ILAE Historical Wall02.Indd 2 6/12/09 12:02:12 PM

Total Page:16

File Type:pdf, Size:1020Kb

ILAE Historical Wall02.Indd 2 6/12/09 12:02:12 PM 1920–1929 1923 1927 1929 John Macloed Julius Wagner–Jauregg Sir Frederick Hopkins 1920920 1922922 1924924 1928928 August Krogh Otto Meyerhof Willem Einthoven Charles Nicolle 1922922 1923923 1926926 192992929 Archibald V Hill Frederick Banting Johannes Fibiger Christiann Eijkman 1920 The positive eff ect of the ketogenic diet on epilepsy is documented critically 1921 First case of progressive myoclonic epilepsy described 1922 Resection of adrenal gland used as treatment for epilepsy 1923 Dandy carries out the fi rst hemispherectomy in a human patient 1924 Hans Berger records the fi rst human EEG (reported in 1929) 1925 Pavlov fi nds a toxin from the brain of a dog with epilepsy which when injected into another dog will cure epilepsy – hope for human therapy 1926 Publication of L.J.J. Musken’s book Epilepsy: comparative pathogenesis, symptoms and treatment 1927 Cerebral angiography fi rst attempted by Egaz Moniz 1928 Wilder Penfi eld spends time in Foerster’s clinic and learns epilepsy surgical techniques. 1928 An abortive attempt to restart the ILAE fails 1929 Penfi eld’s fi rst ‘temporal lobectomy’ (a cortical resection) 1920 Cause of trypanosomiasis discovered 1925 Vitamin B discovered by Joseph Goldberger 1921 Psychodiagnostics and the Rorschach test invented 1926 First enzyme (urease) crystallised by James Sumner 1922 Insulin isolated by Frecerick G. Banting and Charles H. Best treats a diabetic patient 1927 Iron lung developed by Philip Drinker and Louis Shaw for the fi rst time 1928 Penicillin discovered by Alexander Fleming 1922 State Institute for Racial Biology formed in Uppsala 1929 Chemical basis of nerve impulse transmission discovered 1923 BCG vaccine developed by Albert Calmette and Jean–Marie Camille Guérin by Henry Dale and Harold W. Dudley 1924 Foetal refl exes described by Minowski 1929 Edgar D. Adrian and Bryan Matthews detect and describe nerve impulses in a single fi bre ILAE_Historical wall02.indd 2 6/12/09 12:02:12 PM.
Recommended publications
  • August and Marie Krogh August and Marie Krogh
    August and Marie Krogh August and Marie Krogh LIVES IN SCIENCE Bodil Schmidt-Nielsen, Dr. Odont, Dr. phil. Professor Emeritus and Aqjunct Professor, Department of Physiology, University of Florida SPRINGER NEW YORK 1995 Oxford University Press Oxford New York Toronto Delhi Bombay Calcutta Madras Karachi Kuala Lumpur Singapore Hong Kong Tokyo Nairobi Dar es Salaam Cape Town Melbourne Auckland Madrid and associated companies in Berlin lbadan Copyright © 1995 by the American Physiological Society Originally published by American Physiological Society in 1995 Softcover reprint of the hardcover 1st edition 1995 Oxford is a registered trademark of Oxford University Press AII rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Schmidt-Nielsen, Bodil. August and Marie Krogh : lives in science by Bodil Schmidt-Nielsen. p. cm. Includes index. ISBN 978-1-4614-7530-9 (eBook) DOI 10.1007/978-1-4614-7530-9 1. Krogh, August, 1874-1949. 2. Krogh, Marie, 1874-1943. 3. Physiologists-Denmark-Biography. I. Title. QP26.K76S35 1995 591.1'092-dc20 [B] 94-20655 9 8 7 6 5 4 3 2 1 Printed in the United States of America on acid-free paper Preface When my father August Krogh died in 1949, 1 was with him in Den­ mark. My stay in Denmark was prolonged for another two months due to a concussion 1 sustained in an automobile accident, which occurred shortly after his death.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • DMJ.1936.2.1.A02.Young.Pdf (3.644Mb)
    DALHOUSIE MEDICAL JOURNAL 5 A Memorable Conference THE HARVARD TERCENTENARY 1636 - 1936 E. GORDON YOUNG, B.A., M.Sc., Ph.D., F.R.S.C. OMEONE has said that the most valuable and rarest thing in the world S is a new idea. It is the verdict or the intellectual world of science, of art and of music that progress centres largely about the thoughts ex­ pressed by the few great minds of the centuries. The work of the scientists of the world has been likened to a great canvas, the subject of which has been chosen by the few and the first bold lines inserted, but the great mass of colour and detail has been supplied by the many faithful apprentices. It was most fitting that the oldest and greatest of American Universities should celebrate its three hundredth birthday in an intellec­ tual feast and that it should invite to its table as leaders of conversation the greatest minds of the world in those subjects which were proposed for discussion. Harvard.!J.as a magnificent record of intellectual tolerance and its hospitality was open to individuals of all nationalities and all re- ligious and political creeds. To Cambridge thus in the early days of September, 1936, there came, by invitation, a group of about two thousand five hundred American and Canadian scholars to participate in a memorable series of symposia led by a special group of sixty-seven eminent scientists and men of letters from fifteen different countries. These included no fewer than eleven men who had the greatest single distinction in the realms of science and of letters, the Nobel Prize.
    [Show full text]
  • Animal Models of Obesity and Diabetes Mellitus
    UC Davis UC Davis Previously Published Works Title Animal models of obesity and diabetes mellitus. Permalink https://escholarship.org/uc/item/3z3879vp Journal Nature reviews. Endocrinology, 14(3) ISSN 1759-5029 Authors Kleinert, Maximilian Clemmensen, Christoffer Hofmann, Susanna M et al. Publication Date 2018-03-01 DOI 10.1038/nrendo.2017.161 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEWS Animal models of obesity and diabetes mellitus Maximilian Kleinert1–4, Christoffer Clemmensen1–3, Susanna M. Hofmann3,5,6, Mary C. Moore7, Simone Renner3,8, Stephen C. Woods9, Peter Huypens3,10, Johannes Beckers3,10,11, Martin Hrabe de Angelis3,10,11, Annette Schürmann3,12, Mostafa Bakhti3,5,13, Martin Klingenspor14,15,16, Mark Heiman17, Alan D. Cherrington7, Michael Ristow18, Heiko Lickert3,5,13, Eckhard Wolf3,8, Peter J. Havel19, Timo D. Müller1–3 and Matthias H. Tschöp1–3 Abstract | More than one-third of the worldwide population is overweight or obese and therefore at risk of developing type 2 diabetes mellitus. In order to mitigate this pandemic, safer and more potent therapeutics are urgently required. This necessitates the continued use of animal models to discover, validate and optimize novel therapeutics for their safe use in humans. In order to improve the transition from bench to bedside, researchers must not only carefully select the appropriate model but also draw the right conclusions. In this Review, we consolidate the key information on the currently available animal models of obesity and diabetes and highlight the advantages, limitations and important caveats of each of these models. On the current trajectory, over half of the adult pop- To tackle these objectives, researchers rely on diverse ani- ulation in the United States will be obese by 2030, and mal models that span multiple species and strategic scien- similar increments are likely to occur in other developed tific approaches.
    [Show full text]
  • Nobel Prizes in Physiology Or Medicine with an Emphasis on Bacteriology
    J Med Bacteriol. Vol. 8, No. 3, 4 (2019): pp.49-57 jmb.tums.ac.ir Journal of Medical Bacteriology Nobel Prizes in Physiology or Medicine with an Emphasis on Bacteriology 1 1 2 Hamid Hakimi , Ebrahim Rezazadeh Zarandi , Siavash Assar , Omid Rezahosseini 3, Sepideh Assar 4, Roya Sadr-Mohammadi 5, Sahar Assar 6, Shokrollah Assar 7* 1 Department of Microbiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. 2 Department of Anesthesiology, Medical School, Kerman University of Medical Sciences, Kerman, Iran. 3 Department of Infectious and Tropical Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran. 4 Department of Pathology, Dental School, Shiraz University of Medical Sciences, Shiraz, Iran. 5 Dental School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. 6 Dental School, Shiraz University of Medical Sciences, Shiraz, Iran. 7 Department of Microbiology and Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran. ARTICLE INFO ABSTRACT Article type: Background: Knowledge is an ocean without bound or shore, the seeker of knowledge is (like) the Review Article diver in those seas. Even if his life is a thousand years, he will never stop searching. This is the result Article history: of reflection in the book of development. Human beings are free and, to some extent, have the right to Received: 02 Feb 2019 choose, on the other hand, they are spiritually oriented and innovative, and for this reason, the new Revised: 28 Mar 2019 discovery and creativity are felt. This characteristic, which is in the nature of human beings, can be a Accepted: 06 May 2019 motive for the revision of life and its tools and products.
    [Show full text]
  • 100858 AVANCES 26 5Indd
    avances en Diabetología Av Diabetol. 2010;26:373-82 Historical perspective From pancreatic extracts to artificial pancreas: history, science and controversies about the discovery of the pancreatic antidiabetic hormone V: The controversy. Who discovered insulin? A. de Leiva-Pérez1, E. Brugués-Brugués1,2, A. de Leiva-Hidalgo1,2,3,4 1Fundación DIABEM. 2Servicio de Endocrinología y Nutrición e Instituto de Investigación. Hospital de la Santa Creu i Sant Pau. Barcelona. 3Centro de Historia de la Ciencia. Universitat Autònoma de Barcelona. 4CIBER-BBN-ISCIII The Nobel Prize controversy were provided by two members of the objection was to making an award on “he- The 1923 Nobel Award Nobel Committee: John Sjöqvist, Profes- resy evidence” from unknown persons or of Physiology or Medicine sor of Chemistry and Pharmacy, and Hans on statements in the two appraisals, like In April 1923, a total of 57 nominations Christian Jacobaeus, Professor of Internal “it is beyond doubt”, or comments as with merits were reviewed by the Nobel Medicine. Sjökvist arrived to the same ”things that are thought as very possible”; Committee. The examiners concluded conclusion as A. Krogh: the prize should the Assembly should take only verifi able that the discovery of insulin was of funda- be divided between Banting and Macleod. facts. The Committee reconsidered and mental importance. The archives of the Professor Göran Liljstrand was the Secre- reconfirmed its previous recommenda- Karolinska Institute depict that Macleod tary of the Nobel Committee from 1918 to tion. August Krogh was identifi ed as the and Banting were nominated for the fi rst 1960. He was a great friend of August source of the “heresy evidence”; he time in 1923: Banting by G.W.
    [Show full text]
  • (Rh) Factor Studies, Dr. Bruce Chown, and the Faculty Of
    THE BIRTH OF A MEDICAL RESEARCH PROGRAMME. THE RHESUS (RH) FACTOR STUDIES, DR. BRUCE CHOWN, AND THE FACULTY OF MEDICINE, UNIVERSITY OF MANITOBA, 1883-1946. By C. Peter W. Warren A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfilment of the requirements of the degree of MASTER OF ARTS Joint Master‟s Program Departments of History University of Manitoba / University of Winnipeg Winnipeg Copyright © 2011 by C. Peter W. Warren i NOTE TO READERS Dr. C. Peter Warren passed away suddenly on 3 May 2011. He had finished this thesis, and we were in the process of scheduling his defence. Dr. Warren did not defend the thesis, but Dr. Greg Smith, Chair of the Joint Master‟s Program, and Dr. J Doering, Dean of the Faculty of Graduate Studies, agreed with Dr. Warren‟s family that the thesis should be made available for future scholars. Dr. Warren‟s thesis examining committee (Drs. Esyllt Jones, Emőke J. E. Szathmáry and Gerald Friesen) read the thesis and suggested a small number of typographical and editorial changes, and I am very grateful to them for their commitment to finishing this project. In two cases, I have inserted comments [ed.:] in order to clarify particular points. Apart from a small number of obvious omissions and errors which I have silently corrected, the work and words are as Dr. Warren wrote them. James Hanley Associate Professor of History University of Winnipeg 15 August 2011 ii Abstract The thesis is an analysis of the birth of the Rhesus (Rh) Factor Research Programme in the Faculty of Medicine, University of Manitoba.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • Krogh's Principle for Musculoskeletal Physiology and Pathology
    Journal of Musculoskeletal J Musculoskelet Neuronal Interact 2018; 18(3):284-291 and Neuronal Interactions Perspective Article Krogh’s principle for musculoskeletal physiology and pathology Seth W. Donahue Department of Biomedical Engineering, University of Massachusetts, USA Abstract August Krogh was a comparative physiologist who used frogs, guinea pigs, cats, dogs, and horses in his research that led to his Nobel Prize on muscle physiology. His idea to choose the most relevant organism to study problems in physiology has become known as Krogh’s principle. Indeed, many important discoveries in physiology have been made using naturally occurring animal models. However, the majority of research today utilizes laboratory mouse and rat models to study problems in physiology. This paper discusses how Krogh’s principle can be invoked in musculoskeletal research as a complementary approach to using standard laboratory rodent models for solving problems in musculoskeletal physiology. This approach may increase our ability to treat musculoskeletal diseases clinically. For example, it has been noted that progress in osteogenesis imperfecta research has been limited by the absence of a naturally occurring animal model. Several examples of naturally occurring animal models are discussed including osteoarthritis and osteosarcoma in dogs, resistance to disuse induced bone and skeletal muscle loss in mammalian hibernators, and bone phenotypic plasticity in fish lacking osteocytes. Many musculoskeletal diseases (e.g., osteoarthritis) occur naturally in companion animals, which may provide clues on etiology and progression of musculoskeletal diseases and accelerate the development of pharmaceutical therapies for humans. Keywords: Animal Models, Comparative Physiology, Companion Animals, Evolutionary Physiology, Musculoskeletal August Krogh: his research and his principle plant, insect, amphibian, bird, mammal) to study problems in physiology.
    [Show full text]
  • Polyuria) Mellitus – Sweet
    Hormones: the birth of a concept and how it gained recognition U3A Course, Spring Series 2017 Gil Barbezat What I plan to talk about: • First Session: History of hormones; concepts to chemicals Stories behind some key discovery milestones Technological help in advances • Second Session: How hormones work Hormones’ role in digestion Gut hormones in excess (tumours) What do you associate with the word ‘Hormone’ • Sex, Puberty, Menopause? • Body building, Athletes? • Maybe? Digestion Urine production Blood production and BP Brain function • Regulates our entire metabolism Early ‘application’ - Eunuchs • Intentional castration • Summerian city of Lagash in 21st C BCE Southern Mesopotamia (Iraq) • Applications: Guardians of rulers or women Singers Courtiers and domestics Why did this happen? Albrecht von Haller (1708 – 77) • Swiss poet, naturalist, theologian, anatomist, physiologist • “Father of experimental physiology” • Body ‘emanations’: Bile digests fat Body a reactive organism Salivary gland duct a blood vessel (MD) Theophile de Bordeu (1722 – 76) • French poet, philosopher, physician • Organs specific sensibilities • Each organ of the body produced a specific ‘emanation’ (humour) which it secreted into the bloodstream Claude Bernard (1813 – 78) Claude Bernard • Vaudeville comedy to medicine Med School in Paris 1834; physiology • Father of “Experimental medicine” Vivisection • ‘Milieu interieur’ Walter Bradford Cannon (1871 – 1945) • American physiologist at Harvard • Worked in lab of Henry Bowditch, a pupil of Bernard • Enlarged Bernard’s
    [Show full text]
  • Banting and Best: the Extraordinary Discovery of Insulin
    106 Rev Port Endocrinol Diabetes Metab. 2017;12(1):106-115 Revista Portuguesa de Endocrinologia, Diabetes e Metabolismo www.spedmjournal.com Artigo de Revisão Banting and Best: The Extraordinary Discovery of Insulin Luís Cardosoa,b, Dírcea Rodriguesa,b, Leonor Gomesa,b, Francisco Carrilhoa a Department of Endocrinology, Diabetes, and Metabolism, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal b Faculty of Medicine of the University of Coimbra, Coimbra, Portugal INFORMAÇÃO SOBRE O ARTIGO ABSTRACT Historial do artigo: Diabetes was a feared disease that most certainly led to death before insulin discovery. During the first Recebido a XX de XXXX de 201X two decades of the 20th century, several researchers tested pancreatic extracts, but most of them caused Aceite a XX de XXXX de 201X Online a 30 de junho de 2017 toxic reactions impeding human use. On May 1921, Banting, a young surgeon, and Best, a master’s student, started testing the hypothesis that, by ligating the pancreatic ducts to induce atrophy of the exocrine pancreas and minimizing the effect of digestive enzymes, it would be possible to isolate the Keywords: internal secretion of the pancreas. The research took place at the Department of Physiology of the Diabetes Mellitus University of Toronto under supervision of the notorious physiologist John MacLeod. Banting and Insulin/history Best felt several difficulties depancreatising dogs and a couple of weeks after the experiments had Pancreatic Extracts/history begun most of the dogs initially allocated to the project had succumbed to perioperative complications. When they had depancreatised dogs available, they moved to the next phase of the project and prepared pancreatic extracts from ligated atrophied pancreas.
    [Show full text]
  • Nobel Laureate Surgeons
    Literature Review World Journal of Surgery and Surgical Research Published: 12 Mar, 2020 Nobel Laureate Surgeons Jayant Radhakrishnan1* and Mohammad Ezzi1,2 1Department of Surgery and Urology, University of Illinois, USA 2Department of Surgery, Jazan University, Saudi Arabia Abstract This is a brief account of the notable contributions and some foibles of surgeons who have won the Nobel Prize for physiology or medicine since it was first awarded in 1901. Keywords: Nobel Prize in physiology or medicine; Surgical Nobel laureates; Pathology and surgery Introduction The Nobel Prize for physiology or medicine has been awarded to 219 scientists in the last 119 years. Eleven members of this illustrious group are surgeons although their awards have not always been for surgical innovations. Names of these surgeons with the year of the award and why they received it are listed below: Emil Theodor Kocher - 1909: Thyroid physiology, pathology and surgery. Alvar Gullstrand - 1911: Path of refracted light through the ocular lens. Alexis Carrel - 1912: Methods for suturing blood vessels and transplantation. Robert Barany - 1914: Function of the vestibular apparatus. Frederick Grant Banting - 1923: Extraction of insulin and treatment of diabetes. Alexander Fleming - 1945: Discovery of penicillin. Walter Rudolf Hess - 1949: Brain mapping for control of internal bodily functions. Werner Theodor Otto Forssmann - 1956: Cardiac catheterization. Charles Brenton Huggins - 1966: Hormonal control of prostate cancer. OPEN ACCESS Joseph Edward Murray - 1990: Organ transplantation. *Correspondence: Shinya Yamanaka-2012: Reprogramming of mature cells for pluripotency. Jayant Radhakrishnan, Department of Surgery and Urology, University of Emil Theodor Kocher (August 25, 1841 to July 27, 1917) Illinois, 1502, 71st, Street Darien, IL Kocher received the award in 1909 “for his work on the physiology, pathology and surgery of the 60561, Chicago, Illinois, USA, thyroid gland” [1].
    [Show full text]