Corrigiendo Tesis Doctorado Paloma Casas Junco

Total Page:16

File Type:pdf, Size:1020Kb

Corrigiendo Tesis Doctorado Paloma Casas Junco TECNOLÓGICO NACIONAL DE MÉXICO Instituto Tecnológico de Tepic EFECTO DE PLASMA FRÍO EN LA REDUCCIÓN DE OCRATOXINA A EN CAFÉ DE NAYARIT (MÉXICO) TESIS Por: MCA. PALOMA PATRICIA CASAS JUNCO DOCTORADO EN CIENCIAS EN ALIMENTOS Director: Dra. Montserrat Calderón Santoyo Co - director: Dr. Juan Arturo Ragazzo Sánchez Tepic, Nayarit Febrero 2018 RESUMEN Casas-Junco, Paloma Patricia. DCA. Instituto Tecnológico de Tepic. Febrero de 2018. Efecto de plasma frío en la reducción de ocratoxina A en café de Nayarit (México). Directora: Montserrat Calderón Santoyo. La ocratoxina A (OTA) se considera uno de los principales problemas emergentes en la industria del café, dado que el proceso de tostado no asegura su destrucción total. El objetivo de este estudio fue identificar las especies fúngicas productoras de OTA en café tostado de Nayarit, así como evaluar el efecto de plasma frío en la inhibición de esporas de hongos micotoxigénicos, detoxificación de OTA, así como en algunos parámetros de calidad del café. Se aislaron e identificaron hongos micotoxigénicos mediante claves dicotómicas, después se analizó la producción de OTA y aflatoxinas (AFB1, AFB2, AFG2, AFG1) por HPLC con detector de fluorescencia. Las cepas productoras de toxinas se identificaron por PCR utilizando los primers ITS1 e ITS4. Después se aplicó plasma frío en muestras de café tostado inoculadas con hongos micotoxigénicos (A. westerdijikiae, A. steynii, A. niger y A. versicolor) a diferentes tiempos 0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 16 y 18 min, con una potencia de entrada 30 W y un voltaje de salida de 850 voltios y helio publicitario (1.5 L/min). El café tostado fue contaminado artificialmente con hongos micotoxigénicos (1x105 esporas/g) a 27 ºC (21 días). Las muestras fueron tratadas con plasma frío a las mismas condiciones, pero a 0, 1, 4, 8, 12, 16, 20, 24 y 30 min. OTA fue cuantificada por HPLC acoplado a MS. Se realizaron pruebas de toxicidad mediante el bioensayo de Artemia salina. Finalmente se investigó actividad antioxidante, polifenoles solubles totales, perfil aromático y características sensoriales en muestras de café tratadas con plasma frío. Se detectó producción de OTA en las cepas R16, 6N y 11 con una concentración en µg/kg de micelio de 0.33, 1.16 y 0.36, respectivamente. Estas fueron identificadas como A. niger, A. versicolor y Byssochlamys spectabilis. La tecnología emergente de plasma frío mostró una disminución de 4 log en 6 min en los hongos micotoxigénicos. Referente a la detoxificación de OTA, en los tratamientos aplicados por 30 min, se obtuvieron reducciones aprox. del 50 %. Esto se pueda atribuir a las diferentes especies reactivas formadas + + − − + durante el proceso de plasma como son iones (H3O , O , O , OH , N2 ), especies moleculares (O3, H2O2), radicales reactivos (O•, OH•, NO•) e irradiación UV. Mediante análisis por HPLC-MS se determinó que OTA da origen a dos fragmentos principales, el anillo de isocumarina clorada y el grupo amino de la molécula L - b fenilalanina. El café tostado sin tratar se determinó como “tóxico”, mientras que la toxicidad para el café tratado con plasma frío se redujo a “ligeramente tóxico”. El perfil aromático de café tratado con plasma no presentó diferencias significativas (p < 0.05) respecto al café sin tratamiento. De acuerdo a la evaluación sensorial los panelistas calificaron “me gusta moderadamente” en los parámetros de olor, color, sabor y aceptación general, para ambos tratamientos con y sin plasma, sin haber diferencia significativa entre ambos (p<0.05). La diferencia de color ∆E determinada entre café tratado con plasma frío y sin tratar, fue inferior a 1, por lo que es difícilmente perceptible por el ojo humano. En cuanto a los fenoles solubles totales, se determinó una reducción del 12 %, mientras en la actividad antioxidante hubo aumento del 14 %. Por lo tanto, se concluye que el plasma frío es un método prometedor para la destrucción de hongos micotoxigénicos y para la degradación de OTA en café tostado, por lo que podría ser útil en la cadena de procesamiento de este producto alimenticio. Palabras claves: Café tostado, Aspergillus, OTA, plasma frío, Artemia salina. ii CONTENIDO LISTA DE CUADROS ....................................................................................................... v LISTA DE FIGURAS ....................................................................................................... vii INTRODUCCIÓN .............................................................................................................. 1 CAPÍTULO 1. ANTECEDENTES .................................................................................... 4 1.1 Fruto de café (Coffea arábica L.) ............................................................................. 4 1.2 Composición química del café en grano .................................................................. 4 1.3 Micotoxinas ................................................................................................................ 5 1.3.1 Los factores que influyen en el crecimiento fúngico y la producción de micotoxinas .......................................................................................................................... 6 1.4 Hongos productores de ocratoxina A (OTA) .......................................................... 7 1.5 Ocratoxinas .............................................................................................................. 12 1.5.1 Ocratoxina A (OTA) ................................................................................................ 13 1.5.2 Propiedades fisicoquímicas de OTA ...................................................................... 15 1.5.3 Toxicocinética de la OTA ........................................................................................ 16 1.5.3.1 Absorción y distribución .......................................................................... 16 1.5.3.2 Metabolismo .............................................................................................. 17 1.5.3.3 Eliminación ................................................................................................ 17 1.5.4 Toxicodinámica: mecanismo de acción .................................................................. 20 1.5.5 Toxicidad .................................................................................................................. 21 1.5.5.1 Toxicidad aguda ........................................................................................ 22 1.5.5.2 Toxicidad crónica ...................................................................................... 23 1.6 Métodos de análisis para la determinación de ocratoxina (OTA) ...................... 24 1.7 Plasma frío ............................................................................................................... 27 1.7.1 Reactor de plasma .................................................................................................... 29 1.8 Mecanismo de inhibición de la tecnología emergente plasma frío ...................... 30 ii 1.9 Efecto de plasma en micotoxinas ........................................................................... 31 CAPÍTULO 2. JUSTIFICACIÓN ................................................................................... 34 CAPÍTULO 3. HIPÓTESIS ............................................................................................. 36 CAPÍTULO 4. OBJETIVOS ........................................................................................... 38 4.1 Objetivo general ...................................................................................................... 38 4.2 Objetivos específicos ............................................................................................... 38 CAPÍTULO 5. MATERIALES Y MÉTODOS .............................................................. 41 5.1 Metodología .............................................................................................................. 41 5.2 Diseño estadístico y experimental .......................................................................... 43 5.3 Materia prima .......................................................................................................... 44 5.4 Actividad de agua (aw) ............................................................................................ 44 5.5 Aislamiento e identificación de hongos relacionados con muestras de café tostado en grano y café molido. .................................................................................... 44 5.6 Identificación de hongos ......................................................................................... 45 5.7 Determinación de ocratoxina A (OTA) y aflatoxinas totales (AFLA) en hongos micotoxigenéticos ........................................................................................................... 47 5.7.1 Extracción y purificación de ocratoxina A (OTA) y aflatoxinas totales (AFLA) ............................................................................................................................................. 47 5.7.2 Método de cuantificación de ocratoxina A (OTA) y aflatoxinas totales por HPLC ................................................................................................................................. 47 5.7.3 Curva de calibración para la cuantificación de OTA y AFLA ............................ 48 5.8 Análisis molecular ..................................................................................................
Recommended publications
  • Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses
    pathogens Review Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses Daniele Cristina Fontana 1,† , Samuel de Paula 2,*,† , Abel Galon Torres 2 , Victor Hugo Moura de Souza 2 , Sérgio Florentino Pascholati 2 , Denise Schmidt 3 and Durval Dourado Neto 1 1 Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (D.C.F.); [email protected] (D.D.N.) 2 Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (A.G.T.); [email protected] (V.H.M.d.S.); [email protected] (S.F.P.) 3 Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-54-99646-9453 † These authors contributed equally to this work. Abstract: Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of Citation: Fontana, D.C.; de Paula, S.; microorganisms which can act in controlling plant diseases and describe several examples in which Torres, A.G.; de Souza, V.H.M.; endophytes were able to reduce the damage caused by pathogens and adverse conditions.
    [Show full text]
  • “La Uva” (Sinaloa) Con Vegetación De Selva
    INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE INVESTIGACIÓN PARA EL DESARROLLO INTEGRAL REGIONAL UNIDAD SINALOA Biodiversidad de la microbiota rizosférica de dos especies solanáceas: Solanum lycopersicon, L. y Datura spp. (tomate y toloache) TESIS QUE PARA OBTENER EL GRADO DE MAESTRÍA EN RECURSOS NATURALES Y MEDIO AMBIENTE PRESENTA RAQUEL LÓPEZ RIVERA GUASAVE, SINALOA, MÉXICO. DICIEMBRE DE 2011. Agradecimientos a proyectos El trabajo de tesis se desarrolló en el lanoratoriao de Ecología Molecular de la Rizosfera en el Departamento de Biotecnología Agrícola del Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa del Instituto Politécnico Nacional (IPN) bajo la dirección del Dr. Ignacio Eduardo Maldonado Mendoza, E-mail: [email protected], domicilio laboral: Boulevard Juan de Dios Bátiz Paredes, No. 250 CP: 81100, Colonia: San Joachin, Ciudad: Guasave, Sinaloa, Fax: 01(687)8729625, Teléfono: 01(687)8729626. El presente trabajo fue apoyado económicamente a través del CONABIO (Con número de registro GE019). El alumno/a Raquel López Rivera fue apoyado con una beca CONACYT con clave 332252. AGRADECIMIENTOS A Dios por estar siempre a mi lado y darme la fuerza necesaria para seguir adelante y llegar a este momento de mi vida. A mis padres Roberto y Tomasa por darme la vida y enseñarme a vivirla, por todo el apoyo que me han brindado y por los consejos que me han guiado por el camino correcto. A mis hermanos Miriam, Miguel y Roberto que siempre han estado conmigo apoyándome de una u otra manera y en especial a mi hermana Carolina†, a pesar del tiempo te sigo extrañando. A mi director de tesis el Dr.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Isolation and Identification of Microfungi from Soils in Serdang, Selangor, Malaysia Article
    Studies in Fungi 5(1): 6–16 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/2 Isolation and identification of microfungi from soils in Serdang, Selangor, Malaysia Mohd Nazri NIA1, Mohd Zaini NA1, Aris A1, Hasan ZAE1, Abd Murad NB1, 2 1 Yusof MT and Mohd Zainudin NAI 1 Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Mohd Nazri NIA, Mohd Zaini NA, Aris A, Hasan ZAE, Abd Murad NB, Yusof MT, Mohd Zainudin NAI 2020 – Isolation and identification of microfungi from soils in Serdang, Selangor, Malaysia. Studies in Fungi 5(1), 6–16, Doi 10.5943/sif/5/1/2 Abstract Microfungi are commonly inhabited soil with various roles. The present study was conducted in order to isolate and identify microfungi from soil samples in Serdang, Selangor, Malaysia. In this study, the soil microfungi were isolated using serial dilution technique and spread plate method. A total of 25 isolates were identified into ten genera based on internal transcribed spacer region (ITS) sequence analysis, namely Aspergillus, Clonostachys, Colletotrichum, Curvularia, Gliocladiopsis, Metarhizium, Myrmecridium, Penicillium, Scedosporium and Trichoderma consisting 18 fungi species. Aspergillus and Penicillium species were claimed as predominant microfungi inhabiting the soil. Findings from this study can be used as a checklist for future studies related to fungi distribution in tropical lands. For improving further study, factors including the physicochemical properties of soil and anthropogenic activities in the sampling area should be included.
    [Show full text]
  • DNA Fingerprinting Analysis of Petromyces Alliaceus (Aspergillus Section Flavi)
    276 1039 DNA fingerprinting analysis of Petromyces alliaceus (Aspergillus section Flavi) Cesaria E. McAlpin and Donald T. Wicklow Abstract: The objective of this study was to evaluate the ability of the Aspergillus flavus pAF28 DA probe to pro­ duce DA fingerprints for distinguishing among genotypes of Petromyces alliaceus (Aspergillus section Flavi), a fun­ gus considered responsible for the ochratoxin A contamination that is occasionally observed in California fig orchards. P alliaceus (14 isolates), Petromyces albertensis (one isolate), and seven species of Aspergillus section Circumdati (14 isolates) were analyzed by DA fingerprinting using a repetitive sequence DNA probe pAF28 derived from A. flavus. The presence of hybridization bands with the DA probe and with the P alliaceus or P albertensis genomic DA in­ dicates a close relationship between A. flavus and P alliaceus. Twelve distinct DA fingerprint groups or genotypes were identified among the 15 isolates of Petromyces. Conspecificity of P alliaceus and P albertensis is suggested based on DA fingerprints. Species belonging to Aspergillus section Circumdati hybridized only slightly at the 7.0-kb region with the repetitive DA probe, unlike the highly polymorphic hybridization patterns obtained from P alliaceus and A. jZavus, suggesting very little homology of the probe to Aspergillus section Circumdati genomic DNA. The pAF28 DA probe offers a tool for typing and monitoring specific P alliaceus clonal populations and for estimating the genotypic diversity of P alliaceus in orchards,
    [Show full text]
  • Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?
    Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-018-09607-9 MINI-REVIEW Citric acid and itaconic acid accumulation: variations of the same story? Levente Karaffa 1 & Christian P. Kubicek2,3 Received: 5 December 2018 /Revised: 28 December 2018 /Accepted: 28 December 2018 # The Author(s) 2019 Abstract Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production. Keywords Aspergillus niger . Aspergillus terreus . Citric acid . Itaconic acid . Submerged fermentation . Overflow metabolism Introduction terreus—was patented in the next decade (Kane et al. 1945). Before World War II, organic acid manufacturing was exclu- Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) sively performed by the labor-intensive and relatively low- and itaconic acid (2-methylene-succinic acid or 2- yield surface method (Doelger and Prescott 1934;Calam methylidenebutanedioic acid) are the most well-known exam- et al.
    [Show full text]
  • Aspergillus Serratalhadensis Fungal Planet Description Sheets 263
    262 Persoonia – Volume 40, 2018 Aspergillus serratalhadensis Fungal Planet description sheets 263 Fungal Planet 720 – 13 July 2018 Aspergillus serratalhadensis L.F. Oliveira, R.N. Barbosa, G.M.R. Albuquerque, Souza-Motta, Viana Marques, sp. nov. Etymology. serratalhadensis, refers to the Brazilian city Serra Talhada, new species Aspergillus serratalhadensis is a distinct lineage the location of the ex-type strain of this species. which belongs to Aspergillus section Nigri, clustering in the Classification — Aspergillaceae, Eurotiales, Eurotiomycetes. A. aculeatus clade. The BLASTn analysis showed low similar- ity of BenA sequences: A. aculeatus (GenBank HE577806.1; On MEA: Stipes brown, smooth, (200–)250–400(–500) × 8– 93 %) and A. brunneoviolaceus (GenBank EF661105.1; 92 %). 9(–10) μm; conidial heads pale to dark brown; uniseriate; vesicle For CmD low similarities were found to A. aculeatus (Gen- subglobose to globose, (32–)50 × 50(–42) μm diam; phialides Bank FN594542.1; 90 %) and A. brunneoviolaceus (GenBank flask-shaped and covering the entire surface of the vesicle, EF661147.1; 90 %). Aspergillus serratalhadensis and these measuring (1.5–)2 × 1.5(–2) µm; conidia globose occasionally two species are uniseriate. However, in A. brunneoviolaceus subglobose, rough-walled to echinulate, brown-black in mass, the conidia are globose to ellipsoidal, smooth, slightly rough- 5(–6.5) μm diam including ornamentation. ened, 3.5–4.5(–6) × 3.5–4.5(–5) μm diam, with a spherical Culture characteristics — (in the dark, 25 °C after 7 d): Colo- vesicle, (30–)35–70(–90) μm diam. In A. aculeatus conidia nies on MEA 54–56 mm diam, sporulating dark brown to black, were spherical, smooth, slightly roughened, 4.9–5.4 μm diam, mycelium white, floccose, exudate absent, no soluble pigments, with a spherical vesicle, 60–63 μm diam (Klich 2002, Jurjević reverse brownish to buff.
    [Show full text]
  • Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces Variotii (Eurotiales)
    fmicb-09-03058 December 11, 2018 Time: 17:41 # 1 ORIGINAL RESEARCH published: 13 December 2018 doi: 10.3389/fmicb.2018.03058 Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales) Andrew S. Urquhart1, Stephen J. Mondo2, Miia R. Mäkelä3, James K. Hane4,5, Ad Wiebenga6, Guifen He2, Sirma Mihaltcheva2, Jasmyn Pangilinan2, Anna Lipzen2, Kerrie Barry2, Ronald P. de Vries6, Igor V. Grigoriev2 and Alexander Idnurm1* 1 School of BioSciences, University of Melbourne, Melbourne, VIC, Australia, 2 U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States, 3 Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland, 4 CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia, 5 Curtin Institute for Computation, Curtin University, Bentley, WA, Australia, 6 Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, Edited by: a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared Monika Schmoll, Austrian Institute of Technology (AIT), to have been mutated by repeat-induced point (RIP) mutations. We developed methods Austria for genetic transformation of P.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene.
    [Show full text]
  • A Thesis Submitted in Partial Fulfillment of the Requirements For
    i Screening of Soil Fungi from Plant Genetic Conservation Project Area, Rajjaprabha Dam, Suratthani Province which Produced Antimicrobial Substances Kawitsara Borwornwiriyapan A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology Prince of Songkla University 2013 Copyright of Prince of Songkla University ii Thesis Title Screening of Soil Fungi from Plant Genetic Conservation Project Area, Rajjaprabha Dam, Suratthani Province which Produced Antimicrobial Substances Author Miss Kawitsara Borwornwiriyapan Major Program Master of Science in Microbiology Major Advisor: Examining Committee: ………………………………………… ..……………………………Chairperson (Assoc. Prof. Dr. Souwalak Phongpaichit) (Asst. Prof. Dr. Youwalak Dissara) Co-advisor: ............................................................... (Assoc. Prof. Dr. Souwalak Phongpaichit) ………………………………………… ………………………………………… (Dr. Jariya Sakayaroj) (Dr. Jariya Sakayaroj) ………………………………………….. (Dr. Pawika Boonyapipat) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Microbiology. ………………………………….. (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School iii This is to certify that the work here submitted is the result of the candidate’s own investigations. Due acknowledgement has been made of any assistance received. ...………………………………Signature (Assoc. Prof. Dr. Souwalak Phongpaichit) Major advisor ...………………………………Signature (Miss Kawitsara Borwornwiriyapan)
    [Show full text]
  • Phylogeny and Nomenclature of the Genus Talaromyces and Taxa Accommodated in Penicillium Subgenus Biverticillium
    available online at www.studiesinmycology.org StudieS in Mycology 70: 159–183. 2011. doi:10.3114/sim.2011.70.04 Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium R.A. Samson1, N. Yilmaz1,6, J. Houbraken1,6, H. Spierenburg1, K.A. Seifert2, S.W. Peterson3, J. Varga4 and J.C. Frisvad5 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario, K1A 0C6, Canada, 3Bacterial Foodborne Pathogens and Mycology Research Unit, National Center for Agricultural Utilization Research, 1815 N. University Street, Peoria, IL 61604, U.S.A., 4Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary, 5Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark; 6Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: R.A. Samson, [email protected] Abstract: The taxonomic history of anamorphic species attributed to Penicillium subgenus Biverticillium is reviewed, along with evidence supporting their relationship with teleomorphic species classified inTalaromyces. To supplement previous conclusions based on ITS, SSU and/or LSU sequencing that Talaromyces and subgenus Biverticillium comprise a monophyletic group that is distinct from Penicillium at the generic level, the phylogenetic relationships of these two groups with other genera of Trichocomaceae was further studied by sequencing a part of the RPB1 (RNA polymerase II largest subunit) gene. Talaromyces species and most species of Penicillium subgenus Biverticillium sensu Pitt reside in a monophyletic clade distant from species of other subgenera of Penicillium.
    [Show full text]