Aspergillus Serratalhadensis Fungal Planet Description Sheets 263

Total Page:16

File Type:pdf, Size:1020Kb

Aspergillus Serratalhadensis Fungal Planet Description Sheets 263 262 Persoonia – Volume 40, 2018 Aspergillus serratalhadensis Fungal Planet description sheets 263 Fungal Planet 720 – 13 July 2018 Aspergillus serratalhadensis L.F. Oliveira, R.N. Barbosa, G.M.R. Albuquerque, Souza-Motta, Viana Marques, sp. nov. Etymology. serratalhadensis, refers to the Brazilian city Serra Talhada, new species Aspergillus serratalhadensis is a distinct lineage the location of the ex-type strain of this species. which belongs to Aspergillus section Nigri, clustering in the Classification — Aspergillaceae, Eurotiales, Eurotiomycetes. A. aculeatus clade. The BLASTn analysis showed low similar- ity of BenA sequences: A. aculeatus (GenBank HE577806.1; On MEA: Stipes brown, smooth, (200–)250–400(–500) × 8– 93 %) and A. brunneoviolaceus (GenBank EF661105.1; 92 %). 9(–10) μm; conidial heads pale to dark brown; uniseriate; vesicle For CmD low similarities were found to A. aculeatus (Gen- subglobose to globose, (32–)50 × 50(–42) μm diam; phialides Bank FN594542.1; 90 %) and A. brunneoviolaceus (GenBank flask-shaped and covering the entire surface of the vesicle, EF661147.1; 90 %). Aspergillus serratalhadensis and these measuring (1.5–)2 × 1.5(–2) µm; conidia globose occasionally two species are uniseriate. However, in A. brunneoviolaceus subglobose, rough-walled to echinulate, brown-black in mass, the conidia are globose to ellipsoidal, smooth, slightly rough- 5(–6.5) μm diam including ornamentation. ened, 3.5–4.5(–6) × 3.5–4.5(–5) μm diam, with a spherical Culture characteristics — (in the dark, 25 °C after 7 d): Colo- vesicle, (30–)35–70(–90) μm diam. In A. aculeatus conidia nies on MEA 54–56 mm diam, sporulating dark brown to black, were spherical, smooth, slightly roughened, 4.9–5.4 μm diam, mycelium white, floccose, exudate absent, no soluble pigments, with a spherical vesicle, 60–63 μm diam (Klich 2002, Jurjević reverse brownish to buff. Colonies on CYA 60–68 mm diam, et al. 2012).The new species described also differs in growth dark brown to black, mycelium white, floccose, exudate absent, rate on the various media tested. Aspergillus serratalhadensis no soluble pigments, reverse brownish to buff. Colonies on OA was isolated from soil collected in the Brazilian tropical dry for- 38–40 mm diam, sporulating dark brown to black, mycelium est (Caatinga) in the city of Serra Talhada, Pernambuco state. white to pale, floccose, exudate absent, no soluble pigments, reverse darkness. Colonies on YES 60–65 mm diam, sporu- Aspergillus piperis CBS 112811 lating dark brown to black, mycelium white, floccose, sulcate, 1 exudate absent, no soluble pigments, reverse pale. Colonies Aspergillus luchuensis CBS 205.80 1 on CY20S 60–65 mm diam, with black sporulation, mycelium Aspergillus costaricaensis CBS 115574 A. tubingensis 0.53 white, floccose, no exudate, no soluble pigments, reverse pale Aspergillus eucalypticola CBS 122712 clade 0.86 Aspergillus vadensis CBS 113365 to pale buff. Colonies on CREA growing more slowly compared A. niger 1 with other media, 19–20 mm diam, poor sporulation, mycelium Aspergillus neoniger CBS 115656 aggregate white, production of acid positive. No growth on MEA and CYA 0.98 Aspergillus tubingensis NRRL 4875 Aspergillus niger CBS 554.65 at 37 °C. 1 1 A. niger/welwitschiae Aspergillus welwitschiae CBS 139.54 clade Typus. BRAZIL, Pernambuco state, Serra Talhada, S7°57'21" W38°17'34", Aspergillus brasiliensis CBS 101740 isolated from soil, Sept. 2015, L.F. Oliveira (holotype URM 91189, ex-type 1 Aspergillus sclerotiicarbonarius CBS 121057 culture URM 7866, ITS, BenA, CmD and RPB2 sequences GenBank 0.79 Aspergillus ibericus CBS 35644 MH169127, LT993222, LT993223 and LT995971, MycoBank MB824978). 1 A.carbonarius 1 Aspergillus carbonarius CBS 111.26 clade 1 Notes — ITS, CmD and BenA sequences are important Aspergillus sclerotioniger CBS 115572 Aspergillus ellipticus CBS 482.65 identification markers for Aspergillus (Fungaro et al. 2017, Sam- 1 A. heteromorphus clade son et al. 2014). Based on the current phylogenetic analysis, the Aspergillus heteromorphus CBS 117.55 Aspergillus aculeatinus CBS 121060 1 Aspergillus trinidadensis NRRL 62479 1 Aspergillus fijiensis CBS 313.89 1 1 1 Aspergillus brunneoviolaceus CBS 621.78 0.83 Aspergillus aculeatus NRRL 5094 A. aculeatus clade 1 Aspergillus floridensis NRRL 62478 Aspergillus indologenus CBS 114.80 1 1 1 Aspergillus japonicus CBS 114.51 Aspergillus uvarum CBS 121591 1 Aspergillus serratalhadensis sp.nov Aspergillus homomorphus CBS 101889 1 0.54 A. homomorphus Aspergillus saccharolyticus CBS 127449 clade Aspergillus labruscus ITAL 22.223 0.05 Aspergillus flavus CBS 569.65 Bayesian inference tree obtained by phylogenetic analyses of the combined ITS, BenA and CmD sequences conducted in MrBayes on XSEDE in the CIPRES science gateway. Bayes- ian posterior probability values are indicated at the nodes. The Colour illustrations. Caatinga’s soil, isolation source of Aspergillus ser­ new species is indicated in face. Aspergillus flavus (CBS ratalhadensis; conidia; conidiophores from 7-d-old colonies on MEA. Scale bold bars = 10 µm. 569.65) was used as outgroup. Luiz F. de Oliveira & Daniela de A. Viana Marques, Universidade de Pernambuco- Campus Serra Talhada, Serra Talhada, Brazil; e-mail: [email protected], [email protected] Renan N. Barbosa, Greicilene M.R. Albuquerque & Cristina M. Souza-Motta, URM Culture Collection, Universidade Federal de Pernambuco, Recife, Brazil; e-mail: [email protected], [email protected] & [email protected] © 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute.
Recommended publications
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • Isolation and Identification of Microfungi from Soils in Serdang, Selangor, Malaysia Article
    Studies in Fungi 5(1): 6–16 (2020) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/5/1/2 Isolation and identification of microfungi from soils in Serdang, Selangor, Malaysia Mohd Nazri NIA1, Mohd Zaini NA1, Aris A1, Hasan ZAE1, Abd Murad NB1, 2 1 Yusof MT and Mohd Zainudin NAI 1 Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Mohd Nazri NIA, Mohd Zaini NA, Aris A, Hasan ZAE, Abd Murad NB, Yusof MT, Mohd Zainudin NAI 2020 – Isolation and identification of microfungi from soils in Serdang, Selangor, Malaysia. Studies in Fungi 5(1), 6–16, Doi 10.5943/sif/5/1/2 Abstract Microfungi are commonly inhabited soil with various roles. The present study was conducted in order to isolate and identify microfungi from soil samples in Serdang, Selangor, Malaysia. In this study, the soil microfungi were isolated using serial dilution technique and spread plate method. A total of 25 isolates were identified into ten genera based on internal transcribed spacer region (ITS) sequence analysis, namely Aspergillus, Clonostachys, Colletotrichum, Curvularia, Gliocladiopsis, Metarhizium, Myrmecridium, Penicillium, Scedosporium and Trichoderma consisting 18 fungi species. Aspergillus and Penicillium species were claimed as predominant microfungi inhabiting the soil. Findings from this study can be used as a checklist for future studies related to fungi distribution in tropical lands. For improving further study, factors including the physicochemical properties of soil and anthropogenic activities in the sampling area should be included.
    [Show full text]
  • Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?
    Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-018-09607-9 MINI-REVIEW Citric acid and itaconic acid accumulation: variations of the same story? Levente Karaffa 1 & Christian P. Kubicek2,3 Received: 5 December 2018 /Revised: 28 December 2018 /Accepted: 28 December 2018 # The Author(s) 2019 Abstract Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production. Keywords Aspergillus niger . Aspergillus terreus . Citric acid . Itaconic acid . Submerged fermentation . Overflow metabolism Introduction terreus—was patented in the next decade (Kane et al. 1945). Before World War II, organic acid manufacturing was exclu- Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) sively performed by the labor-intensive and relatively low- and itaconic acid (2-methylene-succinic acid or 2- yield surface method (Doelger and Prescott 1934;Calam methylidenebutanedioic acid) are the most well-known exam- et al.
    [Show full text]
  • Analysis and Optimisation of Plant Biomass Degrading Enzyme Production in Aspergillus
    Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus Helena Marie Culleton Analysis and optimisation of plant biomass degrading enzyme production in Aspergillus Analyse en optimalisatie van de productie van planten biomassa afbrekende enzymen in Aspergillus (met een Nederlandse samenvatting) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op woensdag 26 februari 2015 des middags te 12.45 uur door Helena Marie Culleton geboren op 3 april 1986 te Wexford, Ireland Promotor: Prof. Dr. ir. R.P. de Vries Co-promotor: Dr. V.A. McKie For my parents and family The Aspergillus niger image on the cover was kindly provided by; Dr. Nick Reid, Professor of Fungal Cell Biology, Director, Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, CTF Building, Grafton Street, Manchester M13 9NT. Printed by Snap ™ Printing, www.snap.ie The research described in this thesis was performed in; Megazyme International Ireland, Bray Business Park, Bray, Co. Wicklow, Ireland; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; and supported by Megazyme International Ireland, Bray Business Park, Bray, Co. Wicklow, Ireland. Contents Chapter 1 General Introduction 9 Chapter 2 Closely
    [Show full text]
  • Mining of Cryptic Secondary Metabolism in Aspergillus
    Downloaded from orbit.dtu.dk on: Oct 10, 2021 Mining of Cryptic Secondary Metabolism in Aspergillus Guo, Yaojie Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Guo, Y. (2020). Mining of Cryptic Secondary Metabolism in Aspergillus. DTU Bioengineering. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Mining of Cryptic Secondary Metabolism in Aspergillus O O O N R HN O N N N O O O OH OH O O OH OH OH O OH O OH OH OH OH HO O OH OH O OH OH OH O Yaojie Guo PhD Thesis Department of Biotechnology and Biomedicine Technical University of Denmark September 2020 Mining of Cryptic Secondary Metabolism in Aspergillus Yaojie Guo PhD Thesis Department of Biotechnology and Biomedicine Technical University of Denmark September 2020 Supervisors: Professor Thomas Ostenfeld Larsen Professor Uffe Hasbro Mortensen Preface This thesis is submitted to the Technical University of Denmark (Danmarks Tekniske Universitet, DTU) in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.
    [Show full text]
  • Safety of the Fungal Workhorses of Industrial Biotechnology: Update on the Mycotoxin and Secondary Metabolite Potential of Asper
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Mar 29, 2019 brought to you by CORE provided by Online Research Database In Technology Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei Frisvad, Jens Christian; Møller, Lars L. H.; Larsen, Thomas Ostenfeld; Kumar, Ravi; Arnau, Jose Published in: Applied Microbiology and Biotechnology Link to article, DOI: 10.1007/s00253-018-9354-1 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Frisvad, J. C., Møller, L. L. H., Larsen, T. O., Kumar, R., & Arnau, J. (2018). Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Applied Microbiology and Biotechnology, 102(22), 9481-9515. DOI: 10.1007/s00253-018-9354-1 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces Variotii (Eurotiales)
    fmicb-09-03058 December 11, 2018 Time: 17:41 # 1 ORIGINAL RESEARCH published: 13 December 2018 doi: 10.3389/fmicb.2018.03058 Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales) Andrew S. Urquhart1, Stephen J. Mondo2, Miia R. Mäkelä3, James K. Hane4,5, Ad Wiebenga6, Guifen He2, Sirma Mihaltcheva2, Jasmyn Pangilinan2, Anna Lipzen2, Kerrie Barry2, Ronald P. de Vries6, Igor V. Grigoriev2 and Alexander Idnurm1* 1 School of BioSciences, University of Melbourne, Melbourne, VIC, Australia, 2 U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States, 3 Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland, 4 CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia, 5 Curtin Institute for Computation, Curtin University, Bentley, WA, Australia, 6 Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, Edited by: a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared Monika Schmoll, Austrian Institute of Technology (AIT), to have been mutated by repeat-induced point (RIP) mutations. We developed methods Austria for genetic transformation of P.
    [Show full text]
  • Gits-Muselli Et Al 2021.Pdf
    Different repartition of the cryptic species of black aspergilli according to the anatomical sites in human infections, in a French University hospital Maud Gits-Muselli, Samia Hamane, Benjamin Verillaud, Elisa Cherpin, Blandine Denis, Louise Bondeelle, Sophie Touratier, Alexandre Alanio, Dea Garcia-Hermoso, Stéphane Bretagne To cite this version: Maud Gits-Muselli, Samia Hamane, Benjamin Verillaud, Elisa Cherpin, Blandine Denis, et al.. Dif- ferent repartition of the cryptic species of black aspergilli according to the anatomical sites in hu- man infections, in a French University hospital. Medical Mycology, Oxford University Press, 2021, pp.myab027. 10.1093/mmy/myab027. pasteur-03260950 HAL Id: pasteur-03260950 https://hal-pasteur.archives-ouvertes.fr/pasteur-03260950 Submitted on 15 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Medical Mycology, 2021, 0, 1–8 doi:10.1093/mmy/myab027 Advance Access Publication Date: 0 2021 Original Article Original Article Downloaded from https://academic.oup.com/mmy/advance-article/doi/10.1093/mmy/myab027/6281458
    [Show full text]
  • Effectiveness of 7.5 Percent Povidone Iodine in Comparison to 1 Percent Clotrimazole in the Treatment of Otomycosis
    EFFECTIVENESS OF 7.5 PERCENT POVIDONE IODINE IN COMPARISON TO 1 PERCENT CLOTRIMAZOLE IN THE TREATMENT OF OTOMYCOSIS A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF M.S BRANCH –IV (OTORHINOLARYNGOLOGY EXAMINATION OF THE DR.MGR. MEDICAL UNIVERSITY TO BE HELD IN APRIL 2012 ACKNOWLEDGEMENTS I wish to express my deep gratitude to Dr Anand Job, Professor and Head of Unit 1, Department of Otorhinolaryngology, Speech and Hearing, Christian Medical College and Hospital, Vellore for his able guidance and encouragement in conducting this study and preparing this dissertation. I wish to express my deep gratitude to Dr Achamma Balraj, Head of the Department of Otorhinolaryngology, Speech and Hearing, Christian Medical College and Hospital, Vellore for her able guidance and encouragement in conducting this study and preparing this dissertation. I would like to thank Dr Rita Ruby Albert, Dr Regi Thomas, and Dr Rajan Sundaresan from the Department of Otorhinolaryngology for being my co-investigators in this study. I am extremely thankful to Dr Shalini Anandan, Assistant professor, Department of Microbiology for her guidance in this study. I am thankful to Dr Selvaraj from the Department of Biostatistics for his able guidance in the statistical analysis of this study. I would like to thank the Fluid Research Committee, CMC Hospital for granting me financial assistance for conducting this study. Last but not the least; I would like to thank all my patients who participated with me in this study for their kind co-operation. CERTIFICATE This is to certify that the dissertation entitled “Effectiveness of 7.5 percent povidone iodine in comparison to 1 percent clotrimazole in the treatment of otomycosis” is a bonafide original work of Dr Ajay Philip, submitted in partial fulfillment of the rules and regulations for the MS Branch IV, Otorhinolaryngology examination of The Tamil Nadu Dr.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]