Quercus Cerris
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphometric Leaf Variation in Oaks (Quercus) of Bolu, Turkey
Ann. Bot. Fennici 40: 233–242 ISSN 0003-3847 Helsinki 29 August 2003 © Finnish Zoological and Botanical Publishing Board 2003 Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey Aydın Borazan & Mehmet T. Babaç Department of Biology, Abant |zzet Baysal University, Gölköy 14280 Bolu, Turkey (e-mail: [email protected], [email protected]) Received 16 Sep. 2002, revised version received 7 Jan. 2003, accepted 10 Jan. 2003 Borazan, A. & Babaç, M. T. 2003: Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. — Ann. Bot. Fennici 40: 233–242. Genus Quercus (Fagaceae) has a problematic taxonomy because of widespread hybridization between the infrageneric taxa. The pattern of morphological leaf varia- tion was evaluated for evidence of hybridization in Bolu, Turkey, since previous stud- ies suggested that in oaks leaf morphology is a good indicator of putative hybridiza- tion. Principal components analysis was applied to data sets of leaf characters from fi ve populations to describe variation in leaf morphology. Leaf characters analyzed in this study showed high degrees of variation as a result of hybridization between four taxa (Q. pubescens, Q. virgiliana, Q. petraea and Q. robur) of subgenus Quercus while Q. cerris as a member of subgenus Cerris was clearly separated from the others. Key words: hybridization, morphological leaf variation, principal components analy- sis, Quercus Introduction in regions of mild and warm temperate climates. Fossil leaves indicate that todayʼs several major In the northern hemisphere oaks (Quercus) are oak groups are at least 40 million years old. Gen- conspicuous members of the temperate decidu- eral distribution of fossil ancestors supports the ous, broad leaved forests. -
Notes Oak News
THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece. -
New York City Approved Street Trees
New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting Acer rubrum Red Maple Sparingly 'Red Sunset' ALB Host Aesculus hippocastanum Horsechestnut White May flowers Sparingly 'Baumanni' ALB Host Aesculus octandra Yellow Buckeye Yellow May Flowers Sparingly ALB Host ALB Host 'Duraheat' Betula nigra River Birch Ornamental Bark Sparingly Plant Single Stem 'Heritage' Only Celtis occidentalis Hackberry Ornamental Bark Sparingly 'Magnifica' ALB Host ALB Host Cercidiphyllum japonicum Katsura Tree Sparingly Plant Single Stem Only Corylus colurna Turkish Filbert Sparingly LARGE TREES: Mature LARGE TREES: height than greater feet 50 tall Eucommia ulmoides Hardy Rubber Tree Frequently 'Asplenifolia' Fagus sylvatica European Beech Sparingly 'Dawyckii Purple' 'Autumn Gold' Ginkgo biloba Ginkgo Yellow Fall Color Moderately 'Magyar' Very Tough Tree 'Princeton Sentry' 'Shademaster' 'Halka' Gleditsia triacanthos var inermis Honeylocust Yellow Fall Color Moderately 'Imperial' 'Skyline' 'Espresso' Gymnocladus dioicus Kentucky Coffeetree Large Tropical Leaves Frequently 'Prairie Titan' Page 1 of 7 New York City Approved Street Trees Suggested Tree Species Shape Visual interest Frequency of Preferred Cultivars Notes Scientific Name Common Name Planting 'Rotundiloba' Seedless Cultivars Liquidambar styraciflua Sweetgum Excellent Fall Color Frequently 'Worplesdon' Preffered 'Cherokee' Orange/Green June Liriodendron tulipifera Tulip Tree Moderately Flowers Metasequoia -
The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1. -
National Oak Gall Wasp Survey
ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success ................................................................................................. -
The Population Biology of Oak Gall Wasps (Hymenoptera:Cynipidae)
5 Nov 2001 10:11 AR AR147-21.tex AR147-21.SGM ARv2(2001/05/10) P1: GSR Annu. Rev. Entomol. 2002. 47:633–68 Copyright c 2002 by Annual Reviews. All rights reserved THE POPULATION BIOLOGY OF OAK GALL WASPS (HYMENOPTERA:CYNIPIDAE) Graham N. Stone,1 Karsten Schonrogge,¨ 2 Rachel J. Atkinson,3 David Bellido,4 and Juli Pujade-Villar4 1Institute of Cell, Animal, and Population Biology, University of Edinburgh, The King’s Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom; e-mail: [email protected] 2Center of Ecology and Hydrology, CEH Dorset, Winfrith Technology Center, Winfrith Newburgh, Dorchester, Dorset DT2 8ZD, United Kingdom; e-mail: [email protected] 3Center for Conservation Science, Department of Biology, University of Stirling, Stirling FK9 4LA, United Kingdom; e-mail: [email protected] 4Departamento de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 645, 08028 Barcelona, Spain; e-mail: [email protected] Key Words cyclical parthenogenesis, host alternation, food web, parasitoid, population dynamics ■ Abstract Oak gall wasps (Hymenoptera: Cynipidae, Cynipini) are characterized by possession of complex cyclically parthenogenetic life cycles and the ability to induce a wide diversity of highly complex species- and generation-specific galls on oaks and other Fagaceae. The galls support species-rich, closed communities of inquilines and parasitoids that have become a model system in community ecology. We review recent advances in the ecology of oak cynipids, with particular emphasis on life cycle characteristics and the dynamics of the interactions between host plants, gall wasps, and natural enemies. We assess the importance of gall traits in structuring oak cynipid communities and summarize the evidence for bottom-up and top-down effects across trophic levels. -
Fossil Oak Galls Preserve Ancient Multitrophic Interactions
Edinburgh Research Explorer Fossil oak galls preserve ancient multitrophic interactions Citation for published version: Stone, GN, van der Ham, RWJM & Brewer, JG 2008, 'Fossil oak galls preserve ancient multitrophic interactions', Proceedings of the Royal Society B-Biological Sciences, vol. 275, no. 1648, pp. 2213-2219. https://doi.org/10.1098/rspb.2008.0494 Digital Object Identifier (DOI): 10.1098/rspb.2008.0494 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Proceedings of the Royal Society B-Biological Sciences Publisher Rights Statement: Free in PMC. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 Proc. R. Soc. B (2008) 275, 2213–2219 doi:10.1098/rspb.2008.0494 Published online 17 June 2008 Fossil oak galls preserve ancient multitrophic interactions Graham N. Stone1,*, Raymond W. J. M. van der Ham2 and Jan G. Brewer3 1Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK 2Nationaal Herbarium Nederland, Universiteit Leiden, PO Box 9514, 2300 RA Leiden, The Netherlands 3Hogebroeksweg 32, 8102 RK Raalte, The Netherlands Trace fossils of insect feeding have contributed substantially to our understanding of the evolution of insect–plant interactions. -
Victoria-Park-Tree-Walk-2-Web.Pdf
Opening times Victoria Park was London’s first The park is open every day except Christmas K public ‘park for the people’. K Day 7.00 am to dusk. Please be aware that R L Designed in 1841 by James A closing times fluctuate with the seasons. The P A specific closing time for the day of your visit is Pennethorne, it covers 88 hectares A I W listed on the park notice boards located at and contains over 4,500 trees. R E O each entrance. Trees are the largest living things on E T C Toilets are opened daily, from 10.00 am until R the planet and Victoria Park has a I V T one hour before the park is closed. variety of interesting specimens, Getting to the park many of which are as old as the park itself. Whatever the season, as you Bus: 277 Grove Road, D6 Grove Road, stroll around take time to enjoy 8 Old Ford Road their splendour, whether it’s the Tube: Mile End, Bow Road, Bethnal Green regimental design of the formal DLR: Bow Church tree-lined avenues, the exotic trees Rail: Hackney Wick (BR North London Line) from around the world or, indeed West Walk the evidence of the destruction caused by the great storm of 1987 that reminds us of the awesome power of nature. The West Walk is one of three Victoria Park tree walks devised by Tower Hamlets Council. We hope you enjoy your visit, if you have any comments or questions about trees please contact the Arboricultural department on 020 7364 7104. -
The Parasitoid Community of Andricus Quercuscalifornicus and Its Association with Gall Size, Phenology, and Location
Biodivers Conserv (2011) 20:203–216 DOI 10.1007/s10531-010-9956-0 ORIGINAL PAPER The parasitoid community of Andricus quercuscalifornicus and its association with gall size, phenology, and location Maxwell B. Joseph • Melanie Gentles • Ian S. Pearse Received: 1 June 2010 / Accepted: 18 November 2010 / Published online: 1 December 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Plant galls are preyed upon by a diverse group of parasitoids and inquilines, which utilize the gall, often at the cost of the gall inducer. This community of insects has been poorly described for most cynipid-induced galls on oaks in North America, despite the diversity of these galls. This study describes the natural history of a common oak apple gall (Andricus quercuscalifornicus [Cynipidae]) and its parasitoid and inquiline commu- nity. We surveyed the abundance and phenology of members of the insect community emerging from 1234 oak apple galls collected in California’s Central Valley and found that composition of the insect community varied with galls of different size, phenology, and location. The gall maker, A. quercuscalifornicus, most often reached maturity in larger galls that developed later in the season. The parasitoid Torymus californicus [Torymidae] was associated with smaller galls, and galls that developed late in the summer. The most common parasitoid, Baryscapus gigas [Eulophidae], was more abundant in galls that developed late in the summer, though the percentage of galls attacked remained constant throughout the season. A lepidopteran inquiline of the gall (Cydia latiferreana [Tortrici- dae] and its hymenopteran parasitoid (Bassus nucicola [Braconidae]) were associated with galls that developed early in the summer. -
Section [I]Cerris[I] in Western Eurasia: Inferences from Plastid
A peer-reviewed version of this preprint was published in PeerJ on 17 October 2018. View the peer-reviewed version (peerj.com/articles/5793), which is the preferred citable publication unless you specifically need to cite this preprint. Simeone MC, Cardoni S, Piredda R, Imperatori F, Avishai M, Grimm GW, Denk T. 2018. Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation. PeerJ 6:e5793 https://doi.org/10.7717/peerj.5793 Comparative systematics and phylogeography of Quercus Section Cerris in western Eurasia: inferences from plastid and nuclear DNA variation Marco Cosimo Simeone Corresp., 1 , Simone Cardoni 1 , Roberta Piredda 2 , Francesca Imperatori 1 , Michael Avishai 3 , Guido W Grimm 4 , Thomas Denk 5 1 Department of Agricultural and Forestry Science (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy 2 Stazione Zoologica Anton Dohrn, Napoli, Italy 3 Jerusalem Botanical Gardens, Hebrew University of Jerusalem, Jerusalem, Israel 4 Orleans, France 5 Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden Corresponding Author: Marco Cosimo Simeone Email address: [email protected] Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian Sect. Cerris that comprises 15 species, a dozen of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and reconstruct a first comprehensive taxonomic scheme of western Eurasian members of Sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. -
Quercus Cerris Turkey
Technical guidelines for genetic conservation and use Turkey oak Quercus cerris Quercus cerris Quercus cerris Q Marco Cosimo Simeone1, Peter Zhelev Stojanov2 and Gaye Kandemir3 1 University of Tuscia, Viterbo, Italy 2 University of Forestry, Sofia, Bulgaria 3 Forest Tree Seeds and Tree Breeding Research Institute Directorate, Ankara, Turkey These Technical Guidelines are intended to assist those who cherish the valuable Turkey oak gene pool and its inheritance, through conserving valuable seed sources or use in practical forestry. The focus is on conserving the genetic diversity of the species at the European scale. The recommendations provided in this module should be regarded as a commonly agreed basis to be complemented and further developed in local, national or regional conditions. The Guidelines are based on the available knowledge of the species and on widely accepted methods for the conservation of forest genetic resources. Biology and ecology Turkey oak (Quercus cer- ris L.) is native to Europe and Asia Minor and exhibits strong morphological variability and ecological adaptability. It has deciduous leaves and ovoid acorns with big curly cups, which ripen in the second year (Sep- tember–October). It may reach 30–35 m in height, with a straight trunk up to 2 m in diameter and 5–5.5 m in circumference. The crown is oval, broad and open. The bark is thick, rough and deeply furrowed into irregular horizontal and vertical ridges. The inner part is characteristically red. Leaves are yellow-green, with 6–12 triangular narrow lobes and deep incisions on each side. The regularity of the lobbing varies greatly, with some trees having very regular, moderately to deeply incised lobes TurkeyQuercus oakQuercus cerrisTurkey oakQuercus cerris Turkeycerris oakQuercus cerrisTurkey QuercusoakQuercus cerrisTurkey oakQuercus cerrisTurkey cerris oakQuercus cerrisTurkey oak QuercusQuercus cerrisTurkey oakQuercus cerrisTurkey oakcerrisQuercus cerrisTurkey oakQuercus Quer cerrisTurkey oakQuercus cerri (var. -
Early Parasitoid Recruitment in Invading Cynipid Galls
Early parasitoid recruitment in invading cynipid galls K. Schönrogge1, S. Moriya2, G. Melika3, Z. Randle1, T. Begg4, A. Aebi4 , G. Stone4. 1. Centre for Ecology and Hydrology, CEH Dorset, Winfrith Technology Centre, Dorchester, DT2 8ZD, UK 2. National Agricultural Research Center, Tsukuba, Ibaraki 305-8666, Ja- pan 3. Systematic Parasitoid Laboratory, Vas County Plant Protection and Soil conservation Service, Kelcz-Adelffy St. 6, Köszeg 9730, Hungary 4. Institute of Evolutionary Biology, The Kings Buildings, West Mains Road, Edinburgh, EH9 3JT, UK Summary: Biological invasions are widely seen as the biggest threat to biodiversity after the loss of habitats. One aspect of considerable interest is the recruitment of natural enemies after the establishment of the invading species and how such enemies link invaders to native communities. How- ever, not all invaders are invasive. Eight cynipid species originating in south-eastern Europe invaded Britain over the last 200 years. Presently they cause no economic concern or have any detectable detrimental effect on the native cynipid fauna. Since their invasions have been allowed to progress without intervention, they provide an excellent opportunity to study the recruitment of natural enemies and their integration into native communities. In contrast, the invasion of Japan by Dryocosmus kuriphilus from China caused great economic concern, because considerable damage to its host trees, Castanea spp. a valuable fruit tree in Japan and elsewhere in the world, is caused at high infestation rates. Here we review the early recruitment of parasitoids to the alien species in the UK and D. kuriphilus in Japan, their role in the invaders population dynamics, and how they link the invaders to native cynipid communities.