New York City Approved Street Trees

Total Page:16

File Type:pdf, Size:1020Kb

New York City Approved Street Trees New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting Acer rubrum Red Maple Sparingly 'Red Sunset' ALB Host Aesculus hippocastanum Horsechestnut White May flowers Sparingly 'Baumanni' ALB Host Aesculus octandra Yellow Buckeye Yellow May Flowers Sparingly ALB Host ALB Host 'Duraheat' Betula nigra River Birch Ornamental Bark Sparingly Plant Single Stem 'Heritage' Only Celtis occidentalis Hackberry Ornamental Bark Sparingly 'Magnifica' ALB Host ALB Host Cercidiphyllum japonicum Katsura Tree Sparingly Plant Single Stem Only Corylus colurna Turkish Filbert Sparingly LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Eucommia ulmoides Hardy Rubber Tree Frequently 'Asplenifolia' Fagus sylvatica European Beech Sparingly 'Dawyckii Purple' 'Autumn Gold' Ginkgo biloba Ginkgo Yellow Fall Color Moderately 'Magyar' Very Tough Tree 'Princeton Sentry' 'Shademaster' 'Halka' Gleditsia triacanthos var inermis Honeylocust Yellow Fall Color Moderately 'Imperial' 'Skyline' 'Espresso' Gymnocladus dioicus Kentucky Coffeetree Large Tropical Leaves Frequently 'Prairie Titan' Page 1 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting 'Rotundiloba' Seedless Cultivars Liquidambar styraciflua Sweetgum Excellent Fall Color Frequently 'Worplesdon' Preffered 'Cherokee' Orange/Green June Liriodendron tulipifera Tulip Tree Moderately Flowers Metasequoia glyptostroboides Dawn Redwood Strong Pyramidal Shape Moderately 'Red Rage' Nyssa sylvatica Tupelo Excellent Red Fall Color Moderately Ideal for wet sites 'Forum' 'Bloodgood' Platanus x acerifolia London Planetree Ornamental Bark Sparingly 'Columbia' Quercus acutissima Sawtooth Oak Moderately Quercus alba White Oak Ornamental Bark Sparingly LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Quercus bicolor Swamp White Oak Ornamental Bark Moderately Quercus coccinea Scarlet Oak Excellent Red Fall Color Sparingly Quercus dentata Daimio Oak Sparingly Glossy Deep Green Quercus frainetto Italian Oak Moderately 'Forest Green' Leaves Quercus imbricaria Shingle Oak Blade-like Leaf Moderately Page 2 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting Quercus macrocarpa Bur Oak Moderately Quercus muehlenbergii Chinkapin Oak Moderately Quercus palustris Pin Oak Sparingly Quercus phellos Willow Oak Blade-like Leaf Moderately 'Hightower' Quercus prinus Chestnut Oak Sparingly Exceptionally Salt Quercus robur English Oak Moderately var. Fastigiata Tolerant Quercus rubra Red Oak Sparingly LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Quercus shumardii Shumard Oak Moderately Quercus texana Nuttall Oak Moderately Quercus velutina Black Oak Sparingly 'Princeton Upright' Avoid planting near Styphnolobium japonicum Japanese Pagoda Tree White June Flowers Sparingly 'Regent' natural areas Taxodium distichum Bald Cypress Strong Pyramidal Shape Moderately Ideal for wet sites Page 3 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting 'Redmond' Excellent in partial Tilia americana American Linden Red Winter Twigs Moderately 'McSentry shade 'Glenlevyn' Sensitive to Tilia cordata Littleleaf Linden Sparingly 'Shamrock' excessive salt Fragrant Spring Flowers 'Sterling' Tilia tomentosa Silver Linden Silver Undersides to Frequently 'Green Mountain' Leaves Tilia x euchlora Crimean Linden Fragrant Spring Flowers Moderately 'Laurelhurst' 'Emerald Sunshine' Plant only Dutch Elm 'Princeton' Ulmus americana American Elm Sparingly Disease resistant 'Frontier' cultivars ALB Host 'New Harmony' 'Accolade' LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Ulmus cultivars Elm Hybrids Sparingly ALB Host 'New Horizon' 'Allee' Ulmus parvifolia Asian Elm Sparingly ALB Host 'Dynasty' 'Musashino' 'Musashino' more LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Zelkova serrata Zelkova Moderately 'Green Vase' narrow Page 4 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting Aesculus x carnea Red Horsechestnut Red May Flowers Sparingly 'Fort Mcnair' ALB Host Becomes wider with Carpinus betulus European Hornbeam Moderately 'Fastigiata' age Carpinus caroliniana American Hornbeam Moderately Carpinus japonicum Japanese Hornbeam Sparingly Fragrant Early Summer Cladrastis kentukea Yellowwood Moderately 'Sweetshade' Flowers 'Rose Lanterns' Extremely Pollution Koelreuteria paniculata Goldenraintree Yellow Flowers Frequently 'Fastigiata' Tolerant Plant Single Stem Maackia amurensis Amur Maackia White Flowers Frequently 'Starburst' Only 'Butterflies' Plant Single Stem LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Magnolia cvs. Sparingly 'Elizabeth' Only MEDIUM TREES: Mature MEDIUM TREES: height than greater but 35 less than feet 50 tall Ostrya virginiana Ironwood Ornamental Bark Moderately Ornamental Bark Parrotia persica Persian Parrotia Sparingly Excellent Fall Color Large White Summer Stewartia koreana Korean Stewartia Sparingly Flowers Page 5 of 7 MEDIUM TREES: Mature MEDIUM TREES: height than greater but 35 less than feet 50 tall New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting 'Evelyn' Acer campestre Hedge Maple Sparingly ALB Host 'Metro Gold' 'Flame' Acer ginnala Amur Maple Sparingly ALB Host 'Ruby Slippers' Acer griseum Paperbark Maple Ornamental Bark Sparingly ALB Host Acer tataricum Tatarian Maple Sparingly 'Flame' ALB Host Purple spring flowers Acer truncatum Painted Maple Sparingly 'Norwegian Sunset' ALB Host Excellent Fall Color 'Robin Hill' White spring flowers Plant Single Stem Amelanchier canadensis Serviceberry Frequently 'Cumulus' Excellent Fall Color Only 'Spring Flurry' 'Forest Pansy' Plant Single Stem Cercis canadensis Redbud Early Spring Flowers Moderately var. Alba Only Plant Single Stem LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Chionanthus retusus Fringe Tree White Flowers Moderately Only Cornus kousa Kousa Dogwood Large summer flowers Sparingly 'Summer Stars' SMALL TREES: SMALL Mature TREES: height less than feet 35 tall Cornelian-Cherry First Spring Cornus mas Yellow Flowers Sparingly 'Spring Sun' Dogwood Flowering Tree Crataegus crusgalli var. inermis Cockspur Hawthorne White Spring Flowers Moderately Thornless 'Cardinal' 'Prariefire' Plant Single Stem Malus Crabapple Spring flowers Sparingly 'Profusion' Only 'Spring Snow' Page 6 of 7 SMALL TREES: SMALL Mature TREES: height less than feet 35 tall New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting One of the earliest Prunus 'Okame' Okame Cherry Moderately flowering cherries Spring flowers, Red Fall Prunus sargentii Sargent Cherry Sparingly Color 'Krauter Vesuvius' Prunus cerasifera Purple Leaf Plum Purple Leaves Sparingly 'Thundercloud' Large Pink Spring 'Royal Burgundy' Prunus serrulata 'Kwanzan' Kwanzan Cherry Sparingly Flowers has purple leaves Prunus 'Snow Goose' Snow Goose Cherry Pure White Flowers Moderately Leaves emerge Prunus virginiana var. Shubert White pendulous Canada Red Cherry Sparingly green and fade to 'Canada Red' flowers purple Spring White/Pink Prunus x yedoensis 'Akebono' Yoshino Cherry Sparingly Flowers SMALL TREES: SMALL Mature TREES: height less than feet 35 tall Syringa reticulata Tree Lilac White May Flowers Frequently 'Ivory Silk' LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Syringa pekinensis Tree Lilac White May Flowers Frequently China Snow' Page 7 of 7.
Recommended publications
  • Quercus Cerris
    Quercus cerris Quercus cerris in Europe: distribution, habitat, usage and threats D. de Rigo, C. M. Enescu, T. Houston Durrant, G. Caudullo Turkey oak (Quercus cerris L.) is a deciduous tree native to southern Europe and Asia Minor, and a dominant species in the mixed forests of the Mediterranean basin. Turkey oak is a representative of section Cerris, a particular section within the genus Quercus which includes species for which the maturation of acorns occurs in the second year. Quercus cerris L., commonly known as Turkey oak, is a large fast-growing deciduous tree species growing to 40 m tall with 1 Frequency a trunk up to 1.5-2 m diameter , with a well-developed root < 25% system2. It can live for around 120-150 years3. The bark is 25% - 50% 50% - 75% mauve-grey and deeply furrowed with reddish-brown or orange > 75% bark fissures4, 5. Compared with other common oak species, e.g. Chorology Native sessile oak (Quercus petraea) and pedunculate oak (Quercus Introduced robur), the wood is inferior, and only useful for rough work such as shuttering or fuelwood1. The leaves are dark green above and grey-felted underneath6; they are variable in size and shape but are normally 9-12 cm long and 3-5 cm wide, with 7-9 pairs of triangular lobes6. The leaves turn yellow to gold in late autumn and drop off or persist in the crown until the next spring, especially on young trees3. The twigs are long and pubescent, grey or olive-green, with lenticels. The buds, which are concentrated Large shade tree in agricultural area near Altamura (Bari, South Italy).
    [Show full text]
  • Morphometric Leaf Variation in Oaks (Quercus) of Bolu, Turkey
    Ann. Bot. Fennici 40: 233–242 ISSN 0003-3847 Helsinki 29 August 2003 © Finnish Zoological and Botanical Publishing Board 2003 Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey Aydın Borazan & Mehmet T. Babaç Department of Biology, Abant |zzet Baysal University, Gölköy 14280 Bolu, Turkey (e-mail: [email protected], [email protected]) Received 16 Sep. 2002, revised version received 7 Jan. 2003, accepted 10 Jan. 2003 Borazan, A. & Babaç, M. T. 2003: Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. — Ann. Bot. Fennici 40: 233–242. Genus Quercus (Fagaceae) has a problematic taxonomy because of widespread hybridization between the infrageneric taxa. The pattern of morphological leaf varia- tion was evaluated for evidence of hybridization in Bolu, Turkey, since previous stud- ies suggested that in oaks leaf morphology is a good indicator of putative hybridiza- tion. Principal components analysis was applied to data sets of leaf characters from fi ve populations to describe variation in leaf morphology. Leaf characters analyzed in this study showed high degrees of variation as a result of hybridization between four taxa (Q. pubescens, Q. virgiliana, Q. petraea and Q. robur) of subgenus Quercus while Q. cerris as a member of subgenus Cerris was clearly separated from the others. Key words: hybridization, morphological leaf variation, principal components analy- sis, Quercus Introduction in regions of mild and warm temperate climates. Fossil leaves indicate that todayʼs several major In the northern hemisphere oaks (Quercus) are oak groups are at least 40 million years old. Gen- conspicuous members of the temperate decidu- eral distribution of fossil ancestors supports the ous, broad leaved forests.
    [Show full text]
  • Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
    QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the
    [Show full text]
  • Notes Oak News
    THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece.
    [Show full text]
  • Designing Hardwood Tree Plantings for Wildlife Brian J
    FNR-213 Hardwood Tree Improvement and Regeneration Center North Central Research Station USDA Forest Service Department of Forestry and Natural Resources Purdue University Designing Hardwood Tree Plantings for Wildlife Brian J. MacGowan, Department of Forestry and Natural Resources, Purdue University Woody plants can be of value to many wildlife species. The species of tree or shrub, or the location, size, and shape of planting can all have an impact on wildlife. The purpose of this paper is to discuss the benefits of trees and shrubs for wildlife and how to design tree and shrub plantings for wildlife. Some of the practices may conflict with other management goals and may have to be modified for individual priorities. Trees and Shrubs for Wildlife The species you select for a tree planting should depend on the growing conditions of the site and the wildlife species that you want to manage. Talk to a professional forester to help you select the tree species best suited for your growing conditions. A professional biologist, such as a Department of Natural Resources District Biologist (www.in.gov/ food source for wildlife (Table 2). Shrubs can be dnr/fishwild/huntguide1/wbiolo.htm), can assist you particularly important because several species of with planning a tree planting for wildlife. wildlife, especially songbirds, prefer to feed or nest There is no specific formula for developing wild- on or near the ground. Shrubs also provide good life habitat. For example, acorns are eaten by a wide protective cover for these types of wildlife. Pines variety of wildlife species including tree squirrels, and other softwoods provide limited food, but are an pheasants, wild turkey, and deer.
    [Show full text]
  • Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus Bawanglingensis Huang, Li Et Xing, a Vulnerable Oak Tree in China
    Article Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Quercus bawanglingensis Huang, Li et Xing, a Vulnerable Oak Tree in China Xue Liu 1 , Er-Mei Chang 1, Jian-Feng Liu 1,* , Yue-Ning Huang 1, Ya Wang 1, Ning Yao 1 and Ze-Ping Jiang 1,2 1 Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China 2 Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China * Correspondence: [email protected] Received: 5 June 2019; Accepted: 12 July 2019; Published: 15 July 2019 Abstract: Quercus bawanglingensis Huang, Li et Xing, an endemic evergreen oak of the genus Quercus (Fagaceae) in China, is currently listed in the Red List of Chinese Plants as a vulnerable (VU) plant. No chloroplast (cp) genome information is currently available for Q. bawanglingensis, which would be essential for the establishment of guidelines for its conservation and breeding. In the present study, the cp genome of Q. bawanglingensis was sequenced and assembled into double-stranded circular DNA with a length of 161,394 bp. Two inverted repeats (IRs) with a total of 51,730 bp were identified, and the rest of the sequence was separated into two single-copy regions, namely, a large single-copy (LSC) region (90,628 bp) and a small single-copy (SSC) region (19,036 bp). The genome of Q. bawanglingensis contains 134 genes (86 protein-coding genes, 40 tRNAs and eight rRNAs). More forward (29) than inverted long repeats (21) are distributed in the cp genome.
    [Show full text]
  • Quercus Imbricaria.Indd
    Quercus imbricaria (Shingle Oak) Beech Family (Fagaceae) Introduction: Shingle oak is a member of the red oak group with willow-like leaves. It is one of the most handsome of the oaks. Shingle oak has an attractive branching habit and ridged bark, and it casts medium shade in summer. Although fall color may not be outstanding, the shiny, willow-shaped leaves are nonetheless quite attractive through all four seasons. Culture: Shingle oak is an easy oak to grow and adapts to various sites. While it prefers rich, moist, acidic soil and full sun, it is tolerant of drought, urban conditions and slightly alkaline soil. Shingle oak is easy to trans- plant. Because of its very strong wood, this oak is not Botanical Characteristics: subject to storm damage. Shingle oak has few serious insect and disease Native habitat: Central and eastern North problems, although potential problems include obscure America in rich woods. scale, two-lined chestnut borer, bacterial leaf scorch, oak horn gall and gypsy moth. In addition, as little as 1 Growth habit: The tree is pyramidal when inch of fi ll soil can kill an oak. young but becomes wide-spreading with matu- rity. Additional information: Shingle oak may be one of the best oaks, but it Tree size: Shingle oak will slowly attain a height of 50 to 60 feet with a similar or greater is not commonly used. It makes a good park or street spread. It can reach 100 feet tall in the wild. tree. Because it adapts to pruning and has persistent leaves, it is useful as a hedge.
    [Show full text]
  • Chapter 4 Phytogeography of Northeast Asia
    Chapter 4 Phytogeography of Northeast Asia Hong QIAN 1, Pavel KRESTOV 2, Pei-Yun FU 3, Qing-Li WANG 3, Jong-Suk SONG 4 and Christine CHOURMOUZIS 5 1 Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA, e-mail: [email protected]; 2 Institute of Biology and Soil Science, Russian Academy of Sciences, Vladivostok, 690022, Russia, e-mail: [email protected]; 3 Institute of Applied Ecology, Chinese Academy of Sciences, P.O. Box 417, Shenyang 110015, China; 4 Department of Biological Science, College of Natural Sciences, Andong National University, Andong 760-749, Korea, e-mail: [email protected]; 5 Department of Forest Sciences, University of British Columbia, 3041-2424 mail Mall, Vancouver, B.C., V6T 1Z4, Canada, e-mail: [email protected] Abstract: Northeast Asia as defined in this study includes the Russian Far East, Northeast China, the northern part of the Korean Peninsula, and Hokkaido Island (Japan). We determined the species richness of Northeast Asia at various spatial scales, analyzed the floristic relationships among geographic regions within Northeast Asia, and compared the flora of Northeast Asia with surrounding floras. The flora of Northeast Asia consists of 971 genera and 4953 species of native vascular plants. Based on their worldwide distributions, the 971 gen- era were grouped into fourteen phytogeographic elements. Over 900 species of vascular plants are endemic to Northeast Asia. Northeast Asia shares 39% of its species with eastern Siberia-Mongolia, 24% with Europe, 16.2% with western North America, and 12.4% with eastern North America.
    [Show full text]
  • IDENTIFYING OAKS: the HYBRID PROBLEM by Richard J
    . IDENTIFYING OAKS: THE HYBRID PROBLEM by Richard J. Jensen I Anyone who has spent time trying to identify oaks (Quercus spp.), especially in the for­ ests of eastern North America, has encountered trees that defy classification into any of the recognized species. Such trees commonly are treated as putative hybrids and often are taken as evidence that species of oaks are not as discrete as species in other groups. On the other hand, some (e.g., Muller, 1941) have argued that many, if not most, putative hybrids are nothing more than stump sprouts or aberrant individuals of a species. Muller (1941) did not deny the existence of hybrids; he was cautioning against an inflated view of the frequency of hybridization as a result of cavalier claims. As he put it (Muller, 1951), 'The freedom of hybridization ascribed to oaks is immensely overrated." While I don't disagree with these sentiments, I do believe that hybrids are a common component of forests throughout North America. Virtually all oak species in North America have been claimed to produce hybrids with one or more related species. Hardin (1975j presented a diagram illustrating hybrid combina­ tions for the common white oak (Quercus alba L.) and Fig. 1 provides a similar view for northern red oak (Quercus rubra L.). Because these two species have very broad geo­ graphical ranges and come in contact with a large number of related taxa, there is ample opportunity for hybrid combina- RUB tions to arise naturally. These two examples also reflect the fact that MAR coc instances of hybridization are re­ stricted to taxa within a section: Quercus section Quercus (the white and chestnut oaks) and ELL IU Quercus section Lobatae (the red and black oaks), respectively.
    [Show full text]
  • Key to Leaves of Eastern Native Oaks
    FHTET-2003-01 January 2003 Front Cover: Clockwise from top left: white oak (Q. alba) acorns; willow oak (Q. phellos) leaves and acorns; Georgia oak (Q. georgiana) leaf; chinkapin oak (Q. muehlenbergii) acorns; scarlet oak (Q. coccinea) leaf; Texas live oak (Q. fusiformis) acorns; runner oak (Q. pumila) leaves and acorns; background bur oak (Q. macrocarpa) bark. (Design, D. Binion) Back Cover: Swamp chestnut oak (Q. michauxii) leaves and acorns. (Design, D. Binion) FOREST HEALTH TECHNOLOGY ENTERPRISE TEAM TECHNOLOGY TRANSFER Oak Identification Field Guide to Native Oak Species of Eastern North America John Stein and Denise Binion Forest Health Technology Enterprise Team USDA Forest Service 180 Canfield St., Morgantown, WV 26505 Robert Acciavatti Forest Health Protection Northeastern Area State and Private Forestry USDA Forest Service 180 Canfield St., Morgantown, WV 26505 United States Forest FHTET-2003-01 Department of Service January 2003 Agriculture NORTH AMERICA 100th Meridian ii iii ACKNOWLEDGMENTS The authors wish to thank all those who helped with this publication. We are grateful for permission to use the drawings illustrated by John K. Myers, Flagstaff, AZ, published in the Flora of North America, North of Mexico, vol. 3 (Jensen 1997). We thank Drs. Cynthia Huebner and Jim Colbert, U.S. Forest Service, Northeastern Research Station, Disturbance Ecology and Management of Oak-Dominated Forests, Morgantown, WV; Dr. Martin MacKenzie, U.S. Forest Service, Northeastern Area State and Private Forestry, Forest Health Protection, Morgantown, WV; Dr. Steven L. Stephenson, Department of Biology, Fairmont State College, Fairmont, WV; Dr. Donna Ford-Werntz, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV; Dr.
    [Show full text]
  • (Quercus Cerris, Q. Frainetto, Q. Robur) and the Optimization Perspective of Growth Conditions for in Vitro Propagated Plants Transplanted in the Field
    Ann. For. Res. 54(1): 57-71, 2011 ANNALS OF FOREST RESEARCH www.e-afr.org Mycorrhizal status of several Quercus species in Romania (Quercus cerris, Q. frainetto, Q. robur) and the optimization perspective of growth conditions for in vitro propagated plants transplanted in the field E. Fodor, A. Timofte, T. Geambau Fodor E., Timofte A., Geambau T. 2011. Mycorrhizal status of several Quercus species in Romania (Quercus cerris, Q. frainetto, Q. robur) and the optimization perspective of growth conditions for in vitro propagated plants transplanted in the [ eld. Ann. For. Res. 54(1): 57-71, 2011. Abstract. There is an increasing interest for important tree species conserva- tion in the context of climate change, anthropogenic pressure and invasion of alien tree species. A key factor in the survival of trees is represented by the mycorrhizal association. The success of micropropagated trees also de- pends on the acquisition of mycorrhizal mutualists. Ectomycorrhizal roots samples from several Quercus species (Q. cerris, Q. frainetto, Q. robur) were examined for mycorrhizal morphotypes’ characterization. The sam- ples were collected during the vegetation season from stands located in Southern and North-Western Romania. 30 morphotypes of active mycor- rhizae were identified with Cenococcum geophilum Fr. (Ascomycota) as dominating morphotype. Previous studies on somatic embryogenesis in Q. robur and Q. frainetto demonstrated the utility of in vitro techniques in obtaining plants from these recalcitrant seed producing species, con- sidered at risk in various areas of the country, due to increasingly stress- ful conditions. The success rate of the acclimatization process depends on the mycorrhization performed either artificially, in the laboratory, ei- ther naturally, in the field.
    [Show full text]
  • Morristown Street Tree Resource Booklet
    Morristown Street Tree Resource Booklet June 2020 I. Large Shade Trees for Areas Larger than 4’ x 6’ 3 Black Tupelo (Nyssa sylcatica) 4 Dawn Redwood (Metasequoia glyptostroboides) 5 Elm (Ulmus spp.) 6 Gingko (Gingko biloba) 7 Hardy Rubber Tree (Eucommia ulmoides) 8 Honey Locust (Gleditsia triacanthos inermis) 9 Katsura Tree (Cercidphyllum japonicum) 10 Kentucky Coffee Tree (Gymnocladus dioicus) 11 Linden (Tilia spp) 12 Little Leaf Linden (Tilia cordata) 13 Silver Linden (Tilia tomentosa) 14 Crimean Linden (Tilia x euchlora) 15 London Plane Tree (Platanus x acerfolia) 16 Maple, Red (Acer rubrum) 17 Maple, Sugar ( Acer saccharum) 18 Oak, Pin (Quercus palustris) 19 Oak, Red (Quercus rubra) 20 Oak, Shingle (Quercus imbricaria) 21 Oak, White (Quercus alba) 22 Oak, Willow (Quercus phellos) 23 Pagoda Tree (Styphnolobium japanicum) 24 Sweetgum (Liquidambur styraciflua) 25 Japanese Zelkova (Zelkova serrata) 26 II. Understory Small and Medium Trees for Areas Larger than 2’ x 6’ 27 American Yellowwood (Cladrastis kentukea) 28 Amur Maackia (Maackia amurensis) 29 Cherry (Prunus spp) 30 Crabapple (Malus spp) 31 Dogwood (Cornus spp) 32 Eastern Rudbud (Cercis canadensis) 33 Golden Raintree (Koelreuteria paniculata) 34 Hackberry (Celtis occidentalis) 35 Hawthorne (Crataegus spp) 36 Hop Hornbeam (Ostrya virginiana) 37 Japanese Snowball (Styrax japonicas) 38 Maple Amur (Acer ginnala ‘Flame’) 39 Maple, Hedge (Acer campestre) 40 Purpleleaf Plum (Prunus cerasifera) 41 Callery Pear (Pyrus calleryanan’) 42 I. Large Shade Trees for Areas Larger than 4’ x 6’ Black Tupelo (Nyssa sylcatica) Form: Pyramidal in youth with horizontal branches forming, and rounded or irregular crown. Mature Height: 30’ to 50’ Mature Spread: 20’ to 30’ Use: Acceptable street tree.
    [Show full text]