425-438 (Filippov).Pmd

Total Page:16

File Type:pdf, Size:1020Kb

425-438 (Filippov).Pmd Russian Entomol. J. 16(4): 425438 © RUSSIAN ENTOMOLOGICAL JOURNAL, 2007 Æèçíåííûå öèêëû íåêîòîðûõ âèäîâ æóæåëèö (Ñoleoptera: Ñarabidae) â þæíîé òóíäðå Life cycles of some species of carabid beetles (Coleoptera: Carabidae) in the south tundra Á.Þ. Ôèëèïïîâ B.Yu. Filippov Ïîìîðñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò, ïðîñï. Ëîìîíîñîâà 4, Àðõàíãåëüñê 163006, Ðîññèÿ. E-mail: [email protected] Pomor State University, Prosp. Lomonosova 4, Arkhangelsk 163006, Russia. ÊËÞ×ÅÂÛÅ ÑËÎÂÀ: Æóæåëèöû, æèçíåííûå öèêëû, ðàçâèòèå, þæíàÿ òóíäðà, Àðêòèêà. KEY WORDS: carabid beetles, life cycles, development, southern tundra, Arctic. ÐÅÇÞÌÅ. Èçó÷åíû æèçíåííûå öèêëû 20 âèäîâ âðåìåíè ïîêàçàíî, ÷òî ïðè ñîêðàùåíèè äîëè ãåìè- æóæåëèö â òóíäðîâîé çîíå ïîëóîñòðîâà Êàíèí. Ïî ìåòàáîëè÷åñêèõ âèäîâ â çàïîëÿðíûõ ðàéîíàõ [Êóç- ñðàâíåíèþ ñ áîëåå þæíûìè ðåãèîíàìè â òóíäðå íåöîâ, 1938] ó íàñåêîìûõ ïðîÿâëÿþòñÿ äâå àäàï- íàáëþäàåòñÿ ñîêðàùåíèå âàðèàíòîâ æèçíåííûõ òèâíûå ñòðàòåãèè æèçíåííûõ öèêëîâ. Ïåðâàÿ èç öèêëîâ æóæåëèö. Íàèáîëüøåå ÷èñëî âèäîâ â þæ- íèõ çàêëþ÷àåòñÿ â óñêîðåíèè ðàçâèòèÿ, ÷òî îáåñ- íûõ òóíäðàõ èìåþò îäíîãîäè÷íûé âåñåííèé èëè ïå÷èâàåò óñïåøíîå ïðîõîæäåíèå ñòàäèé îíòîãå- äâóõëåòíèé æèçíåííûé öèêë. Ïðè ýòîì îòìå÷àåò- íåçà äî íàñòóïëåíèÿ õîëîäíîãî ïåðèîäà. Âòîðàÿ ñÿ îäèí ïèê àêòèâíîñòè â íà÷àëå âåãåòàöèîííîãî ñîñòîèò â óäëèíåíèè ðàçâèòèÿ äî äâóõ è áîëåå ëåò ñåçîíà, ñâÿçàííûé ñ ðàçìíîæåíèåì. Ó âèäîâ ñ øè- [×åðíîâ, 1978]. Ó æóæåëèö óìåðåííûõ øèðîò âû- ðîêèìè àðåàëàìè è âåñåííèì âàðèàíòîì îäíîãî- äåëåíî äâà òèïà ðàçâèòèÿ ñ ðàçìíîæåíèåì âåñíîé äè÷íîãî æèçíåííîãî öèêëà íà ñåâåðå ñîõðàíÿåòñÿ è çèìîâêîé èìàãî, è ñ ðàçìíîæåíèåì îñåíüþ è èñõîäíûé òèï ðàçâèòèÿ, íî ñîêðàùàåòñÿ ïåðèîä çèìîâêîé ëè÷èíîê [Larsson, 1939; Lindroth, 1992]. ðàçìíîæåíèÿ. Áîëüøèíñòâî îäíîãîäè÷íûõ âèäîâ Íà ñåâåðå, âñëåäñòâèå êîðîòêîãî âåãåòàöèîííîãî ñ îñåííèì ðàçìíîæåíèåì â òóíäðå ïåðåõîäÿò ê ñåçîíà, îòìå÷àåòñÿ ñáëèæåíèå ïåðèîäîâ àêòèâíîñ- äâóõëåòíåìó ðàçâèòèþ.  ýòîì ñëó÷àå ïåðèîä ðàç- òè âåñåííèõ è îñåííèõ âèäîâ [Øàðîâà, 1990], à ìíîæåíèÿ ñìåùàåòñÿ íà íà÷àëî ëåòà èëè äëèòñÿ òàêæå óâåëè÷åíèå ÷èñëà âèäîâ ñ çèìóþùåé ëè÷èí- âåñü ñåçîí. Òèïè÷íûå àðêòè÷åñêèå âèäû èìåþò êîé [Thiele, 1977]. Óñòàíîâëåíî, ÷òî íà ñåâåðå è â ëèáî îäíîãîäè÷íûé âåñåííèé æèçíåííûé öèêë, àëüïèéñêèõ ðàéîíàõ ó îòäåëüíûõ âèäîâ æóæåëèö ëèáî äâóõëåòíèé ñ ðàçìíîæåíèåì â íà÷àëå ëåòà. æèçíåííûé öèêë âìåñòî îäíîãîäè÷íîãî ñòàíîâèò- ñÿ äâóõëåòíèì [De Zordo, 1979; Butterfield, 1986; ABSTRACT. Life cycles of 20 species of carabid Refseth, 1988; Lindroth, 1992; Øàðîâà, Ôèëèïïîâ, beetles in the south tundra of the peninsula Kanin 2003, Ìàòàëèí, 2006]. Ñðåäè æóæåëèö òóíäðîâîé were studied. In comparison with southern regions in çîíû âñòðå÷àþòñÿ âèäû ñ îäíîãîäè÷íûì è äâóõ- the tundra number of development variant is really ëåòíèì ðàçâèòèåì [×åðíîâ è äð., 2000]. Ê äâóõëåò- increased. Many species of carabid beetles in the íåìó æèçíåííîìó öèêëó, ÷àùå âñåãî, ïåðåõîäÿò south tundra have annual spreeng or biennial life âèäû ñ îñåííèì ðàçìíîæåíèåì è çèìóþùåé ëè- cycles. The most part of species have a reproduction ÷èíêîé [Paarmann, 1979; Sota, 1994]. period in the beginning of summer. The wide distrib- Áîëüøèíñòâî èññëåäîâàíèé ïî ðàçâèòèþ æóæå- uted species with annual spring life cycle at the ëèö â ñåâåðíîé Åâðîïå îñíîâûâàëèñü íà âñòðå÷àå- north keep their development type however with short ìîñòè îòäåëüíûõ ôàç ðàçâèòèÿ â òå÷åíèå ñåçîíà è reproduction period. The most species with the annu- óñòàíîâëåíèè çèìóþùåé ñòàäèè ó îòäåëüíûõ âèäîâ al autumn life cycle in the tundra have a biennial [Forsskåhl, 1972; Êîðîáåéíèêîâ, 1984, 1991; Kålås, life cycle. The typical arctic species have annual 1985; Lindroth, 1992], èëè àíàëèçà íàïî÷âåííîé àê- spring life cycle or biennial one with reproduction òèâíîñòè è ïåðèîäà ðàçìíîæåíèÿ [Greenslade, 1965; in the beginning of summer. Murdoch, 1966; Evans, 1969; Andersen, 1982; Ðÿáè- öåâ, 1997]. Ïîïóëÿöèîííûõ èññëåäîâàíèé æèçíåí- Èçó÷åíèå æèçíåííûõ öèêëîâ íàñåêîìûõ â ñó- íûõ öèêëîâ æóæåëèö íà Ñåâåðå îòíîñèòåëüíî íå áàðêòèêå îäíî èç âàæíûõ íàïðàâëåíèé â ñîâðå- ìíîãî [Andersen, 1983; Wallin, 1988; Refseth, 1984, ìåííîé ýêîëîãèè è ýíòîìîëîãèè. Ê íàñòîÿùåìó 1988; Niemelä et al., 1989].  íàñòîÿùåé ïóáëèêàöèè 426 Á.Þ. Ôèëèïïîâ ðàññìàòðèâàþòñÿ æèçíåííûå öèêëû ìàññîâûõ âè- äîâ Carabidae òóíäðîâîé çîíû. Ìàòåðèàëû è ìåòîäû Ðàáîòó ïðîâîäèëè íà òåððèòîðèè ñåâåðíîé ÷àñòè ïîëóîñòðîâà Êàíèí â îêðåñòíîñòÿõ ïîñ¸ëêà Øîéíà (Íåíåöêèé àâòîíîìíûé îêðóã, 67º51N; 44º10E) (ðèñ. 1). Òåððèòîðèÿ ïîëóîñòðîâà ðàñïîëàãàåòñÿ â ïðåäå- ëàõ ñóáàðêòè÷åñêîãî êëèìàòè÷åñêîãî ïîÿñà â îáëà- ñòè àòëàíòèêî-àðêòè÷åñêîãî âëèÿíèÿ [Àëèñîâ, 1969]. Ñðåäíåãîäîâàÿ òåìïåðàòóðà â ðàéîíå èññëåäîâàíèÿ ñîñòàâëÿåò 1,4 ºÑ [Ñïðàâî÷íèê ïî êëèìàòó , 1970]. Ïðîäîëæèòåëüíîñòü âåãåòàöèîííîãî ñåçîíà ñî ñðåä- íåñóòî÷íûìè òåìïåðàòóðàìè âûøå +5 ºÑ ïî ìíîãî- ëåòíèì äàííûì ñîñòàâëÿåò 106 ñóòîê (îò 77 äî 147 ñóòîê). Íà÷àëî è îêîí÷àíèå âåãåòàöèîííîãî ñåçîíà, à òàêæå åãî ïðîäîëæèòåëüíîñòü, ñèëüíî èçìåí÷è- âû.  îòäåëüíûå ãîäû íå îòìå÷àåòñÿ óñòîé÷èâîãî ïåðåõîäà ÷åðåç 10 ºÑ.  ñðåäíåì íà÷àëî ñåçîíà ïðè- õîäèòñÿ íà ñåðåäèíó èþíÿ, îêîí÷àíèå íà âòîðóþ ïîëîâèíó ñåíòÿáðÿ.  ìåñòå ñ òåì, ñåçîí ìîæåò íà÷è- íàòüñÿ â êîíöå èþíÿ, à çàêàí÷èâàòüñÿ â íà÷àëå ñåíòÿáðÿ. Ñóììà òåïëà çà âåãåòàöèîííûé ïåðèîä ñî- ñòàâëÿåò â ñðåäíåì 988,4 ºÑ, à ñðåäíÿÿ òåìïåðàòó- ðà èþëÿ +10,95 ºÑ (ïî ìíîãîëåòíèì äàííûì Ñåâãèä- ðîìåòà). Ìåñòî èññëåäîâàíèé ðàñïîëàãàëîñü â ïðåäåëàõ þæíûõ òóíäð. Äîìèíèðóþùèìè çîíàëüíûìè ðàñ- òèòåëüíûìè àññîöèàöèÿìè ÿâëÿþòñÿ ìåëêîåðíèêî- âûå è èâíÿêîâûå òóíäðû. Øèðîêî ðàñïðîñòðàíåíû íà ïîëóîñòðîâå áîëîòà ðàçëè÷íîãî ïðîèñõîæäåíèÿ. Íà ó÷àñòêàõ ñ ãëèíèñòîé ïî÷âîé ðàçâèâàþòñÿ áóã- ðèñòûå áîëîòà.  íåïîñðåäñòâåííîé áëèçîñòè îò ìîðñêîãî áåðåãà áîëîòà ôîðìèðóþòñÿ íà ïåñêàõ. Îñíîâó ðàñòèòåëüíîãî ïîêðîâà çäåñü ñîñòàâëÿþò ðàçëè÷íûå âèäû èâ, ðàçíîòðàâüå è ìõè. Âäîëü ðó÷ü- ¸â ðàñïîëàãàþòñÿ çàáîëî÷åííûå ëóãà. Ðÿäîì ñ ïî- ñ¸ëêîì îáøèðíûå ó÷àñòêè çàíÿòû ïåñ÷àíûìè äþ- íàìè ñ îòñóòñòâèåì ðàñòèòåëüíîñòè èëè ðàçâèòûìè íà íèõ ïèîíåðíûìè ñîîáùåñòâàìè. Ðèñ. 1. Îáçîðíàÿ êàðòà ïîëóîñòðîâà Êàíèí. Ñáîð ìàòåðèàëà îñóùåñòâëÿëè â 2005 ã. ñ ñåðåäèíû Fig. 1. Map of the peninsula Kanin. èþíÿ äî êîíöà àâãóñòà â 10 ðàçëè÷íûõ áèîòîïàõ: â åðíèêîâûõ ëèøàéíèêîâî-êóñòàðíè÷êîâûõ òóíäðàõ Andromeda polyfolia, Rubus chamaemorus); íà çàáî- (Betula nana, Empetrum hermaphroditum, Vaccinium ëî÷åííîì ìîõîâîì ëóãó (Festuca rubra, Trollius uliginosum, Cladina arbuscula, Trientalis europaea, europaeus, Allium angulosum, Equisetum palustre, Salix Arctous alpina) íà ïîäçîëèñòûõ ïî÷âàõ; â èâíÿêîâîé polaris, Geum rivale, Aulacomnium palustre); à òàê æå òóíäðå íà ñóãëèíêå (Salix phylicifolia, S. glauca, S. íà ìåñòå çàáðîøåííîé îêîëî 3040 ëåò íàçàä âçëåò- lanata, Festuca pratensis, Chamaenerion angusti- íî-ïîñàäî÷íîé ïîëîñû.  ïîñëåäíåì áèîòîïå íà folium, Pedicularis sp.) è ïåñ÷àíîé ïî÷âå (Salix la- ó÷àñòêàõ îòêðûòîãî ãðóíòà áûëà ðàçâèòà ïèîíåðíàÿ nata, S. glauca, S. hastata, Rumex maritimus, Festuca ðàñòèòåëüíîñòü, ïðåäñòàâëåííàÿ êóñòàðíè÷êàìè è ðàç- rubra, Achillea millefolium, Ligularia arctica); íà åð- íîòðàâüåì (Empetrum hermaphroditum, Chamaene- íèêîâî-âîðîíè÷íîì áóãðèñòîì áîëîòå (Betula nana, rion angustifolium, Botrychium lunaria, Antennaria Empetrum hermaphroditum, Rubus chamaemorus, Erio- dioica, Luzula frigida), îáùåå ïðîåêòèâíîå ïîêðû- phorum vaginatum, Vaccinium uliginosum, V. myrtillus, òèå êîòîðîé íå ïðåâûøàëî 20%. V. vitis-idaea, Equisetum sylvaticum), íà òð¸õ èâíÿêî- Îáú¸ì ìàòåðèàëà è ðàñïðåäåëåíèå ñîáðàííûõ âî-ìîõîâûõ áîëîòàõ (Salix glauca, Chamaepericly- âèäîâ æóæåëèö ïî áèîöåíîçàì ïðèâåäåíû â òàáëè- menum suecicum, Rhodiola rosea, Allium angulosum, öå 1. Æèçíåííûå öèêëû íåêîòîðûõ âèäîâ æóæåëèö â þæíîé òóíäðå 427 Òàáëèöà 1. Ðàñïðåäåëåíèå èññëåäîâàííûõ âèäîâ æóæåëèö ïî áèîöåíîçàì (ýêç.). Table 1. Distribution of Carabids species in the ecosystems (individuals). Ïðèìå÷àíèÿ: BetT 1, BetT 2 åðíèêîâûå òóíäðû; SalT 1, SalT 2 èâíÿêîâûå òóíäðû; SalBrB 1, SalBrB 2, SalBrB 3 èâíÿêîâî- ìîõîâûå áîëîòà; BetEmpB åðíèêîâî-âîðîíè÷íîå áóãðèñòîå áîëîòî; FesTrM çàáîëî÷åííûé ìîõîâîé ëóã; OpGr îòêðûòûé ãðóíò. Notes: BetT 1, BetT 2 Betula nana tundra; SalT 1, SalT 2 willowtundra; SalBrB 1, SalBrB 2, SalBrB 3 willow-moss bogs; BetEmpB Betula nana - Empetrum germaphroditum bog; FesTrM waterlogged moss meadows; OpGr open ground. Æóêîâ ñîáèðàëè ñ ïîìîùüþ ïî÷âåííûõ ëîâó- ãî ïåðâîãî ãîäà æèçíè; ñòàðîå ãåíåðàòèâíîå (m2) øåê, â êà÷åñòâå êîòîðûõ ïðèìåíÿëè ïëàñòèêîâûå ïîëîâîçðåëûå æóêè âòîðîãî è áîëåå ëåò æèçíè; ïîñò- ñòàêàíû îáú¸ìîì 0,5 ë ñ äèàìåòðîì ëîâ÷åãî îòâåð- ãåíåðàòèâíîå (sp) ñòàðûå æóêè, çàêîí÷èâøèå ðàç- ñòèÿ 87 ìì.  êàæäîì áèîöåíîçå íà ïðîòÿæåíèè ìíîæåíèå. Äëÿ àíàëèçà äàííûõ ïî ðåàëèçàöèè æèç- âñåãî ïåðèîäà ñáîðà äåéñòâîâàëî 40 ëîâóøåê, çà íåííûõ öèêëîâ îòäåëüíûõ âèäîâ èñïîëüçîâàëèñü èñêëþ÷åíèåì çàáîëî÷åííîãî ëóãà, ãäå áûëî óñòà- ðåçóëüòàòû ñîáñòâåííûõ èññëåäîâàíèé ïî æóæåëè- íîâëåíî 30 ëîâóøåê.  êà÷åñòâå ôèêñàòîðà èñïîëü- öàì ëåñîòóíäðîâîé çîíû ïîëóîñòðîâà Êàíèí, êîòî- çîâàëè 4%-é ðàñòâîð ôîðìàëèíà, êîòîðûé íàëèâà- ðûå áûëè ïðîâåäåíû â 2002 ã. â îêðåñòíîñòÿõ ñ. Íåñü ëè íà 1/4 îáú¸ìà ëîâóøêè. Âûáîðêó ïðîâîäèëè â 150 êì þæíåå îñíîâíîé òî÷êè ñáîðà (ðèñ. 1). îäèí ðàç â 10 äíåé. Çà ïåðèîä íàáëþäåíèé îòðàáî- òàíî 28 350 ëîâ.-ñóò. è ñîáðàíî 4721 ýêç. èìàãî Ðåçóëüòàòû è îáñóæäåíèå æóæåëèö. Áîëüøóþ ÷àñòü æóêîâ (3846 ýêç., ò.å. 81,5%) Ñâåäåíèÿ ïî ðàñïðåäåëåíèþ èìàãî è ëè÷èíîê âñêðûâàëè è îïðåäåëÿëè âîçðàñòíîå ñîñòîÿíèå íà ðàçíûõ âîçðàñòîâ 20 âèäîâ Carabidae â òå÷åíèå ñå- îñíîâå ñòåïåíè ðàçâèòèÿ ãîíàä è ñòåðòîñòè ìàíäè- çîíà ïðèâåäåíû â òàáëèöå 2. áóë [van Dijk, 1972; Wallin, 1988]. Ïðè ýòîì âûäåëÿ- ëè ñëåäóþùèå âîçðàñòíûå ñîñòîÿíèÿ: þâåíèëüíîå Leistus
Recommended publications
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • AKES Newsletter 2016
    Newsletter of the Alaska Entomological Society Volume 9, Issue 1, April 2016 In this issue: A history and update of the Kenelm W. Philip Col- lection, currently housed at the University of Alaska Museum ................... 23 Announcing the UAF Entomology Club ...... 1 The Blackberry Skeletonizer, Schreckensteinia fes- Bombus occidentalis in Alaska and the need for fu- taliella (Hübner) (Lepidoptera: Schreckensteini- ture study (Hymenoptera: Apidae) ........ 2 idae) in Alaska ................... 26 New findings of twisted-wing parasites (Strep- Northern spruce engraver monitoring in wind- siptera) in Alaska .................. 6 damaged forests in the Tanana River Valley of Asian gypsy moths and Alaska ........... 9 Interior Alaska ................... 28 Non-marine invertebrates of the St. Matthew Is- An overview of ongoing research: Arthropod lands, Bering Sea, Alaska ............. 11 abundance and diversity at Olive-sided Fly- Food review: Urocerus flavicornis (Fabricius) (Hy- catcher nest sites in interior Alaska ........ 29 menoptera: Siricidae) ............... 20 Glocianus punctiger (Sahlberg, 1835) (Coleoptera: The spruce aphid, a non-native species, is increas- Curculionidae) common in Soldotna ....... 32 ing in range and activity throughout coastal Review of the ninth annual meeting ........ 34 Alaska ........................ 21 Upcoming Events ................... 37 Announcing the UAF Entomology Club by Adam Haberski nights featuring classic “B-movie” horror films. Future plans include an entomophagy bake sale, summer collect- I am pleased to announce the formation of the Univer- ing trips, and sending representatives to the International sity of Alaska Fairbanks Entomology Club. The club was Congress of Entomology in Orlando Florida this Septem- conceived by students from the fall semester entomology ber. course to bring together undergraduate and graduate stu- The Entomology Club would like to collaborate with dents with an interest in entomology.
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Holocene Palaeoenvironmental Reconstruction Based on Fossil Beetle Faunas from the Altai-Xinjiang Region, China
    Holocene palaeoenvironmental reconstruction based on fossil beetle faunas from the Altai-Xinjiang region, China Thesis submitted for the degree of Doctor of Philosophy at the University of London By Tianshu Zhang February 2018 Department of Geography, Royal Holloway, University of London Declaration of Authorship I Tianshu Zhang hereby declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, this is always clearly stated. Signed: Date: 25/02/2018 1 Abstract This project presents the results of the analysis of fossil beetle assemblages extracted from 71 samples from two peat profiles from the Halashazi Wetland in the southern Altai region of northwest China. The fossil assemblages allowed the reconstruction of local environments of the early (10,424 to 9500 cal. yr BP) and middle Holocene (6374 to 4378 cal. yr BP). In total, 54 Coleoptera taxa representing 44 genera and 14 families have been found, and 37 species have been identified, including a new species, Helophorus sinoglacialis. The majority of the fossil beetle species identified are today part of the Siberian fauna, and indicate cold steppe or tundra ecosystems. Based on the biogeographic affinities of the fossil faunas, it appears that the Altai Mountains served as dispersal corridor for cold-adapted (northern) beetle species during the Holocene. Quantified temperature estimates were made using the Mutual Climate Range (MCR) method. In addition, indicator beetle species (cold adapted species and bark beetles) have helped to identify both cold and warm intervals, and moisture conditions have been estimated on the basis of water associated species.
    [Show full text]
  • Coleoptera: Carabidae) Peter W
    30 THE GREAT LAKES ENTOMOLOGIST Vol. 42, Nos. 1 & 2 An Annotated Checklist of Wisconsin Ground Beetles (Coleoptera: Carabidae) Peter W. Messer1 Abstract A survey of Carabidae in the state of Wisconsin, U.S.A. yielded 87 species new to the state and incorporated 34 species previously reported from the state but that were not included in an earlier catalogue, bringing the total number of species to 489 in an annotated checklist. Collection data are provided in full for the 87 species new to Wisconsin but are limited to county occurrences for 187 rare species previously known in the state. Recent changes in nomenclature pertinent to the Wisconsin fauna are cited. ____________________ The Carabidae, commonly known as ‘ground beetles’, with 34, 275 described species worldwide is one of the three most species-rich families of extant beetles (Lorenz 2005). Ground beetles are often chosen for study because they are abun- dant in most terrestrial habitats, diverse, taxonomically well known, serve as sensitive bioindicators of habitat change, easy to capture, and morphologically pleasing to the collector. North America north of Mexico accounts for 2635 species which were listed with their geographic distributions (states and provinces) in the catalogue by Bousquet and Larochelle (1993). In Table 4 of the latter refer- ence, the state of Wisconsin was associated with 374 ground beetle species. That is more than the surrounding states of Iowa (327) and Minnesota (323), but less than states of Illinois (452) and Michigan (466). The total count for Minnesota was subsequently increased to 433 species (Gandhi et al. 2005). Wisconsin county distributions are known for 15 species of tiger beetles (subfamily Cicindelinae) (Brust 2003) with collection records documented for Tetracha virginica (Grimek 2009).
    [Show full text]
  • (Insecta, Coleoptera) В Фауне Арктики. Сообщение 1
    ЗООЛОГИЧЕСКИЙ ЖУРНАЛ, 2014, том 93, № 1, с. 7–44 ЭКОЛОГИЯ И ЗООГЕОГРАФИЯ УДК 595.76 ОТРЯД ЖЕСТКОКРЫЛЫХ (INSECTA, COLEOPTERA) В ФАУНЕ АРКТИКИ. СООБЩЕНИЕ 1. СОСТАВ ФАУНЫ © 2014 г. Ю. И. Чернов1, О. Л. Макарова1, Л. Д. Пенев2, О. А. Хрулёва1 1 Институт проблем экологии и эволюции им. А.Н. Северцова РАН, Москва 119071, Россия e(mail: [email protected] e(mail: oa([email protected] 2 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, София, Болгария e(mail: [email protected] Поступила в редакцию 01.09.2013 г. Жесткокрылые, крупнейший отряд насекомых, в условиях Арктики уступают двукрылым первен ство в полноте освоения среды. На долю Coleoptera приходится около 13% энтомофауны тундровой зоны, однако несколько семейств жуков сохраняют в высоких широтах значительное видовое раз нообразие и существенную ценотическую роль. В этом сообщении мы даем обзор циркумполярной колеоптерофауны Арктики. На основе оригинальных данных, литературных сведений и фондовых коллекционных материалов с использованием экстраполяций и аналогий отмечены особенности таксономического и экологического разнообразия подотрядов, серий и семейств Coleoptera, про анализированы широтнозональное распределение и северные пределы распространения видов, специфика адаптаций и ценотических связей. Ключевые слова: Арктика, жуки, природная зональность, видовое разнообразие, ареал, адаптации. DOI: 10.7868/S004451341401005X Жесткокрылые (Coleoptera) – самый крупный основных широтных трендов параметров их раз отряд насекомых, включающий почти 386500 ви нообразия. дов (Slipinski et al., 2011). На его долю приходится Накопленные к настоящему времени данные почти 40% видов класса. Доминирование этого свидетельствуют о том, что в фауне Арктики на отряда в энтомофауне наиболее отчетливо в теп долю жесткокрылых приходится около 13% видо лых поясах, в тропиках и субтропиках. В умерен вого богатства насекомых, в северной полосе ном поясе жесткокрылые составляют треть видо тундровой зоны их доля снижается до 4%, а в по вого богатства насекомых.
    [Show full text]
  • The Bering Land Bridge: a Moisture Barrier to the Dispersal of Steppe–Tundra Biota?
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Quaternary Science Reviews 27 (2008) 2473–2483 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The Bering Land Bridge: a moisture barrier to the dispersal of steppe–tundra biota? Scott A. Elias*, Barnaby Crocker Geography Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK article info abstract Article history: The Bering Land Bridge (BLB) connected the two principal arctic biological refugia, Western and Eastern Received 14 April 2008 Beringia, during intervals of lowered sea level in the Pleistocene. Fossil evidence from lowland BLB Received in revised form 9 September 2008 organic deposits dating to the Last Glaciation indicates that this broad region was dominated by shrub Accepted 11 September 2008 tundra vegetation, and had a mesic climate. The dominant ecosystem in Western Beringia and the interior regions of Eastern Beringia was steppe–tundra, with herbaceous plant communities and arid climate. Although Western and Eastern Beringia shared many species in common during the Late Pleistocene, there were a number of species that were restricted to only one side of the BLB. Among the vertebrate fauna, the woolly rhinoceros was found only to the west of the BLB, North American camels, bonnet-horned musk-oxen and some horse species were found only to the east of the land bridge. These were all steppe–tundra inhabitants, adapted to grazing. The same phenomenon can be seen in the insect faunas of the Western and Eastern Beringia.
    [Show full text]
  • Changes in Forest Productivity Across Alaska Consistent with Biome Shift
    Ecology Letters, (2011) doi: 10.1111/j.1461-0248.2011.01598.x LETTER Changes in forest productivity across Alaska consistent with biome shift Abstract Pieter S. A. Beck,1* Glenn P. Juday,2 Global vegetation models predict that boreal forests are particularly sensitive to a biome shift during the 21st Claire Alix,3 Valerie A. Barber,2 century. This shift would manifest itself first at the biomeÕs margins, with evergreen forest expanding into Stephen E. Winslow,2 Emily E. current tundra while being replaced by grasslands or temperate forest at the biomeÕs southern edge. Sousa,2 Patricia Heiser,2 James D. We evaluated changes in forest productivity since 1982 across boreal Alaska by linking satellite estimates of Herriges4 and Scott J. Goetz1 primary productivity and a large tree-ring data set. Trends in both records show consistent growth increases at the boreal–tundra ecotones that contrast with drought-induced productivity declines throughout interior Alaska. These patterns support the hypothesized effects of an initiating biome shift. Ultimately, tree dispersal rates, habitat availability and the rate of future climate change, and how it changes disturbance regimes, are expected to determine where the boreal biome will undergo a gradual geographic range shift, and where a more rapid decline. Keywords Boreal forests, drought, evergreen forests, global warming, high latitudes, NDVI, productivity, remote sensing, tree rings. Ecology Letters (2011) agreement with model outputs (Forbes et al. 2010). Populations of far INTRODUCTION northern trees in cold marginal environments have sustained positive Over the 21st century, dynamic global vegetation models predict that growth responses to temperature, and in recent decades have grown at the boreal biome is likely to experience forest conversion and losses their greatest recorded rates (Juday et al.
    [Show full text]
  • Download Download
    RESEARCH/REVIEW ARTICLE Holocene insect remains from south-western Greenland Jens Bo¨ cher1, Ole Bennike2 & Bernd Wagner3 1 Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark 2 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark 3 Institute for Geology and Mineralogy, University of Cologne, Zu¨ lpicher Str. 49a, DE-50674 Cologne, Germany Keywords Abstract Greenland; Arctic; Holocene; insects; beetles; palaeoenvironments. Remains of plants and invertebrates from Holocene deposits in south-western Greenland include a number of insect fragments from Heteroptera and Correspondence Coleoptera. Some of the finds extend the known temporal range of the species Jens Bo¨ cher, Zoological Museum, Natural considerably back in time, and one of the taxa has not previously been found History Museum of Denmark, University of in Greenland either fossil or extant. The fossil fauna includes the weevil Copenhagen, Universitetsparken 15, Rutidosoma globulus which is at present extremely rare in Greenland. Its rarity DK-2100 Copenhagen Ø, Denmark. might indicate that it is a recent immigrant, but the fossil finds provide a E-mail: [email protected] minimum date for its arrival at around 5840 cal. years B.P. Other remains of terrestrial insects complement the scarce fossil Greenland record of the species concerned. The history of the Greenland flora and fauna has been during summer in large parts of Greenland also helps to much debated, especially regarding survival in ice-free maintain fairly high temperatures locally. areas during the last ice age versus immigration after the During the past decades, insect remains have been last partial deglaciation of Greenland.
    [Show full text]
  • Alpine Arthropod Diversity Spatial and Environmental Variation
    Alpine Arthropod Diversity Spatial and Environmental Variation Björn Larsson Degree project for Master of Science in Biology Ecological zoology 45 hec Department of Biological and Environmental Sciences University of Gothenburg April 2014 Abstract Alpine and arctic environments are heavily affected by climate change caused by an ever increasing emission of greenhouse gasses. Temperatures are estimated to have risen by as much as 3 oC since preindustrial times. This development threatens this type of habitats as well as all organisms that inhabit these environments. Knowledge about alpine arthropods is lacking in some areas. Some groups are better known such as Lepidoptera, Coleoptera and Aranea but even among these there are clear gaps. This study took place at Latnjajaure field station, located 16 km west of Abisko in northern Sweden, and looked at the diversity of beetle species as well as the abundance of beetles, spiders and harvestmen at different altitudes and between two different environments. Samples were collected using pitfall traps placed every 50 heightmeter at seven altitudes ranging from 1000 to 1300. Eight traps were placed at each altitude, four in open environment and four at or in proximity to cliffs. An exception was at the 1300 m altitude where only four traps were placed because no suitable cliff environment was found. The study period was colder than average and had periods of heavy rainfall which probably had an impact on the results since both temperature and precipitation seems to have an effect on the activity of the arthropods leading to less individuals and less species caught. The results of the statistical tests showed that there was no significant difference found in the diversity of the beetles between either height or environment.
    [Show full text]
  • Climatic Tolerances and Zoogeography of the Late
    Document generated on 09/23/2021 12:31 p.m. Géographie physique et Quaternaire Climatic tolerances and zoogeography of the late Pleistocene beetle fauna of Beringia La tolérance au climat et la zoogéographie de la faune des coléoptères de la Béringie, à la fin du Pléistocène Klima-Toleranzen und Zoogeographie der Käfer-Fauna der Bering-Insel im späten Pleistozän Scott A. Elias Volume 54, Number 2, 2000 Article abstract The study of fossil beetles has played an important role in the reconstruction of URI: https://id.erudit.org/iderudit/004813ar Beringian paleoenvironments. More than 25 fossil localities have yielded Late DOI: https://doi.org/10.7202/004813ar Pleistocene beetle assemblages, comprising more than 300 species, of which about 147 are predators and scavengers, groups which are suitable for See table of contents paleoclimatic reconstruction. The author has developed climate envelopes (climatic parameters characterizing the modern localities in which species are found) for these species, in order to perform mutual climatic range pale- Publisher(s) otemperature studies. This paper describes the thermal requirements of these beetles, and their zoogeographic history since the interval just prior to the last Les Presses de l'Université de Montréal interglacial period. The fossil assemblages include 14 arctic and alpine species, 66 boreo-arctic species, and 68 boreal and temperate species. The greatest ISSN percentage of species with restricted thermal requirements occurs in the arctic and alpine group. The majority of boreo-arctic and boreal and temperate 0705-7199 (print) species have very broad thermal requirements. Based on modern distribution 1492-143X (digital) and the North American fossil record, it appears that some species resided exclusively in Beringia during the Late Pleistocene.
    [Show full text]
  • Coleoptera: Carabidae: Trechini)
    Biogeographisch-phylogenetische Untersuchungen an Hochgebirgs-Laufkäfern Ein Beitrag zur Umweltgeschichte des Himalaya-Tibet Orogens Kumulative Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Geographie der Philipps-Universität Marburg vorgelegt von Joachim Schmidt aus Schwerin Marburg 2011 Vom Fachbereich Geographie der Philipps-Universität Marburg am 19. Januar 2011 als Dissertation angenommen. Erstgutachter: Prof. Dr. Georg Miehe Zweitgutachter: Prof. Dr. Jochen Martens, Mainz Tag der mündlichen Prüfung: 17. Februar 2011 Hochschulkennziffer: 1180 Verzeichnis der Veröffentlichungen Die kumulative Dissertation umfasst die folgenden vier Publikationen, denen eine zusammenfassende Erörterung vorangestellt ist: I Schmidt, J. (2009): Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini). – Zootaxa 2178: 1-72. II Schmidt, J., Opgenoorth, L., Martens, J. & Miehe, G. (in review): Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate LGM summer temperature depression of 3 to 4K for the southern Tibetan Plateau. – Quaternary Science Reviews. III Schmidt, J. & Hartmann, M. (2009): Pristosia Motschulsky, 1865 from the Nepal Himalaya: Taxonomy and Biogeography (Coleoptera: Carabidae: Sphodrini). – Zootaxa 2009: 1-26. IV Schmidt, J., Opgenoorth, L., Höll, S., Bastrop, R. & Hundsdörfer, A. (submitted): Phylogeography of the Ethira clade
    [Show full text]