the observed age dependent growth rates. Individual production was 22 higher for O. sarsii than for O. sericeum by nearly an order of magnitude throughout the size spectra. -
Curriculum Vitae in Confidence
CURRICULUM VITAE IN CONFIDENCE Professor Lloyd Samuel Peck Overview Outstanding Antarctic scientist with leading international status. NERC Theme Leader and IMP, and over 250 refereed science papers, major reviews and book chapters. ISI H factor of 46, Google Scholar H factor of 53. Dynamic and inspirational leader of a large and diverse science programmes (BEA, LATEST and BIOFLAME) of around 30 science and support staff researching subjects from hard rock geology through biodiversity, ecology, physiology and biochemistry to molecular (genomic) biology. Twenty one years experience of strategic development of major science programmes, and subsequent management and direction of their science in the UK, Antarctica, the Arctic, temperate and tropical sites, on stations, ships, and field sites. Exceptional communicator. Royal Institution Christmas lecturer 2004. 15 televised lectures given in Japan, Korea and Brazil since 2005. Over 100 TV, radio and news interviews given in 10 years. Most recently major contributor to “A Licence to Krill” documentary (DOX productions). Over 35 keynote lectures, departmental seminars and other major presentations given since 2000. High quality University teaching record. Positions include Visiting Professor in Ecology, Sunderland University, and Visiting Lecturer, Cambridge University. Visiting Professor in Marine Biology, Portsmouth University, Deputy Chair Cambridge NERC DTP. Strong grant success record. In last 10 years: PI of BAS programmes valued over £2 million. PI or Co-I on 28 grants (total value of over £8 million). Over 50% success rate in grant applications. Integrated member of NERC science review processes for over 10 years. Member of NERC peer review college, and 6 years experience of Chairing grant panels.