Biogeographisch-phylogenetische Untersuchungen an Hochgebirgs-Laufkäfern

Ein Beitrag zur Umweltgeschichte des Himalaya- Orogens

Kumulative Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

dem Fachbereich Geographie der Philipps-Universität Marburg vorgelegt von Joachim Schmidt aus Schwerin

Marburg 2011

Vom Fachbereich Geographie der Philipps-Universität Marburg am 19. Januar 2011 als Dissertation angenommen.

Erstgutachter: Prof. Dr. Georg Miehe

Zweitgutachter: Prof. Dr. Jochen Martens, Mainz

Tag der mündlichen Prüfung: 17. Februar 2011

Hochschulkennziffer: 1180 Verzeichnis der Veröffentlichungen

Die kumulative Dissertation umfasst die folgenden vier Publikationen, denen eine zusammenfassende Erörterung vorangestellt ist:

I Schmidt, J. (2009): Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini). – Zootaxa 2178: 1-72.

II Schmidt, J., Opgenoorth, L., Martens, J. & Miehe, G. (in review): Neoendemic ground and private tree haplotypes: two independent proxies attest a moderate LGM summer temperature depression of 3 to 4K for the southern Tibetan Plateau. – Quaternary Science Reviews.

III Schmidt, J. & Hartmann, M. (2009): Pristosia Motschulsky, 1865 from the Nepal Himalaya: and Biogeography (Coleoptera: Carabidae: Sphodrini). – Zootaxa 2009: 1-26.

IV Schmidt, J., Opgenoorth, L., Höll, S., Bastrop, R. & Hundsdörfer, A. (submitted): Phylogeography of the Ethira clade supports the hypothesis of Tertiary-Tibetan origin of a Himalayan ground group. – Molecular Ecology.

Inhaltsverzeichnis

Vorwort………………………………………………………………………………………... 7

1. Einleitung………………………………………………………………………………….. 9

1.1. Problemstellungen und Arbeitshypothesen…………………………………… 9

1.2. Laufkäfer als Indikatoren in der Paläoumweltforschung Hochasiens………. 12

2. Ergebnisse und Diskussion……………………………………………………………… 17

2.1. Mikroareal-Endemiten der Laufkäfer: Zeigerarten eisfreier Gebiete im LGM Südtibets und im Himalaya………………………………………………. 17

2.2. Vertikale Arealgrenzen lokalendemischer Laufkäfer: Neue Proxydaten zur Bestimmung der Temperaturabsenkung im LGM Hochasiens……………... 27

2.3. Endemische Entwicklungslinien der Laufkäfer im Himalaya-Tibet Orogen: Vielversprechende Indikatoren der tertiären Umweltgeschichte Tibets….... 35

3. Zusammenfassung……………………………………………………………………….. 65

4. Ausblick……………………………………………………………………………………. 67

5. Danksagung……………………………………………………………………………….. 71

Literatur……………………………………………………………………………………….. 73

Publikation I

Publikation II

Publikation III

Publikation IV

Erklärung

Curriculum Vitae

7

Vorwort

Käfer nehmen etwa ein Viertel aller bekannten Arten von Organismen ein. Bei inzwischen fast einer Million beschriebenen Insektenarten gehören 380.000 allein zur Ordnung Coleoptera oder Käfer. Diese Zahlen wachsen durch die beständigen Entdeckungen neuer Arten unvermindert an. Deshalb ist heute noch niemand in der Lage, die tatsächlich auf der Erde existierende Artenzahl halbwegs genau zu benennen; nicht einmal ihre Dimension ist sicher bekannt. Vorsichtige Schätzungen gehen von 5-15 Millionen Insektenarten aus; es gibt aber auch ernstzunehmende Schätzungen von 30 oder mehr Millionen Arten, wobei die Käfer immer den weitaus höchsten Anteil stellen (Stork 1997).

Mit diesen Zahlen verbinden sich sowohl Hoffnungen als auch ernüchternde Tatsachen. Berücksichtigt man, dass Käfer bereits seit dem Perm existieren, sich im Mesozoikum und Känozoikum weiter sehr stark differenzierten (Grimaldi & Engel 2005), dabei nahezu alle Landlebensräume eroberten und heute in großer Formenvielfalt auch extreme Lebensräume besiedeln, wie Wüsten, tiefe Höhlensysteme, Schneegrenzregionen der Arktis und der Hochgebirge (Dajoz 2002, Liebherr & McHugh 2003, Klausnitzer 2005), dann müssen sich aus Daten zur Biologie, Verbreitung und Stammesgeschichte rezenter Arten Aussagen zum Zustand und zur Verteilung nicht nur heutiger sondern auch früherer Ökosysteme ableiten lassen. Solche Ableitungen sind bereits mehrfach erfolgreich vorgenommen worden und fanden in der Paläoklimaforschung große Beachtung. Beispiele hierzu werden in den folgenden Kapiteln genannt.

In den Biodiversitätszentren der Erde, z.B. im Himalaya-Tibet Gebirgssystem, steht man jedoch vor dem Problem eines erheblichen Kenntnisdefizits. Aus solchen Regionen rekrutiert sich die große Dunkelziffer der noch unentdeckten Arten. Für nur sehr wenige Gattungen existieren Bestimmungsliteratur und hinreichend genaue Angaben über Ökologie und Verbreitung der einzelnen Arten. Die Beschäftigung mit Fragestellungen der Biogeographie und Stammesgeschichte artenreicher Käfergruppen Hochasiens stellen den Bearbeiter deshalb grundsätzlich vor zwei methodische Probleme: Erstens muss er mittels eigener Forschungsreisen die ökologisch-faunistische Materialbasis wesentlich verbessern. Unter Berücksichtigung der versteckten Lebensweise der oftmals winzigen Untersuchungsobjekte und der allgemein schwierigen Geländesituation in extremen Hochgebirgen dauert es verständlicherweise mindestens mehrere Jahre, um zu einem zufriedenstellenden Ergebnis zu kommen. Zweitens ist er gezwungen, sich sein Handwerkszeug selbst zu schmieden, indem er gründliche taxonomische Revisionen der verschiedenen Artengruppen liefert. Letztere sind die Fundamente für alle weitergehenden Fragestellungen der Phylogenie, Biogeographie und Bioindikation. 8

Die im Folgenden vorgestellten Ergebnisse basieren auf insgesamt 26 eigenen Forschungsreisen nach Hochasien. Diese dienten vor allem dazu, einen möglichst umfassenden Überblick zur Präsenz bestimmter Artengruppen der Käfer im Himalaya-Tibet Orogen und detaillierte Kenntnisse zur Verbreitung und Ökologie der einzelnen Arten zu erhalten. Dabei entdeckte ich mehrere Hundert neue Arten, die als eine der taxonomischen Grundlagen für die weitere Arbeit beschrieben werden mussten und noch müssen. Ein erheblicher Aufwand war und ist mit der Revision der Systematik der bearbeiteten Taxa zu leisten. Durch die Hinzuziehung molekulargenetischer Arbeitsmethoden, die im Rahmen dieses Promotionsprojektes möglich wurde, konnte ich die Studien auf die Untersuchung evolutionärer Prozesse auf intraspezifischer Ebene ausweiten. Die vielen notwendigen Arbeitsschritte zur Gewinnung neuer biogeographischer Daten hatten somit zwangsläufig einen großen Anteil am Gesamtaufwand der vorliegenden Arbeit, was sich letztlich auch in den Inhalten der hier vorgelegten Publikationen widerspiegelt.

Der nun vorliegende umfangreiche Datenfundus aus der vielversprechenden Gruppe der Käfer und die Anwendung molekulargenetischer Methoden ermöglicht eine Fortführung der grundlegenden biogeographischen Arbeiten über die Besiedlungsgeschichte, Diversifizierung und Adaptation der Faunenelemente des Himalaya und Tibets von M. S. Mani (1968, 1974a, b), J. Martens (1979, 1984, 1993) und H. Weigold (2005). Weitergehendes Ziel der hier vorgestellten Arbeiten ist es, aus den neuen biogeographischen und phylogenetischen Daten erstmals auch konkrete Aussagen zur Umweltgeschichte des Himalaya-Tibet Orogens abzuleiten. Dieses Ziel entstand nach intensiven Diskussionen in der Arbeitsgruppe Biogeographie des Fachbereichs Geographie der Universität Marburg, welche mir den teilweise noch erheblichen Wissensbedarf der Paläogeographie dieser Region vor Augen führten. Die vorliegende Studie ist deshalb vorrangig diesem Problemfeld gewidmet; sie dient der Entwicklung und Erprobung neuer Methoden in der Hoffnung, dass die Entomologie zukünftig einen größeren Beitrag zur Klärung offener Fragen der Paläoökologie der Hochgebirge leisten wird. 9

1. Einleitung

1.1. Problemstellungen und Arbeitshypothesen

Der Einfluss des Himalaya-Tibet Orogens auf den Strahlungshaushalt der Erde und auf die atmosphärische Zirkulation ist unbestritten (Manabe & Terpstra 1974, Kutzbach et al. 1989, Raymo & Ruddiman 1992, An et al. 2001, Harris 2006, Zhang et al. 2007, Molnar et al. 2010) und bereits seit den Arbeiten von Blanford (1884) bekannt. Dennoch existieren bis heute offene Fragen von zum Teil erheblicher erd- und klimageschichtlicher Relevanz und zwar sowohl hinsichtlich der Ausprägung der quartären Umweltbedingungen auf dem Plateau als auch zur Abfolge und Dynamik der tertiären Heraushebung der verschiedenen Teile des Gebirgssystems. Damit sind alle zusätzlichen Beiträge, die zu einer Verbesserung der Kenntnisse der Paläoumwelt Hochasiens führen, von überregionaler Bedeutung. Die beiden wichtigsten noch immer teilweise recht heftig diskutierten Fragenkomplexe sind folgende:

 Wie wirkten sich die Eiszeiten in den verschiedenen Teilen des Gebirgskomplexes aus? Welche Ausdehnung erreichten Gletscher und Kältewüsten im letztglazialen Maximum (LGM), und wie stark war die maximale Temperaturabsenkung?

 Wann und in welcher Reihenfolge wurden die einzelnen Abschnitte des Himalaya- Tibet Orogens in signifikante Höhen gehoben? Seit wann besitzen sie ihre aktuelle Meereshöhe?

Entscheidende Argumente für die Modellierung eiszeitlicher Umweltbedingungen lassen sich aus der Beantwortung der Frage nach der Ausdehnung der LGM-Vergletscherung Hochasiens gewinnen. Hier liegen die Meinungen in den Geowissenschaften zum Teil aber noch weit auseinander. Zwar gehen die meisten Autoren von einer relativ geringen LGM- Gletscherbedeckung aus, die stark von der regionalen bzw. lokalen Ausprägung des Klimas kontrolliert wurde (siehe Zusammenfassungen in Lehmkuhl & Owen 2005, Owen et al. 2008, Owen 2009), jedoch muss auch die Auffassung von Kuhle (zuletzt 2004, 2005, 2007, 2010) berücksichtigt werden, der eine umfassende Plateauvergletscherung ähnlich dem Skandinavischen Eisschild postuliert. Hieraus lassen sich für die vorliegende Studie sehr klare alternative Arbeitshypothesen ableiten, die auf den Erfahrungen der europäischen Zoogeographen der ersten Hälfte des 20. Jahrhunderts aufbauen (vgl. Holdhaus 1906, 1912, 1954, Heberdey 1933, Lindroth 1931, 1935) und die durch Arbeiten späterer Autoren über die Besiedlungsgeschichte Mittel- und Nordeuropas grundsätzlich bestätigt wurden (siehe hierzu die Übersicht in Rabitsch & Essl 2009). 10

Die alternativen Arbeitshypothesen lauten:

a) Auf dem Tibetischen Plateau existieren Vorkommen von flugunfähigen Lokalendemiten der Laufkäfer. Bestimmte Teile des Gebirgssystems waren somit eisfrei und standen der Hochgebirgsfauna als Massifs de refuge zur Verfügung.

b) Auf dem Tibetischen Plateau kommen ausschließlich ausbreitungsstarke Arten vor.

Letzteres würde für eine Kaltzeit-Überdauerung der rezenten Hochgebirgslaufkäfer in der Peripherie des Himalaya-Tibet Orogens sprechen und das mit der LGM-Eisschildhypothese verbundene Tabula rasa-Szenario auf dem Tibetischen Plateau stützen. Da hierzu von der Biogeographie der Käfer klare Aussagen mit großer Beweiskraft erwartet werden können, stelle ich meine diesbezüglichen Ergebnisse an den Anfang des Kapitels „Ergebnisse und Diskussion“. Die biogeographischen Grundlagen dazu habe ich in einer umfassenden Revision der Trechus-Arten Südtibets gelegt (Publikation I). Ich werde in der vorliegenden Studie aber auch Möglichkeiten aufzeigen, wie mittels biogeographisch-phylogenetischer Laufkäferdaten zukünftig auch Rückschlüsse auf die Vergletscherung des Plateaus während vorhergehender Eiszeiten gezogen werden können.

Die Frage nach der LGM-Temperaturabsenkung (LGM-ΔT) ist in biogeographischer Hinsicht eng mit der vorgehenden Problematik verbunden. Einige Autoren gehen von einer so starken Abkühlung aus, dass in weiten Teilen Tibets auch an Standorten ohne Gletscherbedeckung eine lebensfeindliche Kältewüste existiert haben muss (LGM-ΔT > 6 K, vgl. Zhang et al. 1993, Yao et al. 1997, Böhner & Lehmkuhl 2005). Auch dieses Szenario entspricht einer Tabula rasa für weite Teile des Plateaus. Kaltzeitliche Refugien der hochmontanen und alpinen Fauna hätten somit nur an den südlichen und östlichen Rändern des Plateaus und in den Stromfurchen gelegen. Nach anderen Autoren war die LGM-Temperaturabsenkung dagegen vor allem im Sommer sehr moderat, so dass artenreiche alpine Lebensräume auf dem Plateau persistiert haben dürften (LGM-ΔT < 5 K, vgl. Tang et al. 1999, Liu et al. 2002). Von der Endemiten-Biogeographie kann hierzu eine ebenso klare Stellungnahme erwartet werden, wie mit Hinblick auf die Frage nach der Ausdehnung der LGM-Vergletscherung. Da die Eignung von Standorten als Lebensraum für Laufkäfer primär von den beiden Faktoren Bodenfeuchte und Temperatur bestimmt wird (Lindroth 1949, Thiele 1974), sollten sich aus den jeweiligen Ansprüchen endemischer Arten konkrete Aussagen zu den LGM- Umweltbedingungen im Bereich ihrer glazialen Refugien ableiten lassen. Auf der Basis subfossiler Käferfunde aus Ablagerungen des Pleistozäns vor allem in Europa und Nordamerika wurde von Atkinson et al. (1987) bereits Pionierarbeit geleistet und eine weltweit akzeptierte Methode zur Rekonstruktion der Paläotemperaturen entwickelt (mutual climatic range method, siehe auch Elias 1994, 2007, 2010). Da solche Ablagerungen aus 11

Hochasien jedoch unbekannt sind, musste eine gänzlich neue Methode entwickelt werden (Publikation II). Dabei dienen rezente, lokalendemische Laufkäferarten als Proxys der Paläoumweltforschung. Dies führt zu der folgenden Arbeitshypothese:

Die Kartierung der Areale endemischer Laufkäferarten bietet die Möglichkeit zur Rekonstruktion von LGM-Umweltbedingungen auf dem Tibetischen Plateau.

Die Ergebnisse stelle ich im zweiten Abschnitt des Kapitels „Ergebnisse und Diskussion“ vor. Sie basieren auf den Publikationen I und II sowie auf frühere Arbeiten und sind geographisch auf die zentralen Teile Südtibets und auf den Nepal-Himalaya begrenzt. Ziel war die Entwicklung und Erprobung einer Methode zur Berechnung der Temperaturabsenkung im ökologisch stärker relevanten LGM-Sommer, mit dem zukünftig (bei entsprechend verbesserter faunistischer Datenlage) eine Ableitung der LGM-Temperaturen auch für andere Teile Hochasiens möglich ist.

Mit besonders großen Unsicherheiten ist bis heute die Frage behaftet, wann der Himalaya und das Tibetische Plateau ihre aktuellen Meereshöhen erreicht haben. Die diesbezüglichen Meinungen divergieren in der jüngeren geowissenschaftlichen Literatur um etwa 40 Millionen Jahre, und zwar von relativ rezent (Li 1991: < 150.000 Jahre, Wang & Deng 2005: < 2-3 Mio. Jahre, Fossilbefunde) bis vor die Eozän/Oligozän-Grenze (Dupont-Nivet et al. 2008: > 38 Mio. Jahre, Pollenanalysen; Wang et al. 2008: 40 Mio. Jahre, geologische und geophysikalische Daten). Hinzu kommt, dass große Unsicherheiten über die Reihenfolge der Heraushebung der einzelnen Teile des Orogens existieren. Derartig erhebliche Differenzen sind eine Herausforderung für die Biogeogeographie. Ob einer Fauna 40 Millionen Jahre zur Anpassung und Diversifizierung in ihrem Hochgebirgslebensraum zur Verfügung standen oder nur der aus evolutionsbiologischer Sicht sehr kurze Zeitraum des Quartärs, sollte in der morphologischen und genetischen Ausprägung sowie in der geographischen Verteilung der heute im Himalaya-Tibet Gebirgssystem vorkommenden Entwicklungslinien ablesbar sein.

Wegen der Größe des zu berücksichtigenden Gebirgsareals, der hier existierenden enormen Vielfalt an Arten und Artengruppen der Laufkäfer und des in vielen Gruppen noch ungenügenden systematischen, phylogenetischen und biogeographischen Kenntnisstandes kann ich mich dieser komplexen Thematik in der vorliegenden Studie nur annähern. Viele meiner Aussagen fokussieren stärker auf den Himalaya und Südtibet, da hier, nicht zuletzt aufgrund meiner eigenen langjährigen Feldarbeiten, die Biogeographie der Laufkäfer im Vergleich zu anderen Teilen des Orogens am weitesten entwickelt ist. Auf dieser Grundlage bin ich zu der Auffassung gekommen, dass in der genauen Kenntnis der Arealgeschichte ausbreitungsschwacher Artengruppen ein Schlüssel zum Verständnis der Himalaya-Tibet Orogenese und der damit verbundenen Veränderungen der regionalen Gebirgsumwelt steckt. 12

Diese Auffassung spiegelt sich in der folgenden Arbeitshypothese wider:

Stammesgeschichtliche und arealgenetische Analysen der im Himalaya endemischen Laufkäfer-Artengruppen liefern Hinweise zu den Umweltbedingungen in den tertiären Entwicklungsphasen des Himalaya-Tibet Gebirgssystems.

Ich kann hierbei auf die biogeographischen Ergebnisse zahlreicher morphologischer Studien an Laufkäfern dieser Region aufbauen (z.B. Schmidt 1999, 2003, 2006, 2009a, 2009b, Schmidt & Arndt 2000, Wrase & Schmidt 2006a, 2006b, zuletzt Publikationen I und III). Einige dieser Studien erbrachten Hinweise auf eine primäre Evolution der heute im Himalaya endemischen Artengruppen in den nördlich angrenzenden Teilen des Orogens. Diese führten zur Formulierung der Hypothese des Tertiär-Tibetischen Elementes in der Himalayafauna (Schmidt 2006, Publikation III). Sollte sich die Hypothese bestätigen, wäre das sowohl ein Beleg für die Existenz tertiärer Bergnebelwälder in Südtibet als auch ein Indiz für die spätere Anhebung des Hohen Himalaya im Bezug auf den Tibetischen Himalaya oder den Transhimalaya. Mit der Sequenzanalyse ausgewählter Genabschnitte konnte ich für die vorliegende Studie eine leistungsfähige Arbeitsmethode der Phylogeographie hinzuziehen, um die Hypothese und ihre Alternativen zur Besiedlungsgeschichte des Himalaya zu testen (Publikation IV). Diese Ergebnisse stelle ich unter anderen im dritten Abschnitt des Kapitels Ergebnisse und Diskussion vor.

1.2. Laufkäfer als Indikatoren in der Paläoumweltforschung Hochasiens

Käfer der Familie Carabidae (Laufkäfer) sind für Fragestellungen der Paläogeographie und Paläoklimaforschung im Hochgebirge ganz offensichtlich hervorragend geeignet. Sie erfüllen die folgenden vier entscheidenden Voraussetzungen:

 Laufkäfer kommen in allen Teilen des Himalaya-Tibet Orogens vor und sind hier in allen Höhenstufen unterhalb der Zone dauerhafter Eisbedeckung artenreich vertreten. Zahlreiche angepasste Arten leben noch in der hochalpinen Stufe; der Höhenrekord aller Käfer wird von Laufkäfern erreicht und liegt bei 5600 m in Südtibet (Publikation I). Somit steht ein enormes Repertoire an Zeigerarten für diverse Umweltbedingungen zur Verfügung.

 Laufkäfer sind ganz überwiegend unspezialisierte Räuber oder Aasfresser. Ihr horizontales und vertikales Gebirgsareal wird (im Gegensatz z.B. zu den Phytophagen) nicht durch das Vorkommen bestimmter Arten von Organismen determiniert, die als Nahrung dienen, sondern weitgehend durch Faktoren des Standortklimas bestimmt. Auf die Bedeutung dieser Problematik haben schon die Pioniere der Paläoklimatologen unter den Zoogeographen hingewiesen, nämlich Heberdey (1933) in seiner Studie zur Auswirkung der Eiszeit auf die Alpenfauna und 13

Atkinson et al. (1987) bei der Rekonstruktion von Paläotemperaturen aus subfossilen Ablagerungen.

 In allen Entwicklungslinien der Laufkäfer kommt es im Verlaufe der Anpassung an den Hochgebirgslebensraum zur Reduktion der Hautflügel und der Flugmuskulatur sowie, damit verbunden, zu einer unumkehrbaren Umgestaltung des Exoskelettes. Die morphologischen Veränderungen verursachen eine extreme Reduzierung der Fähigkeit zur Ausbreitung. Da Vektorverbreitung bei Laufkäfern keine Rolle spielt, kann Arealerweiterung flugunfähiger Arten praktisch nur ‚zu Fuß‘ erfolgen, was aufgrund der Vielzahl potentieller Barrieren im Hochgebirge (Gebirgskämme, Gletscher, Flüsse, Trockenhänge) nur in einem sehr begrenzten geographischen Rahmen möglich ist. Die heutige Lage des Areals einer flügellosen, endemischen Laufkäferart steht somit immer in einem engen Zusammenhang mit der geomorphologischen und klimatischen Entwicklung des von ihr besiedelten Gebirges.

 Trotz der großen Fülle der noch unbeschriebenen Arten und der vielfach noch ausstehenden systematischen Revisionen der Gattungen gehören Laufkäfer zu den wenigen besonders artenreichen Tiergruppen, deren Systematik inzwischen so weit fortgeschritten ist, dass eine biogeographische Bearbeitung der Fauna des Himalaya- Tibet Gebirgssystems möglich erscheint.

Es gibt derzeit vermutlich keine andere Tiergruppe, welche alle hier genannten Grundvoraussetzungen zur Bioindikation in der Paläogeographie und Paläoklimatologie des Hochgebirges gleichermaßen erfüllt, wie die der Laufkäfer. Mit Hinblick auf die Arealgenese flügelloser Arten und die sich daraus ergebenden Möglichkeiten zur Ableitung früherer erdgeschichtlicher Umweltzustände bietet die Biogeographie der Laufkäfer zudem eine ideale Ergänzung zu den Arbeitsgebieten der Vegetationsgeographie. Pflanzenareale reagieren im Allgemeinen zügig auf regionale Umweltveränderungen, weshalb die Vegetation die vorherrschenden Standortbedingungen unmittelbarer abbildet, als die lokalen Laufkäfer-Assoziationen. So werden längst nicht alle potentiell geeigneten Standorte im Hochgebirge auch von entsprechend angepassten Laufkäferarten besiedelt. Die alpine Stufe, die sich meist als geschlossenes, breites Vegetationsband an den Bergflanken entlang zieht, erscheint bei Untersuchung der Laufkäfer weitläufig fragmentiert. Geographische Separation bzw. extreme Verinselung potentieller Laufkäferlebensräume durch Felsflanken, Gletscherflüsse, Schutthalden, trockene Hänge etc. führen dazu, dass ausbreitungsschwache Arten extreme Arealdisjunktionen aufweisen. Dies erweist sich für die Untersuchung erdgeschichtlich früherer Umweltzustände durchaus als Vorteil, denn Disjunktareale ausbreitungsschwacher Entwicklungslinien sind die primäre Ursache für die Entstehung lokaler Endemiten (Neoendemismus durch geographische Vikarianz). Diese 14

Endemiten zeichnen sich bei molekulargenetischen Untersuchungen als eigenständige Haplotypen aus oder sie lassen sich als distinkte Morphen nachweisen, die als geographische Unterarten bzw. eigenständige Arten beschrieben werden. Wenn es anhand phylogenetischer Untersuchungen in den betreffenden Artengruppen gelingt, die Abstammung der Endemiten zu klären und eine Vorstellung über deren Alter zu erhalten, und wenn Ökologie und Verbreitung möglichst vieler Mitglieder dieser Abstammungsgemeinschaft hinreichend untersucht sind, dann liegt ein verlässlicher Datenfundus vor, der eine Rekonstruktion der Paläoumwelt im Entstehungsgebiet der endemischen Linien ermöglicht. Die biogeographische und phylogenetische Analyse des Neoendemismus der Laufkäfer des Himalaya-Tibet Orogens und die paläogeographischen und paläoklimatischen Implikationen stehen somit im Zentrum der Untersuchungen der vorliegenden Studie.

Abb. 1: Blick vom Gangdise Shan über das Damxung-Becken zum westlichen Nyainqentanglha Shan nördlich der Ortschaft Yangpachem am Austritt des Gletscherflusses Geda Chu. Der Boden des Beckens liegt hier bei ca. 4300 mNN und damit in der subalpinen Stufe. Entlang der Bergflanken leben zahlreiche, z.T. lokalendemische Laufkäferarten, die an die jeweiligen Standortverhältnisse in verschiedenen Höhenstufen speziell angepasst sind, in eng begrenzten, artspezifischen Vertikalarealen. Die weltweit höchsten Laufkäfervorkommen wurden hier in hochalpinen Frostschuttböden auf einer Moränenkuppe am Budha-Gletscher bei 5600 mNN nachgewiesen (Pfeil). In dieser Höhe kommt noch jeweils eine Art aus den Gattungen , Bembidion und Trechus vor. Aufnahme im Juli 2010. 15

Abb. 2: Beispiele für lokale Neoendemiten aus verschiedenen Tribus und Gattungen der Laufkäfer des Himalaya- Tibet Orogens. In jedem Fall handelt es sich um primär ungeflügelte, ausbreitungsschwache Arten mit stark abgeflachter Basis der Elytren und mit stark verkürzten Lateralplatten des Metathorax. Die Größenangaben beziehen sich auf die Körperlängen der abgebildeten Arten von den Mandibeln bis zur Flügeldeckenspitze. 16

Abb. 3: Erfassungsmethode edaphischer Laufkäferarten im Hochalpin: Die z.T. winzigen Arten leben im Lückensystem der Frostschuttböden und werden beim Wenden großer Steine gefunden. Sie werden mittels eines Exhaustors (= mundbetriebener Ministaubsauger) aufgesaugt. Moränen im Gangdise Shan bei 5300 m, Juli 2010.

Abb. 4: Das Sieben der Bodenstreu ist eine ideale Erfassungsmethode für kleine, bodenbewohnende Laufkäferarten der Bergnebelwälder. Obere Nebelwaldstufe an der Südabdachung des Mardi Himal, Zentral- Nepal, mit Rhododendron campalunatum und spät ausapernden Schneetälchen bei 3800 m, Mai 2008. 17

2. Ergebnisse und Diskussion

2.1. Mikroareal-Endemiten der Laufkäfer: Zeigerarten eisfreier Gebiete im LGM Südtibets und im Himalaya

Vorbetrachtungen

Ausgangspunkt der Untersuchungen war die kontroverse Diskussion zur tatsächlichen Ausdehnung der LGM-Vereisung des Himalaya-Tibet Orogens, die sich vor allem um die Eisschild-Hypothese von Kuhle (zahlreiche Arbeiten seit 1982a, zuletzt 2004, 2005, 2007, 2010) entfachte. Nach dieser Hypothese wären Tibet und die Randgebirge von einem bis über zwei Kilometer mächtigen Eisschild bedeckt gewesen, und nur die trockenen zentralasiatischen Becken und das untere Yarlung Tsangpo Tal in Südtibet blieben eisfrei (Abb. 5, 6). In der geowissenschaftlichen Literatur gibt es hierzu eine große Zahl an ablehnenden Stellungnahmen (z.B. Derbyshire et al. 1991, Shi et al. 1992, Hövermann & Lehmkuhl 1994, Fort 1995, Klinge & Lehmkuhl 2004, Zhou’Li Jijun et al. 2004, Lehmkuhl & Owen 2005, Owen et al. 2008, Owen 2009). Die Mehrzahl der Autoren geht heute von einer erheblich geringeren LGM-Eisbedeckung aus (vgl. Abb. 7).

Abb. 5: Profil des sich über 2,4 Millionen km2 erstreckenden LGM-Eisschildes Tibets und angrenzender Gebirge nach Kuhle (1982-2010, aus Kuhle & Roesrath 1990); Profil Takla Makan – Dhaulagiri (Himalaya). Im Himalaya überragen nur > 6000 m hohe Gipfel die Eisströme; die mächtigen Durchbruchstalgletscher (hier im Tal des Kali Gandaki) dringen weit an die Südabdachung des Himalaya vor.

Kuhles Eisschildhypothese hat weitreichende Bedeutung für die Biogeographie. Der Autor geht davon aus, dass die Anhebung des Tibetischen Plateaus über eine kritische Höhe hinaus, die daraufhin erfolgende Plateauvergletscherung und der damit verbundene Wärmeverlust der Erdatmosphäre die Kausalkette zur Auslösung der Eiszeiten darstellt (Kuhle 2001). Frühere eiszeitliche Vergletscherungen des Himalaya-Tibet Orogens hätten ähnliche Ausmaße erreicht, wie jene, die er für das LGM postuliert. Dieses Szenario schließt eine nahezu vollständige Vernichtung der Tertiären Fauna für das Plateau ein. Da die postulierten LGM-Durchbruchstalgletscher bis an die Südabdachung des Himalaya heran reichten (Kuhle 1982b, 1983, 2005, 2007, 2010, Abb. 1), wären Glazialrefugien der himalayanisch-tibetischen Tertiärfauna nur am Südrand des Gebirgssystems möglich 18 gewesen. Eine Ausnahme würde das untere Yarlung Tsangpo Tal in Südtibet bilden, welches nach Kuhle (2005) partiell unvergletschert war (vgl. Abb. 6). In diesem Periglazialraum müssten arktische Bedingungen im LGM existiert haben. Das Überdauern von kleinen hochalpin-nivalen Laufkäferarten mit geringem Raumbedarf (z.B. Arten der Gattung Trechus) wäre in den unteren und mittleren, eisfreien Talabschnitten unter der Voraussetzung der Persistenz semistabiler Böden mit winterlicher Schneebedeckung durchaus möglich, nicht jedoch in den Seitentälern des Yarlung Tsangpo, die von gewaltigen Gletschern ausgefüllt waren. So gibt Kuhle (2005) für das Kyi Chu Tal nur 40 km nördlich des Yarlung Tsangpo bereits eine Gletschermächtigkeit von 700-1000 m an.

Abb. 6: Tibetisches LGM-Eisschild nach Kuhle (1985, aus Hövermann & Lehmkuhl 1993, verändert). Die roten Punkte stellen Fundorte flügelloser, edaphischer Trechus-Arten früherer Erfassungen im zentralen Südtibet dar (nach Deuve 1996, 1997). Um diese Vorkommen zu erklären, müssen erhebliche holozäne Arealerweiterungen dieser Arten angenommen werden.

Abb. 7: LGM-Vergletscherung Tibets nach Shi Yafeng et al. (1992, aus Hövermann & Lehmkuhl 1993, verändert). Die Fundpunkte edaphischer Trechus-Arten (dieselben wie in Abb. 6) befinden sich in Nachbarschaft zu tiefer gelegenen, nicht vergletscherten Gebieten; ihre Lage wäre deshalb recht einfach durch vertikale Arealverschiebung im Verlaufe des Holozäns erklärbar. 19

Befunde in Südtibet

Eine Kartierung der Areale der z.T. winzigen, ungeflügelten Trechus-Arten erwies sich als ideale Möglichkeit, um Khules Eisschildhypothese zu verifizieren. Aus dieser Gruppe sind Arten bekannt, die ausschließlich edaphisch (im Lückensystem der oberen Bodenschichten) leben; sie kommen praktisch nie an die Bodenoberfläche und sind an Standorte mit hoher Bodenfeuchte gebunden. Solche Arten verfügen zwangsläufig über eine extrem eingeschränkte Ausbreitungsfähigkeit. Es war zu erwarten, dass in den höheren Lagen der an das Yarlung Tsangpo Tal angrenzenden Massive Arten dieser Gruppe vorkommen, welche die Kaltzeiten in jenem Tal überdauert haben und die in der nachfolgenden Klimaerwärmung ihr Areal vertikal aufwärts verschoben haben. Dagegen wären, folgt man der Eisschildhypothese, in den inneren Massiven des Plateaus keine edaphischen Trechus zu erwarten. Aus früheren taxonomischen Arbeiten (Deuve 1996, 1997) waren aber bereits fünf Arten aus dem zentralen Südtibet bekannt geworden, deren Fundorte zum Teil recht weit entfernt vom Tal des Yarlung Tsangpo lagen (Abb. 6). Für diese Arten müsste eine ungewöhnlich starke holozäne Ausbreitungsaktivität angenommen werden. Auch dies kann durch eine Arealanalyse verifiziert werden: Im Falle einer Arealerweiterung vom Yarlung Tsangpo entlang der Seitentäler nach Norden oder Süden müssten an geeigneten Standorten in den Massiven entlang des Ausbreitungsweges weitere Vorkommen derselben Arten existieren. Lokalendemismus weit entfernt vom Tal des Yarlung Tsangpo wäre nach der Eisschildhypothese ganz unwahrscheinlich. Dies ist dagegen nicht der Fall, wäre die LGM-Vergletscherung auf die stärker exponierten Massive Tibets beschränkt gewesen. Abbildung 7 zeigt, dass unter diesen Bedingungen keine erhebliche Arealexpansion dieser Trechus-Arten für das Holozän angenommen werden muss.

Entscheidende biogeographische Hinweise zur tatsächlichen LGM-Gletscherausdehnung im zentralen Südtibet brachte eine erste umfassende Arealkartierung der Laufkäfer im Sommer 2007. Hinsichtlich der Gattung Trechus sind sie in Publikation I zusammengefasst. Eine zweite Kartierung im Sommer 2010 im selben Gebiet verdichtete die Datenlage und bestätigte die Ergebnisse im Detail (Publikation in Vorbereitung). Demnach ist sowohl der östliche Gangdise Shan im Einzugsgebiet der Flüsse Kyi Chu und Tolung Chu als auch der gesamte Westteil des Nyainqenthanglha Shan durch einen beachtlichen Mikroareal- Endemismus geprägt (Abb. 8). Die meisten Arten besiedeln einzelne Seitentäler entlang der Abdachungen der Massive, und nur in sehr wenigen Fällen wurden Areale nachgewiesen, die sich über mehrere solche Seitentäler erstreckten. Keine einzige edaphische Trechus-Art besitzt ein Areal, das beide Talseiten des Yarlung Tsangpo einnimmt oder das sich entlang der Massive vom Yarlung Tsangpo nach Norden zum Nyainqentanglha Shan ausdehnt. Alle orographisch exponierten Teile des Gebirges und ihre verschiedenen Abdachungen besitzen eine jeweils eigene Ausstattung an Lokalendemiten. 20

Abb. 8: Lage der Areale von 35 Lokalendemiten der Gattung Trechus (Kreise, jede Zahl entspricht einem Taxon) im zentralen Südtibet. Für nur vier der Taxa (3, 9, 15, 21) konnten je zwei nahe beieinander liegende Vorkommen nachgewiesen werden. Die Farben kennzeichnen separate Entwicklungslinien innerhalb der Gattung: Weiß – solhoeyi-Gruppe. Rot – antonini-Gruppe. Grün – chaklaensis-Gruppe (monotypisch). Gelb – dacatraianus- Gruppe. Blau – wrzecionkoi-Gruppe. Die Funddaten basieren auf Publikation I, ergänzt durch Ergebnisse der Feldkampagne 2010; die Taxa 23-35 wurden erst 2010 neu entdeckt.

Abb. 9: Ausweisung von neun Bereichen (a-i) im Damxung-Becken, in welchen sich LGM-Refugien der Alpinfauna befanden. Die Angaben beruhen auf Arealbefunden lokalendemischer Trechus-Arten in Publikation I und auf Daten der Feldkampagne 2010. 21

Auf Basis dieser Befunde kann die Eisschildhypothese zurückgewiesen werden (Publikation I). Die Lage der Trechus-Areale in Südtibet ist einzig dadurch erklärbar, dass die eiszeitlichen Refugien in unmittelbarer Nähe zu den heutigen Vorkommen der Arten lagen. Bedeutende Arealverschiebungen dieser Arten erfolgten im Zuge des holozänen Klimawandels vorrangig vertikal, aber nur sehr geringfügig horizontal.

Aussagen zur tatsächlichen Ausdehnung der LGM-Vergletscherung in Südtibet lassen sich mit Hilfe von Laufkäferdaten über die Lage der Refugialareale erhalten. Die Genauigkeit dieser Aussagen wird reliefbedingt bis zu einem bestimmten Grad durch die Datendichte determiniert. Da jede Kartierung bislang unerforschter Gebirgsteile zur Entdeckung neuer Arten, Unterarten bzw. Haplotypen führt, dürfte der maximale Grad an Genauigkeit noch lange nicht erreicht sein. In Abb. 9 ist beispielhaft für ein bereits relativ gut untersuchtes Gebiet die Lage von neun unabhängigen LGM-Refugialarealen der Alpinfauna an der Südostabdachung des westlichen Nyainqentanglha Shan eingezeichnet, wie sie sich aus der aktuellen Datenlage der endemischen Trechus-Arten ergeben. Grundlage dieser Darstellung ist die Erkenntnis, dass alle Arten Lokalendemiten bestimmter Seitentalsysteme dieses Gebirges sind, die das LGM in den unteren Lagen dieser Talsysteme überdauert haben müssen. Die Refugien der alpinen Trechus füllten dabei nicht den Boden des Haupttales aus, da dies zwangsläufig zu einer talquerenden, horizontalen Arealerweiterung und damit zur Vermischung der Faunenelemente beiderseits des Damxung-Beckens geführt hätte. Dies ist aber in keinen Fall belegt worden. Man kann somit davon ausgehen, dass sich die alpine Zone im LGM noch etwas hangaufwärts erstreckte.

Sehr wahrscheinlich können in diesem Gebiet zukünftig weitere LGM-Refugialareale auf der Basis bislang noch unentdeckter endemischer Trechus-Vorkommen ausgegrenzt werden. Es kann aber bereits als sicher gelten, dass mindestens neun eisfreie Areale an der Südabdachung des Nyainqentanglha Shan existierten, die in jenen Bereichen lagen, wie sie in Abb. 9 eingezeichnet sind. Im Gegensatz zu Kuhle (2005) zeigen die Ergebnisse der glazialmorphologischen Untersuchungen von Lehmkuhl et al. (2002), Klinge & Lehmkuhl (2004) und Lehmkuhl & Owen (2005) für die Südabdachung des westlichen Nyainqentanglha Shan partiell eisfreie Flanken und LGM-Gletscherstände, die nicht den Talboden erreichten (Abb. 10). Diese geomorphologischen Befunde werden durch den Nachweis von Glazialrefugien der alpinen Fauna im Gebiet unterstützt. 22

Abb. 10: N-S-Querschnitt durch den Südteil des Tibetischen Plateaus mit Darstellung der aktuellen und der LGM- Vergletscherung (aus Lehmkuhl & Owen 2005, verändert). Die Pfeile verweisen auf eisfreie Flächen am Talhang und auf die unvergletscherte Talsohle an der Südabdachung des westlichen Nyainqentanglha Shan. Hier befanden sich nach den Ergebnissen der vorliegenden Studie die Refugialgebiete der alpinen Bodenfauna.

Darüber hinaus liefern die Verbreitungsdaten der endemischen Trechus-Arten und ihre Verwandtschaftsbeziehungen Hinweise auf die Ausdehnung der Tibet-Vergletscherungen früherer Vereisungsperioden. Im Rahmen der systematischen Revision der Gattung konnte gezeigt werden, das die im zentralen Südtibet vorkommenden edaphischen Arten zu Entwicklungslinien gehören, die alle endemisch für bestimmte Bereiche des südlichen und östlichen Plateaus sind (Publikation I, siehe auch Abb. 8). So kommt die antonini-Gruppe ausschließlich im Nyainqentanglha Shan vor, hat aber ihre weitaus höchste Artendiversität in dessen Westteil (bisher ist erst eine Art aus dem Osten des Massivs bei Qamdo gefunden worden). Ähnlich sind die Verhältnisse in der dacatraianus-Gruppe: zwei weniger spezialisierte Arten kommen im Ost- und Nordteil des Plateaus vor, während alle stärker abgeleiteten Vertreter Lokalendemiten des westlichen Nyainqentanglha Shan sind. Die wrzecionkoi-Gruppe kommt nur in einem kleinen Abschnitt des Gangdise Shan zwischen den Tälern des Yarlung Tsangpo und des Kyi Chu vor. Die beiden Lokalendemiten Südtibets Trechus chaklaensis und die solhoeyi-Gruppe stehen im System der Gattung phylogenetisch isoliert; verwandtschaftliche Beziehungen zu anderen Arten des Himalaya-Tibet Gebirgssystems konnten bislang nicht gefunden werden. Keine dieser Artengruppen hat Vertreter im unmittelbar südlich angrenzenden Tibetischen Himalaya. Letzterer wird von edaphischen Trechus-Artengruppen besiedelt, die ihrerseits keinen einzigen Vertreter im Transhimalaya haben (Publikation I; die thibetanus-Gruppe unterliegt dieser Regel nicht, sie umfasst vielfach Arten ohne streng edaphische Lebensweise und wird hier nicht berücksichtigt).

Aus diesen biogeographischen Befunden lässt sich ableiten, dass es zu keinem Zeitpunkt in der Umweltgeschichte des Himalaya-Tibet Orogens zur Ausbildung eines Eisschildes 23 gekommen sein kann. Da sich keine engen Verwandtschaftsbeziehungen zwischen den im Gangdise Shan, Nyainqentanglha Shan und Tanggula Shan endemischen Trechus und den Arten der tibetischen Randgebirge erkennen lassen, dürfte die gesamte Stammesgeschichte der in Tibet endemischen Artengruppen in den mehr zentral gelegenen Teilen des Plateaus abgelaufen sein. Die rezente Formenfülle lässt sich nur durch ein relativ hohes evolutives Alter der Entwicklungslinien erklären, weshalb ein tertiärer Ursprung sehr sicher ist (Publikation I). Diese auf morphologischen Untersuchungen zurückgehenden Schlussfolgerungen können zukünftig durch molekulargenetische Analysen verifiziert werden. Letztere liefern neben weiteren Merkmalen zur Überprüfung der Monophylie- Hypothesen der Artengruppen vor allem bessere Möglichkeiten zur Datierung ihres phylogenetischen Alters. Sollte sich dadurch der tertiäre Ursprung der endemischen Trechus-Artengruppen Südtibets bestätigen, wäre dies ein Indiz mit hoher Beweiskraft gegen die Theorie von Eisschildvergletscherungen während früherer Kaltzeiten, wie sie von Kuhle (2001, 2007) angenommen werden.

Befunde im Himalaya

Aus dem Himalaya liegen nach eigenen Erhebungen aufschlussreiche Laufkäfer-basierte Befunde zur Lage von LGM-Refugien aus den Massiven des Saipal Himal und des Kanjiroba Himal in West-Nepal (Abb. 11) und aus den oberen Tälern des Kali Gandaki und des Marsyangdi Khola im westlichen Zentral-Nepal (Abb. 12) vor.

West-Nepal: Verbreitungsdaten der Laufkäfer verschiedener Gattungen sprechen dafür, dass auch der Innere Himalaya großräumig eisfrei gewesen sein muss. In den Hochtälern an den nordwestlichen Flanken des Kanjiroba Himal und an den nordöstlichen Flanken des Saipal Himal sind eng verwandte Trechus-Taxa (z.T. auf Unterart-Niveau) quasi parapatrisch verbreitet (Abb. 11). Auch hier kann aufgrund der rezenten Arealsituation nur eine vertikale Arealverschiebung infolge des spätpleistozänen Klimawandels angenommen werden. Mikroareal-Endemiten in Seitentalsystemen an den Nordabdachungen dieser Gebirge müssen ihre LGM-Refugien folglich in den Tälern der Flüsse Humla Karnali bzw. Mugu Karnali nördlich des Himalaya-Hauptkammes besessen haben (Publikation I). Dies sind weitere Indizien gegen die Eisschildhypothese, die ein Eisstromnetz im Inneren Himalaya über den Himalaya-Hauptkamm hinaus postuliert, aus welchem nur Peaks oberhalb von 6000 m herausgeragt haben sollen (Kuhle 2004, 2005, 2007, 2010 und frühere Arbeiten, vgl. Abb. 5). Unter derartigen Bedingungen wäre eine eiszeitliche Überdauerung einer alpinen Fauna nördlich des Himalaya-Hauptkammes unmöglich gewesen.

24

Abb. 11: Verbreitung von edaphischen Trechus-Arten in West-Nepal (Publikation I). Die Taxa T. aedeagalis und T. stratiotes sind endemisch an der Nordabdachung des Saipal Himal und besaßen ihre LGM-Refugien im Humla Karnali-Tal. T. eremita ist endemisch an der Nordabdachung des Kanjiroba Himal und besaß sein LGM-Refugium im Mugu Karnali-Tal. Die unmittelbar südlich angrenzenden, quasi parapatrischen Areale der jeweiligen Schwestertaxa weisen auf eine in sito-Entstehung dieser Taxa durch geographische Separation hin (Vikarianz- Endemismus), weshalb die Existenz gemeinsamer LGM-Refugien an den Südabdachungen unwahrscheinlich ist.

Westliches Zentral-Nepal: In den Transverstälern der Flüsse Kali Gandaki und Marsyangdi Khola kommen zahlreiche Laufkäfer-Endemiten aus verschiedenen Gattungen ausschließlich nördlich des Himalaya-Hauptkammes vor. Dazu gehören auch große Arten mit deutlich höherem Raumbedarf, deren Vertikalareal zum Teil nur bis in die subalpine Stufe hinauf reicht. Dies sind starke Indizien für die Existenz ausgedehnterer LGM-Refugien im Inneren Himalaya, die lokal sogar für die Existenz von Waldrefugien sprechen (Schmidt 2007). Die auf morphologischen Untersuchungen in mehreren Laufkäfergattungen beruhenden Angaben werden durch molekulargenetische Befunde in der Gattung Pterostichus gestützt (Publikation IV, Abb. 12). Nördlich des Durchbruches des Kali Gandaki durch den Himalaya-Hauptkamm kommt an der Ostabdachung des Dhaulagiri-Massivs ein endemischer Pterostichus balachowskyi COI-Haplotypus vor (b3 in Abb. 12). Dieser ist identisch mit der Unterart P. b. tukchensis. Nördlich des Durchbruches des Marsyangdi Khola durch den Himalaya-Hauptkamm kommt an der Nordostabdachung des Annapurna- Massivs ein endemischer Pterostichus ganja COI-Haplotypus vor (g4 in Abb. 12). Dieser ist identisch mit der Unterart P. g. pisangensis. Die beiden genannten Pterostichus-Unterarten besiedeln die obere Nebelwaldstufe und erreichen mit der Obergrenze ihres Vertikalareals das Subalpin. Es ist deshalb sehr wahrscheinlich, dass lokal am Rand des Talbodens unmittelbar nördlich des Himalaya-Hauptkammes auch im LGM Waldstandorte existierten. 25

Abb. 12: Verbreitung des hochalpinen Trechus tilitshoensis (weiße Kreise: ti) und von Haplotypen eines 1444 bp langen COI-Sequenzsegments hochmontan-subalpiner Pterostichus-Arten (farbige Kästchen) in den Durchbruchstälern des Kali Gandaki und Marsyangdi Khola, zentraler Nepal-Himalaya (b1-b3, gelb: P. balachowskyi; f1-f2, blau: P. fritzhiekei; g1-g4, rot: P. ganja). Angaben aus Publikationen I und IV.

Auf Basis dieser Befunde kann angenommen werden, dass alpine Lebensräume im Inneren Himalaya Zentral-Nepals während des LGM weit verbreitet gewesen sind. Darauf weisen auch die zahlreichen, geographisch separierten Vorkommen der winzigen, streng edaphischen Art Trechus tilitshoensis nördlich der Massive des Annapurna und des Dhaulagiri hin. Diese rekrutieren sich sehr wahrscheinlich aus mehreren alpinen Glazialrefugien dieses Laufkäfers in Tälern des Inneren Himalaya (Publikation I, Abb. 12).

Die Nachweise von Laufkäfer-Endemiten nördlich des Himalaya-Hauptkammes sprechen damit nicht nur gegen die Ausbildung eines LGM-Eisstromnetzes im Inneren Himalaya, sondern auch gegen die Existenz von jeweils über 1000 m mächtigen Durchbruchstalgletschern, wie sie von Kuhle (1982, 1983, 2007, 2010) sowohl für das Kali Gandaki Tal als auch für das Marsyangdi Khola Tal postuliert werden (vgl. Abb. 5). Eine kaltzeitliche Überdauerung von Laufkäferarten der subalpinen Stufe auf eisfreien Flanken oberhalb dieser Gletscherströme (als sogenannte Nunatak-Endemiten) ist bei einer derartig mächtigen Talfüllung ausgeschlossen. Dagegen stützen die Laufkäferdaten die glazialmorphologischen Befunde von Fort (1995, 2004). Nach dieser Autorin erreichten die längsten LGM-Eisströme an den Flanken des Dhaulagiri Himal und des Annapurna Himal zwar den Talboden des Kali Gandaki bzw. des Marsyangdi Khola, jedoch kam es nur an diesen Stellen zu einer lokalen Gletscherfüllung des Haupttales, während große Bereiche sowohl am Talboden als auch an den Bergflanken eisfrei blieben. Letztere konnten somit von subalpinen und alpinen Arten als LGM-Refugien genutzt werden. Auf klimatisch begünstigten Standorten wären am unteren Talhang auch unter dem Szenario von Fort (1995, 2004) Waldrefugien denkbar. 26

Anmerkungen zu den Methoden der Pleistozänforschung

Die erheblichen Abweichungen in den präsentierten Forschungsergebnissen der Geomorphologen zur Ausdehnung der LGM-Vergletscherung im Himalaya-Tibet Orogen führen zwangsläufig zu der Frage nach den Ursachen. Kuhle (2007) und Kuhle & Kuhle (2010), die mit der Eisschildhypothese selbst eine extreme Meinung vertreten, führen die Differenzen auf methodische Probleme bei der Datierung glazigener Ablagerungen auf der Basis von OSL (optically stimulated luminescense dating) und TCN (terrestrial in situ cosmogenic nuclide dating) zurück. Diese Methoden werden nach Auffassung der genannten Autoren ohne eine für die Anwendung in Hochasien notwendige Kalibrierung eingesetzt, weshalb jüngere glazigene Ablagerungen fälschlicherweise auf das LGM datiert werden. Autoren, die sich kritisch mit den Ergebnissen Kuhles auseinandersetzen, (z.B. Shi et al. 1992, Fort 1995, Benn & Owen 2002, Owen & Lehmkuhl 2005) führen die gravierenden Abweichungen dagegen auf eine Fehlinterpretation der lokalen geomorphologischen Erscheinungsformen zurück. Die in der vorliegenden Studie dargelegten Arbeitsergebnisse legen letzteres nahe. Die biogeographischen Befunde sprechen eindeutig gegen die Existenz eines tibetischen LGM-Eisschildes und eines Eisstromnetzes im Himalaya im Sinne von Kuhle (1982-2010). Dagegen werden u.a. die Arbeitsergebnisse von Klinge & Lehmkuhl (2004), Lehmkuhl & Owen (2005), Owen & Benn (2005) in Südtibet gestützt, die mittels OSL und TCN gewonnen wurden. Wichtig in diesem Zusammenhang erscheint der Hinweis, dass die Methode zur Kartierung von LGM-Vereisungsgrenzen auf der Basis von Laufkäferarealen grundsätzlich keine Datierungsprobleme in sich birgt, da sie sich ausschließlich auf das lokale LGM bezieht und zwar unabhängig davon, wann das LGM an der jeweiligen Lokalität erreicht wurde. Dies kann hier als besonderer Vorteil der auf Mikroareal-Endemismus basierenden Indikation herausgestellt werden. Biogeographische Analysen bieten demzufolge ideale Möglichkeiten zur Absicherung der geomorphologischen Befunde bei der Erkundung der eiszeitlichen Vergletscherungen Hochasiens. 27

2.2. Vertikale Arealgrenzen lokalendemischer Laufkäfer: Neue Proxydaten zur Bestimmung der Temperaturabsenkung im LGM Hochasiens

Vorbetrachtungen

Mit Hinblick auf ihre biogeographische Relevanz divergieren die Auffassungen zur LGM- Temperaturabsenkung (LGM-ΔT) in Hochasien nicht weniger stark, als die zur Ausdehnung der LGM-Vergletscherung. Im Unterschied zur letzteren Problematik existiert hier aber keine so ausgeprägte Polarisierung gegensätzlicher Meinungen. Die in der geowissenschaftlichen Literatur präsentierten Werte für die LGM-ΔT auf dem Tibetischen Plateau schwanken zwischen 0-10K. Geophysikalische (δ18O in Eisbohrkernen, Yao et al. 1997, bzw. in interkristallinen Salzen, Zhang et al. 1993) und geomorphologische Proxydaten (Sandkeile und Torfe in glazigenen Frostaufbrüchen, Xu et al. 1984) sowie ein auf geomorphologischen Befunden (LGM-ELA und Dauerfrostböden) basierendes Klimamodell (Böhner & Lehmkuhl 2005) lieferten dabei durchschnittlich höhere Werte (6-10K) als Pollenanalysen (0-6K, siehe Übersicht in Shi 2002) sowie die vorrangig aus solchen Daten abgeleiteten Klimamodelle (1- 4K, Liu et al. 2002, Zheng et al. 2004). In nur wenigen Arbeiten wird dabei zwischen einer LGM-Temperaturdepression im Winter und einer im Sommer differenziert. Letztere ist jedoch von entscheidender ökologischer Bedeutung, während die winterliche Temperaturabsenkung einerseits im Boden unter Schneebedeckung erheblich abgemildert wird und andererseits durch entsprechende Anpassungen der Organismen in einem hohen Maß toleriert werden kann (Franz 1979, Ellenberg 1986, Körner 2003). Neuere pollenanalytische und klimatologische Arbeiten gehen außerdem von +/- ausgeprägten jahreszeitlichen

Unterschieden in der LGM-ΔT aus (Tang et al. 1999, Liu et al. 2002, Böhner & Lehmkuhl 2005). Die Angaben zum Jahresdurchschnitt liefern somit keine Grundlage zur Rekonstruktion der eiszeitlichen Umweltverhältnisse. Andererseits sind LGM-ΔT-Daten zum Jahresdurchschnitt aus oben genannten Gründen anzuzweifeln, wenn sie aus biologischen Proxydaten abgeleitet wurden, z.B. aus Pollenanalysen.

Reduziert man die publizierten Datensätze auf Angaben zur LGM-Temperaturabsenkung des LGM-Sommers, verbleibt eine Spanne der in der jüngeren geowissenschaftlichen Literatur publizierten Ergebnisse von 0-6K. Dieses macht es praktisch unmöglich, eine Vorstellung von den eiszeitlichen Umweltbedingungen auf dem Tibetischen Plateau zu erhalten. Bei einem Szenario von 6K LGM-ΔT dürften in weiten Teilen des Tibetischen Plateaus auch ohne umfassende Vergletscherung lebensfeindliche Kältewüsten geherrscht haben. Bereits in den im vorgehenden Kapitel vorgestellten Untersuchungsergebnissen zur LGM- Gletscherausdehnung deutete sich mit dem Nachweis von Glazialrefugien alpiner Laufkäfer in über 4000 m hoch gelegenen Tälern an, dass dies nicht der Fall war. Vermutlich lag die tatsächliche LGM-ΔT also unter 6K. Bei 0-1K LGM-ΔT hätte die Eiszeit entweder zu keinem Wandel der Vegetation und Fauna auf dem Plateau geführt oder ein solcher müsste einzig 28 auf Veränderungen im Niederschlagsregime zurückzuführen sein. Ein solches Szenario widerspricht aber Befunden aus Sedimentuntersuchungen einschließlich Pollenanalysen, die erhebliche Vegetationsveränderungen auf dem Tibetischen Plateau seit dem LGM dokumentieren, welche nicht zuletzt durch eine phasenhafte, deutliche Erwärmung erklärt werden (Shen et al. 2005, Herzschuh et al. 2006, Herzschuh & Liu 2007). Sehr wahrscheinlich lag die tatsächliche LGM-ΔT also über 1K.

Ableitung lokaler LGM-ΔT auf der Basis von Laufkäferdaten

Käfer haben schon seit einigen Jahrzehnten eine besondere Bedeutung in der Klimaforschung des Quartärs erlangt. Die Kombination zweier Eigenschaften macht sie für entsprechende Fragestellungen hervorragend geeignet: Erstens ist das stark sklerotisierte Exoskelett der Käfer so widerstandsfähig gegen chemische und mikrobielle Zersetzung, dass es in einer geeigneten Lagerstätte (z.B. Moor, Seesediment) viele tausend Jahre nahezu unversehrt überdauern kann. Da das Exoskelett in den meisten Fällen die arttypischen Merkmale trägt, lassen sich die gefundenen subfossilen Überreste meist zweifelsfrei bestimmten Arten zuordnen (Elias 1994, 2007, 2010). Zweitens sind die Toleranzen verschiedener Käferarten gegenüber Schwankungen bestimmter Umweltfaktoren wie Temperatur und Bodenfeuchte begrenzt. Werden viele Käferarten in derselben Schicht einer Lagerstätte gefunden und sind die jeweiligen artspezifischen Toleranzgrenzen bekannt (hinsichtlich der Temperatur lassen sie sich beispielsweise aus der geographischen Lage des rezenten Artareals unter Verwendung von Daten aus Klimastationen ableiten), dann können die Paläoumweltbedingungen in der Umgebung der Lagerstätte aus dem Überlappungsbereich der verschiedenen Standortansprüche der Arten rekonstruiert werden (mutual climatic range method, MCR, Atkinson et al. 1987). Inzwischen sind auf Basis dieser Überlegungen zahlreiche Arbeiten erschienen in denen es gelungen ist, pleistozäne und holozäne Umweltbedingungen in Gebieten mit Fundplätzen subfossiler Käfer vor allem im nördlichen Europa und in Nordamerika zur rekonstruieren (z.B. Coope et al. 1998, Coope & Elias 2000, Coope 2002, Elias 2000, Jost-Stauffer et al. 2005).

Im Himalaya-Tibet Orogen wurden subfossile Lagerstätten mit Käferüberresten bislang nicht gefunden. Vermutlich sind die Bedingungen in diesem extremen Hochgebirge für derartige Ablagerungen so ungünstig, dass sie entweder sehr selten sind oder gar nicht existieren. Die besondere geomorphologische Situation auf dem Tibetischen Plateau und eine umfassende Revision der rezenten Arten der Laufkäfergattung Trechus dieses Gebietes (Publikation I) boten jedoch die Möglichkeit, die MCR stärker zu modifizieren und damit einen anderen Arbeitsansatz zur Ableitung von Paläotemperaturen zu entwickeln (Publikation II). Die entscheidende Abweichung besteht darin, dass ausschließlich heute lebende Arten die Datengrundlagen liefern. Die Idee zu dieser neuen Methode entsprang aus den zahlreichen 29

Nachweisen von Mikroareal-Endemiten der Laufkäfer auf dem Tibetischen Plateau, welche die Kaltzeiten in demselben Seitentalsystem eines Massivs überdauert haben müssen, in dem sie heute noch vorkommen. Aufgrund der Temperaturabhängigkeit der vertikalen Arealgrenzen der Laufkäfer müssen die LGM-Refugien hangabwärts der heutigen Vorkommen gelegen haben (Abb. 9, Diskussion in Kapitel 2.1). Der Talboden des Haupttales bildet dabei die absolute Untergrenze der potenziellen Abwärtsverschiebung des LGM- Areals. Liegt der Talboden im Vertikalareal einer Art, ist eine horizontale Arealerweiterung auch bei flügellosen Laufkäfern wahrscheinlich, sofern geeignete Standortbedingungen dies ermöglichen. Dieses Szenario entspricht insofern den Erfahrungen bei der Untersuchung der rezenten Laufkäfer-Verbreitungsbilder an der Südabdachung des westlichen Nyainqentanglha Shan und der gegenüberliegenden Nordabdachung des Gangdise Shan, indem hier alle flügellosen Arten mit Hauptvorkommen in der subalpinen Höhenstufe (< 4700 m) eine relativ weite Verbreitung im Damxung-Becken aufweisen (Abb. 13).

Abb. 13: Fundorte flügelloser Laufkäfer-Endemiten des Damxung-Beckens mit Hauptverbreitung in der subalpinen Stufe (< 4700 m). Für alle diese Arten sind Vorkommen aus mehreren Seitentalsystemen bekannt, und die meisten besiedeln die Bergflanken an beiden Seiten des Haupttales (Ergebnisse der Feldkampagnen 2007+2010, unveröffentlicht. Kartenausschnitt wie in Abb. 9).

Im Gegensatz dazu sind die Trechus-Taxa dieses Gebietes, die ausschließlich in der alpinen Stufe vorkommen, in jedem Fall Lokalendemiten (Publikation I, Abb. 14). Ihr Verbreitungsgebiet umfasst selten mehr als ein Seitentalsystem des Nyainqentanglha Shan bzw. Gangdise Shan. Areale, die beide Seiten des Hauptales einnehmen, kommen bei Trechus gar nicht vor. Bei diesen Taxa kann somit davon ausgegangen werden, dass die untere Grenze des jeweiligen Vertikalareals den Talboden auch im LGM nicht erreicht hat. Im Abschnitt 2.1 konnte bereits gezeigt werden, dass sich die alpine Zone im LGM an den eisfrei gebliebenen Bergflanken noch etwas hangaufwärts erstreckte. Hier müssen die Refugien der lokalendemischen Trechus gelegen haben (Abb. 9 und 14). 30

Abb. 14: Lage der Areale lokalendemischer Trechus-Taxa am westlichen Nyainqentanglha Shan (weiße Punktlinien, basierend auf Publikation I und Ergebnissen der Feldkampagne 2010). In den mittels schwarzen Punktlinien umgrenzten unteren Bereichen der Seitentalsysteme werden die jeweiligen LGM-Refugien vermutet. Die Höhenangaben kennzeichnen den jeweils tiefsten Punkt dieser Refugien. Tiefer lagen die Trechus-LGM- Areale sicher nicht, da es sonst zur Vermischung der Faunen verschiedener Gebirgsabschnitte gekommen wäre. Die Höhendifferenz zwischen der Untergrenze der heutigen Vertikalverbreitung jeder Art und dem tiefsten Punkt ihres potentiellen LGM-Refugiums liefert die Grundlage für die Berechnung der LGM-ΔT in Publikation II. Kartenausschnitt wie in Abb. 9 und 13.

Diese biogeographischen Befunde und die berechtigte Annahme einer direkten Abhängigkeit der artspezifischen vertikalen Arealgrenzen von der Julitemperatur (vgl. Lindroth 1949, Coope 1986, Atkinson et al. 1987) ermöglichen die Berechnung der regionalen Sommer- LGM-ΔT (Publikation II). Die Höhendifferenz zwischen der Untergrenze des rezenten Vertikalareals jeder lokalendemischen Trechus-Art und dem tiefsten Punkt im Bereich ihres potentiellen LGM-Refugiums bildet den Grenzwert ihrer maximal möglichen kaltzeitlichen Arealverschiebung (Tabelle 1). Es ergeben sich Werte von 450-800 m maximaler Arealverschiebung für die Trechus-Arten des westlichen Nyainqentanglha Shan. Bei einem im betrachteten Untersuchungsraum relevanten Gefälle der Juli-Temperatur von 0,55K/100 m (Giddings 1980) bis 0,69K/100 m (Du et al. 2007) entspricht dies einer LGM-ΔT von 2,5- 5,5K. Beim Vergleich der Daten in Tabelle 1 fällt jedoch auf, dass nur bei drei von 19 lokalendemischen Taxa eine vertikale Arealverschiebung von über 650 m erforderlich ist, damit deren untere Arealgrenze den Boden des Haupttals erreicht. Bei allen anderen Arten hätte eine derart starke Arealabsenkung eine horizontale Arealerweiterung im Damxung- Becken ermöglicht, da deren untere Arealgrenze theoretisch unterhalb des Haupttalbodens gelegen hätte. Da jedoch nur Lokalendemismus nachgewiesen werden konnte muss davon ausgegangen werden, dass die oben erwähnten drei Arten den Talboden auch im LGM nicht erreichten, sondern die darüber liegenden, eisfreien Flanken besiedelten. Damit sind sie für die Berechnung der LGM-ΔT nicht geeignet. 31

Tabelle 1: Berechnung der maximal möglichen Arealverschiebung lokalendemischer Trechus-Taxa an der Südabdachung des westlichen Nyainqentanglha Shan und Ableitung der LGM-ΔT bei einem Gefälle der Juli- Temperatur (lr) von 0,55K/100 m (Giddings 1980) und 0,69K/100 m (Du et al. 2007). Die durch Schattierung markierten Taxa liefern unrealistisch hohe LGM-ΔT-Werte (in Klammern); die Untergrenze ihres Vertikalareals lag sicher auch im LGM deutlich oberhalb des Talbodens (Begründung siehe Text). Alle Angaben aus Publikation II.

Lokalendemisches Vertikale Höhe des Haupttals im Maximal mögliche ΔT [K] ΔT [K] Trechus Taxon Arealgrenzen Bereich des LGM- Arealverschiebung (lr = 0.55K) (lr = 0.69K) [mNN]a) Refugiums [mNN] [m] T. astrophilus 5100-5600 4300 800 (4,4) (5,5) T. bastropi 5000-5350 4500 500 2,8 3,4 T. budhaensis 5000-5400 4300 700 (3,8) (4,8) T. folwarcznyi 5000-5450 4500 500 2,8 3,4 T. rarus 5000-5200 4500 500 2,8 3,4 T. religiosus 5100-5500 4600 500 2,8 3,4 T. solhoeyi 4800-5100 4300 500 2,8 3,4 T. yak shogulaensis 5000-5400 4500 500 2,8 3,4 T. yak subspec. nov. 5000-5300 4500 500 2,8 3,4 T. yak yak 5000-5300 4300 700 (3,8) (4,8) T. yeti 5100-5300 4500 600 3,3 4,1 Trechus spec. nov. 1 4900-5350 4450 450 2,5 3,1 Trechus spec. nov. 2 5000-5350 4450 550 3,0 3,8 Trechus spec. nov. 3 4950-5400 4350 600 3,3 4,1 Trechus spec. nov. 4 4950-5350 4300 650 3,6 4,5 Trechus spec. nov. 5 5000-5500 4500 500 2,8 3,4 Trechus spec. nov. 6 4950-5400 4500 450 2,5 3,1 Trechus spec. nov. 7 5000-5300 4500 500 2,8 3,4 Trechus spec. nov. 8 4950-5100 4300 650 3,6 4,5 a) In Anpassung an die im Gelände erreichbare Genauigkeit sind die ermittelten Werte der oberen Arealgrenze in 50 m-Schritten aufgerundet, der unteren Arealgrenze in 50 m-Schritten abgerundet.

Bei 16 von 19 Taxa wäre eine maximale Arealverschiebung von 450-650 m bis zum Boden des Damxung-Beckens im Bereich des jeweils besiedelten Seitentalsystems möglich, wobei der Mittelwert unter Berücksichtigung der in 2007 und 2010 kartierten Verbreitungsdaten bei 530 m liegt. Daraus leitet sich eine Juli-LGM-ΔT von 2,9K (2,5-3,6) bei einem Temperaturgefälle von 0,55K/100 m (Giddings 1980) und von 3,6K (3,1-4,5) bei einem Temperaturgefälle von 0,69K/100 m (Du et al. 2007) ab. Es lässt sich daraus schließen, dass die tatsächliche Juli-LGM-ΔT zwischen 3K und 4K lag.

Mit diesen Berechnungen kann die bislang aus der Literatur zur Verfügung stehende Spanne von 0-6K für die sommerliche LGM-ΔT in Südtibet auf einen sehr engen Bereich eingegrenzt werden. Außerdem können zwei Sachverhalte hervorgehoben werden, welche die besondere Eignung dieses neuen Proxy der Paläoumweltforschung nahe legen: Zum einen existieren keine Probleme hinsichtlich der Datierung der Laufkäferbefunde. Die hier präsentierten Daten beziehen sich zwangsläufig auf den tiefsten während der letzten Vereisung erreichten Temperaturpunkt im jeweiligen Refugialgebiet. Zum anderen können 32 die Befunde mittels weiterer biogeographischer Erkundungen verifiziert und konkretisiert werden. Es kann als sicher angenommen werden, dass in Zukunft zahlreiche weitere endemische Laufkäfervorkommen in Zentral- und Südtibet entdeckt werden. Dabei muss die Molekulargenetik eine stärkere Rolle einnehmen da sie in der Lage ist, morphologisch identische aber genetisch distinkte Haplotypen verschiedener Seitentalsysteme oder Bergflanken als lokale Endemiten zu identifizieren. Somit erscheint nicht nur die weitere Eingrenzung der Spanne um den tatsächlichen Wert der lokalen Juli-LGM-ΔT sondern auch eine Laufkäfer-basierte Kartierung der Temperaturabsenkung für alle Gebiete Hochasiens realistisch, in denen Mikroareal-Endemismus nachgewiesen werden kann. Das betrifft praktisch alle Bereiche des Himalaya-Tibet Orogens, die keiner Tabula rasa während des LGM unterlagen. Die in Tabelle 1 präsentierten Werte für das Damxung-Becken zeigen aber auch, dass eine weitere Annäherung der Laufkäfer-basierten Berechnung an die tatsächliche regionale Juli-LGM-ΔT zukünftig nicht nur von einer Verdichtung der biogeographischen Datenlage abhängt, sondern insbesondere von der Verwendung eines besser abgesicherten Wertes für das regionale Temperaturgefälle entlang der Bergflanken. Somit wäre es von erheblichem Vorteil, wenn die biogeographischen Analysen mit mikroklimatischen Standorterkundungen in repräsentativen Gebieten ergänzt werden könnten.

Die Belastbarkeit der in Tabelle 1 und in Publikation II präsentierten Ergebnisse lässt sich mit ähnlichen biogeographischen Methoden mindestens für den Bereich der Obergrenze der errechneten Juli-LGM-ΔT bereits heute relativ einfach überprüfen. Ein geeigneter Indikator ist die Obergrenze des Vertikalareals solcher Endemiten, die nicht bis in die hochalpinen Frostschuttböden hinauf vorkommen. Es zeigt sich, dass Werte von deutlich über 4K Juli- LGM-ΔT schon deshalb ausgeschlossen sind, weil eine solche Temperaturabsenkung mindestens zur Auslöschung der Vorkommen von zwei am Nyainqentanglha Shan nördlich von Yangpachem lokalendemischen Laufkäferarten geführt hätte. Es handelt sich dabei um Trechus solhoeyi und ihre allopatrische Schwesterart Trechus spec. nov. 8 (vgl. Tabelle 1 und Abb. 14). Beide Arten haben die Obergrenze ihrer Vertikalverbreitung bei 5100 m, wobei der Talboden bei 4300 m liegt. Die heutigen Vorkommen beweisen, dass die LGM- Arealabsenkung niemals 800 m erreicht haben kann. Ein solcher Wert würde sich aus der vertikalen Lage des Areals der stenök hochalpinen Art Trechus astrophilus ergeben (Tabelle 1), was einer Juli-LGM-ΔT von 4,4-5,5K entspräche. Eine derart hohe Temperaturabsenkung wurde bereits unter Verwendung der Untergrenze des artspezifischen Laufkäfer- Vertikalareals als unrealistisch identifiziert (siehe oben).

Methodentest mittels lokaler Wacholder-Haplotypen

Eine weitere Möglichkeit zur kritischen Überprüfung der Ergebnisse bot sich durch die Entdeckung von Wacholder-Waldrefugien im Einzugsgebiet des Yarlung Zhangbo auf Basis 33 molekulargenetischer Untersuchungen im Juniperus tibetica-Hybridkomplex (Opgenoorth et al. 2010). Mit dem Nachweis lokalendemischer Haplotypen des Tibetischen Wacholders stand neben den ausschließlich alpin lebenden Trechus-Arten ein weiterer Bioindikator für die Ableitung der regionalen LGM-Temperaturabsenkung zur Verfügung. Zur Ermittlung der maximal möglichen Arealverschiebung bis zum lokalen Talboden verwendeten wir in Publikation II die Obergrenze der rezenten Juniperus-Vorkommen, da diese als Temperaturgrenze eindeutig identifiziert wurde (Ellenberg 1986, Körner 2003). Die Obergrenze der Juniperus-Funde liegt in Südtibet zwischen 4620 und 4850 m, also im Durchschnitt nur wenig tiefer als die Untergrenze der Vorkommen edaphischer Trechus- Endemiten. Auf Basis der lokalen Juniperus-Haplotypen errechnete sich eine Spanne der Juli-LGM-ΔT von 2,6-7,6K (Publikation II). Dabei sind die ermittelten Höchstwerte aber nicht interessant, da Juniperus in den weiter hinab reichenden Tälern sehr sicher auch im LGM eine Höhenverbreitung von mehreren Hundert Metern besessen hat. Hinweise auf die tatsächliche LGM-ΔT sollten sich deshalb von jenen Populationen ergeben, die während des LGM aufgrund der geographischen Situation (hoch gelegene Täler) vermutlich auf ein sehr kleines Höhenareal am Temperaturlimit von Juniperus zusammengepresst wurden. Leider liegen uns bisher nur Daten von drei solchen besonders geeigneten Juniperus-Populationen vor. Auf dieser Grundlage konnte eine Juli-LGM-ΔT von 2,6-4,1K ermittelt werden. Diese Wertespanne stützt die aus den Trechus-Daten geschlussfolgerten 3-4K auffallend gut.

Weitere Schlussfolgerungen zur LGM-Umwelt Süd- und Zentraltibets

Da die überwiegende Zahl der Einzelbefunde der Trechus-Laufkäfer am westlichen Nyainqentanglha Shan eine LGM-Höhenstufenabsenkung von ca. 500 m bzw. eine Juli- LGM-ΔT von ca. 3K anzeigt besteht der Verdacht, dass der Boden des Damxung-Beckens südwestlich der Ortschaft Damxung am Durchbruch des oberen Kyi Chu durch den Gangdise Shan (Lokalität siehe Abb. 8) in der subalpinen Stufe lag. Tatsächlich gibt es bereits Nachweise von Laufkäferarten mit Hauptverbreitung in der Subalpinstufe, die vermutlich Endemiten des Damxung-Beckens sind (Beispiele in Abb. 13). Zur Absicherung dieser Befunde sind sowohl weitere Kartierungen im Gebiet des Gangdise Shan als auch molekulargenetisch basierte phylogeographische Analysen in verschiedenen Laufkäfer- Artengruppen notwendig. Sollte sich der Verdacht erhärten, wäre an wärmebegünstigten Standorten in den tiefsten Lagen des Damxung-Beckens (4200-4300 mNN) das Vorkommen von Juniperus tibetica-Wald während des LGM denkbar, da rezente Vorkommen dieser Baumart in Südtibet bis 4900 mNN gefunden wurden (Miehe et al. 2007). Vielleicht ist der heute noch vorhandene Wacholderwald-Restbestand bei Nindung Xhang südwestlich von Damxung (Miehe et al. 2008) ein Relikt dieses Waldrefugiums. Juniperus ist in Pollenanalysen aus diesem Gebiet bereits in Ablagerungen von 13.000 Jahren vor heute 34 stark vertreten (Miehe et al. 2009), wobei aber noch nicht sicher ist, ob es sich dabei tatsächlich um J. tibetica handelt (mündliche Mitteilung G. Miehe, 2011).

Interessante Schlussfolgerungen lassen sich aus den präsentierten LGM-ΔT-Werten auch für die eiszeitliche Besiedlung Zentraltibets ableiten. Da kälteadaptierte Trechus-Laufkäfer alpine Frostschuttböden bis in Höhen zwischen 5400 und 5600 mNN besiedeln sobald hinreichende Reliefstabilität und Bodenfeuchte vorhanden sind (Publikation I), würde eine Juli-LGM-ΔT unter 4K bzw. eine LGM-Höhenstufenabsenkung von unter 600 m die eiszeitliche Überdauerung dieser Tiere auch an der Nordabdachung des Nyainqentanglha Shan zum See Namtso ermöglicht haben, dessen Seespiegel heute bei etwa 4720 mNN liegt. Es gibt keine Hinweise auf eine deutlich tiefere LGM-Seespiegelhöhe, und die höchsten Seeterrassen, die auf das Spätglazial datiert werden, liegen nur 30 m über dem aktuellen Seespiegel (Lehmkuhl et al. 2002). Der Hangfuß an der Nordflanke des Nyainqentanglha Shan hatte im LGM also eine vergleichbare Höhe zu heute. Die Entdeckung von zwei edaphischen Trechus-Arten unmittelbar nördlich des Nyainqentanglha Feng während der Feldkampagne 2010 erhärtet den Verdacht von LGM-Refugien oberhalb des Sees (Abb. 15, siehe auch Abb. 8: Taxa 24 und 34). Eine intensivere Erkundung der Südflanke dieses Gebirgsabschnittes muss jedoch noch den vermuteten Lokalendemismus der beiden Arten an der Nordflanke bestätigen. Im Falle eines positiven Befundes ist das Tabula rasa- Szenario auch für Zentraltibet zurückzuweisen, welches sich nicht nur aus der Eisschildhypothese Kuhles (1982-2010) ergeben würde, sondern das auch aus einer Juli- LGM-ΔT von deutlich über 4K abgeleitet werden muss (z.B. Böhner & Lehmkuhl 2005).

Abb. 15: Blick von der Halbinsel Namtso nach Süden auf die Nordabdachung des Nyainqentanglha Shan. Die Pfeile verweisen auf zwei Bergketten, welche ein Seitental einrahmen. Im obersten Talabschnitt ab 5000 mNN sowie auf den Kämmen bis in 5450 m Höhe wurden während der Expedition im Sommer 2010 die Vorkommen von zwei Trechus-Arten entdeckt, die vermutlich endemisch in diesem Gebirgsabschnitt sind. Ihre LGM-Refugien müssten dann oberhalb von 4700 m in der Nähe des Seeufers gelegenen haben. Sollte sich der Verdacht erhärten, kann die Juli-LGM-ΔT auch in diesem Teil Zentraltibets nicht über 4K betragen haben. 35

2.3 Endemische Entwicklungslinien der Laufkäfer im Himalaya-Tibet Orogen: Vielversprechende Indikatoren der tertiären Umweltgeschichte Tibets

Vorbetrachtungen

Der Beginn der Himalaya-Tibet-Orogenese vor 40-50 Millionen Jahren als Resultat der vor 50-70 Millionen Jahren einsetzenden Kollision und Subduktion der Indischen Kontinentalplatte mit der Asiatischen Platte ist weitgehend akzeptiert (Harrison et al. 1992, Yin & Harrison 2000, Royden et al. 2008). Die Existenz mehrerer tektonischer Einheiten am Südrand der Asiatischen Platte macht die Gliederung des Orogens jedoch außerordentlich kompliziert (Abb. 16).

Abb. 16: Rekonstruktion der tektonischen Haupteinheiten Tibets und Indochinas seit der Kollision der Indischen mit der Asiatischen Kontinentalplatte vor ca. 50 Millionen Jahren. Die gelbe Fläche schließt den Gangdise Shan und Nyainqentanglha Shan in Südtibet ein, die blaue Fläche wird im Süden vom Tanggula Shan, im Norden vom Kunlun Shan begrenzt. Die rote Linie zeigt die vermutete Lage der Subduktionslinien an (aus Royden et al. 2008).

Der für die Geologie bedeutsame Zeitpunkt des Beginns der Orogenese ist für die Biogeographie und Paläoklimatologie Hochasiens erst dann interessant, wenn er in einer signifikanten Erhebung resultiert. Für die Rekonstruktion der Umweltgeschichte des Himalaya-Tibet Orogens sind dabei Kenntnisse über Zeitpunkt, Intensität und Abfolge der Heraushebung der einzelnen Teile des Gebirgssystems grundlegend. Erst daraus lässt sich eine generelle Vorstellung über das Alter und die geographische Verteilung von Lebensräumen der hochmontanen, alpinen und nivalen Höhenstufen in den verschiedenen Entwicklungsphasen des Gebirgssystems entwickeln. Das Problem eines bestehenden Kenntnisdefizits zeigt sich besonders anschaulich am Südrand des Tibetischen Plateaus: Der Gebirgskamm des Hohen Himalaya staut die mit dem südasiatischen Monsun in den Sommermonaten vom Indischen Ozean anströmenden, wassergesättigten Luftmassen und verursacht die Ausbildung eines extremen Niederschlagsgradienten von der außerordentlich regenreichen Südabdachung des Orogens in das wüstenhafte Innere Hochasiens (Hodges 2007, Abb. 17). Hieraus ergibt sich eine fundamentale, aber bis heute nicht zufriedenstellend gelöste Frage von entscheidender umweltgeschichtlicher bzw. biogeographischer Relevanz: Seit wann ist das so? 36

Abb. 17: Feuchte Luftmassen strömen im Sommer vom Indischen Ozean auf den Subkontinent, wobei ein Teil über den Golf von Bengalen zieht und weitere Feuchtigkeit aufnimmt (Pfeile). Sie werden vor dem Himalaya gestaut und regnen dort ab. Nur ein geringer Teil dringt ins Innere Hochasiens. Die Klimadiagramme von Lumla (Himalaya-Südabdachung in Zentral-Nepal) und von Mustang (Innerer Himalaya, nur ca. 80 km N Lumla) veranschaulichen die abschirmende Wirkung des Hohen Himalaya und die daraus erwachsenden enormen Klimagegensätze (nach Hodges 2007, Klimadiagramme aus Miehe et al. 2000).

Die Beantwortung dieser Frage ist nicht nur schwer, weil der Beginn des südasiatischen Monsuns unsicher ist und die Ursachen des Klimaphänomens und der Grad der Beeinflussung durch die Anhebung des Tibetischen Plateaus umstritten sind (vgl. Molnar & England 1990, Molnar 2005, Harris 2006, Molnar et al. 2010), sondern insbesondere auch deshalb, weil Unklarheit über die Abfolge der Heraushebung der einzelnen Gebirge am Südrand des Plateaus (Hoher Himalaya, Tethys-Himalaya, Transhimalaya) untereinander und im Bezug auf die zentralen und östlichen Teile des Himalaya-Tibet Orogens besteht. Somit ist fraglich, ob überhaupt und wenn ja, wann und wie weit die feuchten Luftmassen des südasiatischen Monsuns die Inneren Teile des Gebirgssystems in einer früheren Entwicklungsphase des Orogens erreicht haben.

Die geologischen und paläontologischen Befunde

Um sich den oben genannten Problemen anzunähern, müsste zunächst geklärt sein, welche Teile des Himalaya-Tibet Orogens zuerst in signifikante Höhen gehoben wurden. Hierzu gibt es bis in die jüngste geowissenschaftliche Literatur recht widersprüchliche Aussagen. Murphy et al. (1997, tektonische Studien) und Leier et al. (2007, sedimentologische 37

Untersuchungen) vermuten, dass bereits vor der Indo-Asiatischen Plattenkollision ein hoch aufragendes südtibetisches Randgebirge existierte (ca. 3000 m, Murphy et al. 1997). Fossilfunde (Spicer et al. 2003) und δ18O-Analyseergebnisse von Karbonatsedimenten (Garzione et al. 2000, Rowley et al. 2001, Currie et al. 2005, Saylor et al. 2009) suggerieren eine primäre Hebungsphase im Gebiet des Transhimalaya und Tethys-Himalaya, wobei eine Höhe über 4000 m im frühen Oberen Miozän bzw. im frühen Mittleren Miozän erreicht war. Dies wird durch verschiedene geologische Befunde gestützt (Harrison et al. 1992, Coleman & Hodges 1995, Hodges 1998, Blisniuk et al. 2001, Rowley et al. 2001).

Inzwischen existieren Ergebnisse von δ18O-Sedimentanalysen in zentraltibetischen Becken, die auf ein erheblich höheres Alter hoch aufragender Gebirge (> 4000 m) nördlich des Transhimalaya verweisen (Rowley & Currie, 2006: Lunpola Basin, 35+/-5 Mill. Jahre; DeCelles et al. 2007: Nima Basin, 26 Mill. Jahre). Basierend auf umfangreichen geologischen Befunden (Känozoische Deformationen, Magnetismus, Seismotektonik) nehmen Tapponnier et al. (2001) eine schrittweise Anhebung des Plateaus ausgehend von einem Eozänen Süd- und Zentraltibet an (nördlich bis zum Tanggula Shan), während die nördlich anschließenden Teile bis zum Kunlun Shan eine oligozän-miozäne Anhebung, und die Gebirge von Gansu erst eine pliozän-quartäre Anhebung erfuhren. Dieses Scenario ist konform mit den oben genannten Fossil- und Sedimentbefunden und wird auch durch δ18O- Sedimentanalysen am Fenghuoshan nördlich des Tanggula Shan gestützt (Lokalität siehe Abb. 19), die in diesem Gebiet für die Oligozän-Eozän-Grenze auf eine Erhebung von nur 1000-3000 m schließen lassen (Cyr et al. 2005).

Zu ähnlichen, aber in einigen wichtigen Details abweichenden Ergebnissen kommen die umfassenden geologischen Untersuchungen von Wang et al. (2008) in Zentraltibet. Diese Autoren postulieren ein „proto-Tibetan Plateau“, welches bereits im Oberen Eozän bis 5000 m aufragte und sich vom Gangdise Shan bis zum Tanggula Shan erstreckte (Abb. 18). Nach diesem Modell besaßen die Gebirge von Gansu (Qilian Shan) eine mittlere Höhe (ca. 3000 m) bereits im Unteren Miozän, während der Tethys-Himalaya und der Hohe Himalaya erst danach gemeinsam angehoben wurden, wobei aber unklar bleibt, ob dies bereits im Mittleren Miozän oder erst im Pliozän-Quartär geschah. Letzteres wird auf Basis von Kohlenstoff-Isotopenanalysen aus Zahnschmelz fossiler Huftiere angenommen, welche im Gyirong Becken im Tibetischen Himalaya gefunden wurden und aus ca. 7 Millionen Jahre alten Schichten stammen (Wang et al. 2006). Die Autoren fanden Hinweise, dass ein Großteil der Nahrung dieser Herbivoren aus C4-Gräsern bestand. Das Klima soll deshalb im ausgehenden Miozän Südtibets noch deutlich wärmer und die Erhebung dieses Teils des Orogens wesentlich geringer gewesen sein als heute. Interessant ist in diesem Zusammenhang, dass die bereits oben zitierten δ18O-Analysen von Karbonaten in Sedimenten und Fossilien durch Rowley et al. (2001), die aus dem selben Becken stammen, 38 letztere Autoren dazu veranlassen, eine Mindesthöhe des Tibetischen Himalaya von 5000 m bereits vor ca. 8 Millionen Jahren anzunehmen. Wang et al. (2006) erwähnen diese früheren Befunde nicht. Bereits Fort (1996) diskutierte ausführlich die Ergebnisse chinesischer Autoren (z.B. Chen 1981, Wang et al. 1981, Xu 1981), die erhebliche quartäre Hebungen des Himalaya auf der Basis von Fossilbefunden postulierten und lehnte diese ab.

Abb. 18: Orogenese des Tibetischen Plateaus und der Randgebirge nach Wang et al. (2008). Ein bis 5000 m aufragendes „proto-Tibetan Plateau“ erstreckte sich danach bereits im Oberen Eozän vom Gangdise Shan bis zum Tanggula Shan. Die Heraushebung des Himalaya inklusive des Tibetischen Himalaya erfolgte nach diesem Modell erst nach dem Mittleren Miozän.

Abb. 19: Zeitliche Abfolge der Himalaya-Tibet-Orogenese nach Mulch & Chamberlain (2006). Mit verschiedenen Farben wurden die Bereiche des Gebirgssystems umrahmt, die ihre aktuelle Höhe etwa zum jeweils angegebenen Zeitpunkt erreichten. Der Transhimalaya und der Tibetische Himalaya bilden nach diesem Modell die ältesten Teile des Orogens. 39

Mulch & Chamberlain (2006) fassten die Befunde ausgewählter Fossil- und Sedimentanalysen zusammen und präsentieren eine Karte, welche die Hebungsgeschichte des Himalaya-Tibet Orogens ähnlich den geologischen Ergebnissen von Tapponnier et al. (2001) widergibt (Abb. 19). Ein wesentlicher Unterschied zu den Ergebnissen von Wang et al. (2006) und Wang et al. (2008) besteht darin, dass für Südtibet mit dem Transhimalaya und dem Tibetischen Himalaya ein höheres (Eozänes) Alter postuliert wird als für Zentraltibet. Dies kann aus den oben zitierten und von Mulch & Chamberlain (2006) herangezogenen Arbeiten von Garzione et al. (2000), Rowley et al. (2001) und Saylor et al. (2009) aber nicht unmittelbar abgeleitet werden. Hinzu kommt, dass im Gegensatz zu den Resultaten von Wang et al. (2008) für die Gebirge der chinesischen Provinz Gansu im Nordosten des Plateaus eine Anhebung erst im Pliozän-Quartär angenommen wird. Mulch & Chamberlain (2006) beziehen sich in dieser Darstellung ohne weitere Nennung von konkreten Daten auf D.B. Rowley.

Hinsichtlich der Hebungsdynamik im Nordosten des Plateaus deuten neue sedimentologische Untersuchungen inklusive Pollenanalysen inzwischen darauf hin, dass hier eine bedeutende Erhebung bereits am Ende des Oligozäns erreicht war (Dai et al. 2006, Dupont-Nivet et al. 2007, 2008a, b). Darüber hinaus sollen Teile des Altyn Tagh Gebirges am Nordrand des Plateaus schon lange vor der Indo-Asiatischen Kollision Gebirgscharakter besessen haben (Robinson et al. 2003). Diese biogeographisch potentiell bedeutsamen Befunde finden sich in den Modellen von Wang et al. (2008, Abb. 14) und Mulch & Chamberlain (2006, Abb. 19) nicht wieder. Im Resultat einer neueren sedimentologischen Analyse von 92 Tertiär-Tibetischen Beckenüberresten gelangen Zhang et al. (2008) zu den Schlussfolgerungen, dass der Nordosten des Plateaus bereits in der späten Kreide gebirgig war, während Westtibet einer Depression unterlag, und dass eine weitere, lokale Hebung von östlichen Teilen des Plateaus im Verlaufe des Paleozäns-Eozäns erfolgte. Gangdise Shan, Himalaya, Karakorum und Kunlun Shan wurden erst im Verlaufe des Miozäns- Pliozäns signifikant herausgehoben. Dieses Szenario der Himalaya-Tibet Orogenese steht im starken Kontrast zu beiden oben genannten Modellen.

Hinsichtlich des Nord- und Nordwestrandes des Plateaus kommen andere Autoren aufgrund sedimentologischer Untersuchungen zu dem Schluss, dass hier die finale Heraushebung im Unteren Pliozän (Zheng et al. 2000: westlicher Kunlun Shan, ca. 4,5 Mill. Jahre) bzw. im Oberen Pliozän (Wang et al. 2008: zentraler Kunlun Shan, 2-3 Mill. Jahre) erfolgte.

In einigen Arbeiten wird aber auch die Auffassung vertreten, dass nicht nur einige Randgebirge des Himalaya-Tibet Orogens erst im späten Känozoikum aufgefaltet wurden, sondern das Plateau als Ganzes erst nach dem Miozän einer bedeutenden Hebung unterlag. Auf Basis von Fossilfunden in Terrassen des Gelben Flusses in der Region Lanzhou, NE- Tibet, schlussfolgerte Li (1991) eine dreiphasige Anhebung des Plateaus, die vor 2 Millionen 40

Jahren begonnen haben soll und vor 150.000 Jahren in ihre finale Phase trat. Sauerstoff- und Kohlenstoff-Isotopenanalysen im Zahnschmelz fossiler Herbivoren aus Lagerstätten im Linxia Becken, Nordost-Tibet, führten Wang & Deng (2005) zu einem ähnlichen Ergebnis (Plateauhebung < 2-3 Mill. Jahre). Damit übereinstimmend kommen Cui et al. (1997) beim Studium der Lage von Verebnungsflächen zum Schluss, dass Zentraltibet im Miozän eine maximale Erhebung von 1000-1500 m im Bereich Gangdise Shan und Tanggula Shan aufwies. Hier soll sich eine tropische Savanne erstreckt haben, die zum Südrand das Himalaya-Tibet Orogens abfiel. Die wohl extremste Ansicht wird in der jüngeren Literatur von Zhang et al. (2000) vertreten. Diese Autoren berufen sich auf Befunde chinesischer Geologen und geben einen Wert für die quartäre Heraushebung des Plateaus von mehr als 3000 m an, wobei 300-700 m Anhebung allein auf die letzten 10.000 Jahre fallen. Der Beginn des ostasiatischen Monsuns wird im frühen Pleistozän postuliert, als das Plateau eine Höhe von ca. 2000 m erreicht haben soll. Auf dieser Grundlage modellieren die genannten Autoren eine Paläoumwelt mit subtropischen Verhältnissen in den Interglazialen für weite Teile des Tibetischen Plateaus.

Besonders rar sind konkrete Aussagen, wann der Hohe Himalaya seine aktuelle Höhe erreicht haben könnte und wie sich seine Anhebung relativ zum Tibetischen Himalaya und zum Transhimalaya gestaltete. Wie oben bereits ausgeführt, sind nach Wang et al. (2008) der Hohe Himalaya und der Tethys-Himalaya in einer finalen Entwicklungsphase des Himalaya-Tibet Orogens nach dem unteren Miozän gemeinsam und lange nach dem „proto- Tibetan Plateau“, welches den Transhimalaya einschließt, aufgefaltet worden (Abb. 18). Dagegen zeigt das Modell von Mulch & Chamberlain (2006) eine gemeinsame Anhebung von Tethys-Himalaya und Transhimalaya in einer primären Hebungsphase des Plateaus, von dem der Hohe Himalaya scheinbar ausgenommen ist (Abb. 19). Einige chinesische Autoren lieferten Befunde für eine signifikante Heraushebung des Himalaya erst nach dem späten Pliozän (Chen 1981, Wang et al. 1981, Xu 1981). Diese Arbeiten werden durch Fort (1996) kritisch diskutiert. Fort (1996) lieferte außerdem Indizien, dass der Hohe Himalaya einer stärkeren Anhebung unterliegt, als der nördlich angrenzende Tibetische Himalaya, und dass letzterer durch diesen Prozess deformiert wurde und wird. Dies könnte ein Hinweis darauf sein, dass die Heraushebung beider Teile des Gebirgssystems im Unterschied zur Auffassung von Wang et al. (2008) differenziert erfolgte, und dass zumindest die terminale Hebung des Hohen Himalaya später erfolgte, als die des Tethys-Himalaya.

Mehr als Spekulation lassen alle bisher vorliegenden Befunde zu diesem Thema nicht zu. Mulch & Chamberlain (2006) fassten das Problem mit folgenden Worten zusammen: „The elevation history of Everest and the High Himalayan peaks has yet to be unravelled“. Die vorgehende Zusammenschau neuerer geologischer Literatur zeigt aber auch, dass diese Aussage mit Hinblick auf die aktuellen Möglichkeiten zur Rekonstruktion von 41

Paläoumweltszenarien wohl für ganz Hochasien gilt. Deshalb müssen Klimamodelle, wie sie für verschiedene Hebungsphasen des Himalaya-Tibet Orogens entwickelt wurden (Abe et al. 2005), ebenfalls als hochgradig spekulativ angesehen werden.

Biogeographische Befunde der Laufkäferuntersuchungen

Oberkreide-Paläozän

Die Möglichkeiten zur Rekonstruktion der Laufkäferfauna im Gebiet des heutigen Hochasiens vor dem Beginn der Heraushebung des Himalaya-Tibet Orogens sind nicht nur limitiert weil keine Fossilfunde existieren, sondern auch deshalb, weil die Stammesgeschichte der Familie Carabidae erst in groben Zügen bekannt ist und gerade in der mehr basalen Cladogenese viele Fragen offen lässt. Einige grundlegende Aussagen sind aber durch den Vergleich mit Faunen anderer Regionen durchaus möglich.

Die Entstehung der Laufkäfergruppen, die heute in verschiedene Tribus oder Subtribus zusammengefasst werden, fällt nach modernen Auffassungen auf einen ca. 50 Millionen Jahre umfassenden Zeitraum von der Oberkreide bis in das Untere Eozän (Ober & Heider 2010). Regionen, die bereits in dieser Zeit über Landschaften mit hoher Reliefdynamik verfügten oder durch Gebirgsbildung eine solche entwickelten und die seitdem keinen dramatischen Umweltveränderungen unterlagen, waren prädestiniert für die Evolution formenreicher endemischer Linien auf supragenerischer taxonomischer Ebene. Reich an solchen phylogenetisch alten Linien, die aufgrund geringer Ausbreitungsfähigkeit der Arten keine wesentliche Arealerweiterung über ihr Entstehungszentrum hinaus erfuhren, sind Australien, Teile von Afrika, Südamerika und das südliche und westliche Nordamerika, Südindien und Südostasien. Wäre an den südlichen oder östlichen Rändern des heutigen Hochasiens bereits am Ende der Kreide oder zu Beginn des Paläogens ein Gebirge inmitten einer tropischen Landschaft entwickelt gewesen, wären phylogenetisch alte endemische Linien sicher auch heute im Gebiet vertreten. Dafür gibt es aber keine Belege.

Ein endemisches Taxon mit hohem phylogenetischen Alter, dessen Entstehung mit großer Wahrscheinlichkeit auf das Ende der Kreide datiert, ist Sinometrius und wurde erst kürzlich aus dem Guanmian Shan im Westen der chinesischen Provinz Hubei östlich des Tibetischen Plateaus beschrieben (Wrase & Schmidt 2006a, Abb. 20). Da dieses montane Taxon keine Verwandten an der mit ähnlichen Lebensräumen außerordentlich reich ausgestatteten Ostabdachung des Plateaus besitzt, kann geschlussfolgert werden, dass dort in der frühen Entwicklungsphase von Sinometrius noch kein Gebirge entwickelt war. Die Schwestergruppe (Metrius) lebt in den Kordilleren im Westen Nordamerikas (Wrase & Schmidt 2006a). Der Vorfahr der rezenten Art S. turnai war also mit Sicherheit eine ausbreitungsstarke Art, die in den alten Gebirgen Ostchinas ursprünglich weiter verbreitet gewesen sein muss. 42

Abb. 20: Verbreitung des Laufkäfer-Tribus Metriini mit den Schwestergruppen Metrius in den Nordamerikanischen Kordilleren und Sinometrius im Guanmian Shan in Zentral- (aus Wrase & Schmidt 2006a, verändert). Die Kladogenese dieser Gruppe geht mit großer Wahrscheinlichkeit auf das Ende der Kreidezeit zurück, bei welcher Metrius die aufsteigenden Kordilleren besiedelte. Zu diesem Zeitpunkt war das Tibetische Plateau (graue Fläche) sicher noch nicht gebirgig, da ansonsten Sinometrius auch heute an dessen Ostabdachung vorkommen dürfte.

Diese biogeographischen Befunde stehen im deutlichen Widerspruch zu den oben zitierten Ergebnissen der sedimentologischen Analysen von Zhang et al. (2008), nach denen der Nordosten des Plateaus bereits in der späten Kreide signifikant angehoben war. Insofern stimmen die Befunde mit den meisten anderen Hebungsmodellen der Geologen überein, da diese für den Ostteil des Plateaus eine wesentlich spätere (miozäne bis quartäre) Anhebung postulieren (z.B. Taponnier et al. 2001, Mulch & Chamberlain 2006, Wang et al. 2008).

Eine im Himalaya-Tibet Orogen endemische Laufkäfergruppe auf Subtribus-Ebene ist Sinozolus. Die Gattung ist außerdem der einzige Vertreter der Laufkäfer-Tribus Zolini in der nördlichen Hemisphäre (Deuve 1997). Sie wurde mit bisher fünf sehr nahe verwandten, allopatrisch verbreiteten Arten aus der oberen Montanstufe (2700-4100 m) von der Ostabdachung des Tibetischen Plateaus in den chinesischen Provinzen Sichuan und Gansu bekannt (Belousov & Kabak 2005). Die weiträumige Isolierung von allen anderen Vertretern der Tribus macht einen Reliktendemismus von Sinozolus sehr wahrscheinlich. Da völlig unklar ist, wann das ursprüngliche Areal der Tribus Zolini in der nördlichen Hemisphäre bis auf dieses Relikt zusammenschmolz und wo sich das Areal der (heute vermutlich ausgestorbenen) Schwestergruppe von Sinozolus befand, erwächst aus diesem Nachweis einer phylogenetisch alten Linie kein Hinweis auf ein hohes Alter des von ihr besiedelten Gebirges. Eine tertiäre Einwanderung aus den alten Berglandschaften Ostchinas in das 43 aufsteigende Osttibet ist viel wahrscheinlicher, als die Annahme einer seit dem Jura isolierten Entwicklung auf einer hypothetischen Tibetischen Platte nach deren Abriss von Gondwana (vgl. Deuve 1997). Das kleine Gesamtareal der Gattung Sinozolus, die geringe morphologische Differenzierung der Arten und deren streng allopatrische Verbreitung sind ein Indiz für relativ rezente Speziation nach Anpassung an den Hochgebirgslebensraum und infolge Separation durch geographische Vikarianz.

Es existiert eine große Zahl an endemischen Entwicklungslinien der Laufkäfer im Himalaya- Tibet Orogen, die teilweise monotypisch sind oder nur wenige rezente Arten aufweisen, vielfach aber eine enorme Zahl an Neoendemiten evolviert haben. Für keine dieser Gruppen kann ein Entwicklungszeitraum postuliert werden, der sicher zurück bis in das Paläozän oder sogar darüber hinaus reicht. Ihre Genese in späteren Epochen nach Einwanderung anzestraler Arten aus angrenzenden Regionen ist wahrscheinlicher, was in den folgenden Abschnitten begründet wird. Insgesamt macht die Fauna Hochasiens trotz ihres extrem hohen Endemitenanteils einen relativ „jungen“ Eindruck, weshalb sie immer auch nur als Übergangsgebiet zwischen der orientalischen und der paläarktischen Region bzw. als Einwanderungsgebiet betrachtet wurde (De Lattin 1967, Mani 1974b, Martens 1993). Für die Umweltgeschichte lässt sich daraus ableiten, dass im Gebiet des heutigen Hochasiens am Ende der Kreide und zu Beginn des Paläogens sicher keine ausgedehnten Gebirgsareale existierten. Dies gilt insbesondere für den Süd- und Ostrand des Plateaus (Tethys- und Hoher Himalaya, westchinesische Gebirge). Ob in dieser Zeit in den zentralen (Gangdise Shan, vgl. Murphy et al. 1997) und nördlichen Teilen des Plateaus (vgl. Leier et al. 2007) kleinere Gebiete gebirgig waren, ist anhand der vorliegenden biogeographischen Befunde nicht wahrscheinlich, lässt sich aber auch nicht sicher ausschließen. Diese Gebiete wären durch die nachfolgende Orogenese und den damit verbundenen regionalen Klimawandel mit dem Finale in trockenen, ausschließlich alpinen bis nivalen Lebensräumen extrem überformt worden, was zum Erlöschen früherer montaner Regionalfaunen geführt haben könnte.

Eozän-Oligozän

Erste Ergebnisse biogeographischer Untersuchungen an endemischen Laufkäfergruppen lassen für diese Epoche in naher Zukunft Beiträge mit konkreteren Aussagen zur Umweltgeschichte des Himalaya-Tibet Orogens erwarten, als das derzeit möglich ist. Die Methoden werden in einem laufenden DFG-Projekt (z.B. Publikation IV) und in geplanten Forschungsvorhaben erarbeitet. Dabei geht es vorrangig um die Erstellung von Phylogenien, die durch eine umfassende Materialbasis abgesichert sind, und um die Eichung der molekularen Uhr für sequenzbasierte Laufkäfer-Stammbäume. Derzeit bleibt fraglich, ob die Entstehung einiger im Himalaya-Tibet Orogen endemischer Entwicklungslinien der Laufkäfer bis in das Oligozän oder sogar bis in das Eozän reicht, oder doch nur bis in das Miozän. Die 44 vorläufigen morphologischen Befunde sprechen für ersteres und werden im Folgenden kurz diskutiert. Dabei beschränke ich mich weitgehend auf die Faunenanalyse am Südrand des Orogens (Himalaya), da hier die geographische Situation mit dem Fehlen älterer Gebirge in den unmittelbar angrenzenden Gebieten Indiens eindeutigere Ergebnisse liefert und die Datenbasis aufgrund der langjährigen eigenen Untersuchungen wesentlich besser ist als in anderen Teilen des Plateaus. Aus der Fülle der Einzelbefunde diskutiere ich aber nur die der Subtribus Calathina und des Ethira-clades der Gattung Pterostichus etwas ausführlicher.

Abb. 21: Verbreitung der vier endemischen Calathus-Artengruppen in Hochasien. Die Zahlen geben die im jeweiligen Teilareal vorkommende Anzahl der Arten an. Beachte das Disjunktareal der C. wittmerianus-Gruppe mit den Teilarealen in Kashmir und Westnepal und dem weiträumig isolierten C. martensi im oberen Aruntal von Ost-Nepal (nach Schmidt 1999 und neueren, unveröffentlichten Daten).

Das Areal der Subtribus Calathina beschränkt sich auf den westlichen Teil der Paläarktis sowie Nordamerika mit Mexiko. Die höchste Diversität an Arten und Artengruppen existiert im Gebiet des Mittelmeeres einschließlich der Kanarischen Inseln und Vorderasiens (Hovorka & Sciaky 2003, Ruiz et al. 2010). Die Subtribus ist mit vier endemischen Entwicklungslinien auch in den Bergnebelwäldern des Himalaya und in den alpinen Matten Südtibets vertreten (Abb. 21), aus Zentral- und Osttibet sind keine Arten bekannt (Schmidt 1999 und unveröffentlichte Daten, Fundmeldungen von Calathus-Arten aus China in Hovorka & Sciaky 2003 beziehen sich auf morphologisch ähnliche Arten aus der Subtribus Pristosiina). Die himalayanischen Artengruppen scheinen untereinander nicht näher verwandt zu sein als mit den mediterranen Artengruppen und sind deshalb vermutlich jeweils basale Abzweigungen in der Cladogenese der Calathina. Die Entwicklungsgeschichte der im Himalaya-Tibet Orogen endemischen Artengruppen muss in einem engen Zusammenhang mit der Heraushebung des Gebirgssystems und der Etablierung nicht-tropischer, meridional geprägter, mesophiler Waldgebiete stehen, da die Calathina ausschließlich die warm- temperierte (ursprünglich) bis boreale Zone (abgeleitet) besiedeln, in den Tropen fehlen und in den Subtropen nur hochmontan bis alpin leben. Somit dürfte das phylogenetische Alter dieser Artengruppen dem der Heraushebung am Südrand des Plateaus entsprechen. 45

Auf Grundlage einer Analyse der Sequenzdaten von drei mitochondrialen und vier nukleären Genen zahlreicher Arten der Calathina und verwandter Taxa (ohne himalayanisch-tibetische Gruppen) ermittelten Ruiz et al. (2009) den Ursprung der Calathina im Unteren Miozän. Dies ist mit Sicherheit falsch, denn im selben Jahr beschrieben Ortuño & Arillo (2009) Calathus elpis aus dem Baltischen Bernstein, womit für die Genese der Subtribus mehr als doppelt so viel Zeit zur Verfügung stand, als von Ruiz et al. (2009) angenommen. Unter Berücksichtigung der vermutlich basalen Position der himalayanisch-tibetischen Artengruppen in der Kladogenese der Calathina ist es folglich wahrscheinlich, dass sich diese bereits seit dem Eozän eigenständig evolvieren, weshalb im südlichen Himalaya-Tibet Orogen zu diesem Zeitpunkt bereits hochmontane Lebensräume mit mesophytischen Wäldern existiert haben können. Der Fund des Calathus im Baltischen Bernstein ermöglicht nun eine komplette Revision der molekularen Datenbefunde von Ruiz et al. (2009) und eine neue Eichung der molekularen Uhr der Calathina. Auf dieser Basis sollte sich bei Einbeziehung der himalayanisch-tibetischen Taxa in die Analysen eine weitaus konkretere Aussage über den Zeitpunkt der Hebung an der Südseite des Tibetischen Plateaus ergeben. Dies ist Inhalt eines Arbeitsprogrammes, welches sich derzeit in Vorbereitung befindet.

Weitere Anhaltspunkte zur Datierung der Gebirgshebung am Südrand des Tibetischen Plateaus liegen mit einer morphologischen (Schmidt 2006) und einer phylogeographischen Analyse (Publikation IV) des Ethira-clades aus der Laufkäfergattung Pterostichus vor. Diese Gruppe besiedelt mit etwa 80 Arten und Unterarten ausschließlich den Himalaya. Sehr sicher hat auch sie ihren Ursprung in den tertiären Waldarealen der warmtempierten Zone, da alle basalen Ethira-Artengruppen heute in der Unteren Nebelwaldstufe vorkommen (1800- 2500 m, zur Vegetationszonierung im Himalaya siehe Miehe 1991). Die morphologischen Untersuchungen und die molekulargenetische Analyse eines Sequenzabschnittes der 28S rDNA (Publikation IV) lassen unabhängig voneinander eine basale Position des Ethira- clades innerhalb der Gattung Pterostichus vermuten und verweisen auf eine lang anhaltende, eigenständige Entwicklung dieser Gruppe. Da Pterostichus-Arten ebenfalls bereits aus dem Baltischen Bernstein bekannt sind (Klebs 1910, Larsson 1978, eine Pterostichus-Bernsteininkluse wurde auch von Weitschat & Wichard 1998 abgebildet) ließe sich somit auch für den Ethira-clade ein eozänes Alter vermuten. Leider sind alle diese Bernsteinfossilien bisher nicht systematisch aufgearbeitet und phylogenetisch diskutiert worden. Ungenügend bearbeitet ist auch das vorhandene Fossilmaterial aus jenen Gruppen, die der Tribus Pterostichini systematisch nahe stehen. Deshalb standen uns zu wenige Fixpunkte für die Eichung einer molekularen Uhr in den Sequenzanalysen zur Verfügung und Aussagen zur Datierung evolutiver Prozesse im Ethira-clade blieben sehr ungenau. Letztere konnten nur anhand minimaler und maximaler Mutationsraten abgeleitet werden, die aus anderen Arbeiten für Insekten bekannt sind. Da diese Berechnungen lediglich für den COI 46

Datensatz durchgeführt werden konnten (für 28S liegt kein hinreichend genaues Alignment vor) sind lediglich die Daten für die terminalen Taxa belastbar – so dass eine Interpretation hinsichtlich des Ethira-clades an dieser Stelle ausbleiben muss

Es existiert eine Vielzahl weiterer Laufkäfer-Taxa, die endemisch im Himalaya-Tibet Orogen sind und für die eine lange, geographisch separierte Entwicklung angenommen werden muss, die durchaus bis in das Oligozän und Eozän zurückreichen kann. Weitergehende Forschungen mit kombinierten morphologischen und molekulargenetischen Verfahren bei gleichzeitiger Bearbeitung des fossilen Datenschatzes im Bernstein können hier sicher in naher Zukunft genauere Datierungen liefern. Erstaunlicherweise gibt es viele solcher vermutlich alten Linien, die ausschließlich im Himalaya vorkommen und deren Schwestergruppe nicht an der Ostseite des Tibetischen Plateaus vorkommt (Tab. 2). In jedem dieser Fälle handelt es sich um Artengruppen, die primär die mesophilen Wälder der Hochmontanstufe besiedeln, teilweise sekundär bis in die alpine Stufe vordringen und die keine tropischen Vertreter besitzen. Diese Sachlage verlangt die Postulierung einer sich zunächst eigenständig entwickelnden hochmontan geprägten mesophilen Fauna am Südrand des Tibetischen Plateaus. Unter Berücksichtigung der oben diskutierten geowissenschaftlichen Befunde sind zwei alternative Szenarien möglich:

a) Der Südteil des Himalaya-Tibet Orogens wurde zuerst angehoben. Dies entspricht in Teilen den Modellen der Gebirgshebung von Tapponier et al. (2001) und Mulch & Chamberlain (2006) mit der wesentlichen Einschränkung, dass eine gemeinsame eozäne Hebung Südtibets mit dem Nyainqentanglha Shan und dem Tanggula Shan in Zentral-Tibet, der auch den Ostrand des Plateaus einbezog, nicht unterstützt wird. Letzteres steht im Widerspruch zu den Befunden des Himalaya-Endemismus in jenen Gruppen, deren Entstehung auf diesen Zeitraum zurückgehen dürfte.

b) Der Südteil des Himalaya-Tibet Orogens wurde neben anderen Teilen des Gebirgssystems angehoben, aber in der primären Orogenese waren die verschiedenen Gebirge durch dazwischen liegende tropische Landschaften geographisch separiert, was einen Faunenaustausch hochmontaner Elemente verhinderte. Ein solches Szenario ist realistisch, wenn man die erhebliche Nord-Süd- Verkürzung des Orogens seit der Indo-Asiatischen Kollision berücksichtigt (vgl. Searle 1996, Yin & Harrison 2000, DeCelles et al. 2002), die zwischen Himalaya und Qilian Shan bis zu 1400 km betragen haben soll (Yin & Harrison 2000).

Ob letzteres Szenario oder die erste Variante zutrifft, lässt sich nur anhand einer intensiven vergleichenden Untersuchung der jeweils endemischen Entwicklungslinien an den verschiedenen Abdachungen des Plateaus entscheiden. Die aktuelle Datenlage ist derzeit vor allem im Osten des Orogens noch viel zu dünn. Es wäre zu klären, ob den endemischen 47

Entwicklungslinien an der Ostabdachung des Plateaus ähnlich lange Entwicklungszeiträume zur Verfügung standen, wie jenen an der Südabdachung. Hierfür steht mit der molekularen Genetik ein leistungsfähiges Arbeitswerkzeug zur Verfügung.

Tabelle 2: Beispiele für endemische Artengruppen im Himalaya, für die ein relativ hohes evolutives Alter angenommen werden kann, das bis in das Eozän oder Oligozän zurückreichen dürfte. Zukünftige phylogeographische Untersuchungen in diesen Gruppen lassen eine genauere Datierung der Heraushebung am Südrand des Himalaya-Tibet Orogens erhoffen.

Himalaya- Arten- Verbreitung Hinweise auf phylogenetisches Alter endemisches Taxon zahl Imaibius 24 Ost-Afghanistan bis West-Nepal, Vermutlich relativ basaler Ast der Gattung disjunkt in Zentral-Nepal Carabus. Basale Aufspaltungen innerhalb Carabus werden auf spätes Mesozoikum bis Paläogen geschätzt (Prüser 1996). Meganebrius 21 Disjunkt: NW-Frontier Provinz in Ähnlich Imaibius. Pakistan und Nepal-Himalaya (Abb. 18) Himalotrechodes 1 Südabdachung Himalaya in Ost-Nepal Phylogenetisch isoliertes Taxon in der (Abb. 19) Trechodes-Gruppe der Unterfamilie Trechinae (Uéno 1981). Himalaphaenops 1 Südabdachung Himalaya im Solu Phylogenetisch isoliertes Taxon in der Khumbu Gebiet, östliches Zentral- Aphaenops-Gruppe der Unterfamilie Trechinae Nepal (Abb. 19) (Uéno 1980). Trechus (s. l.) 7 Tibetischer Himalaya in Nepal und Phylogenetisch isolierte Gruppe in der pumoensis-Gruppe Südtibet (Abb. 19) Großgattung Trechus (Publikation I). Thaumatoperyphus 1 Kashmir-Himalaya (Abb. 19) Vermutlich Schwestergruppe von Bembidionetolitzkya, eines relativ basalen Astes der Gattung Bembidion (Schmidt 2004). Bembidion (s. l.) 2 Kashmir-Himalaya, Areal wie Taxon mit phylogenetisch isolierter Stellung in algidum-Gruppe Thaumatoperyphus s. Abb. 19 der Gattung Bembidion (unveröffentlicht). Kashmirobroscus gen. 1 Kashmir-Himalaya (Abb. 19) Phylogenetisch isoliertes Taxon in der nov. Subtribus Broscina (Sciaky, Wrase & Schmidt in Vorbereitung). Chaetobroscus 4 Disjunkt: Kashmir, Kumaon Himalaya Schwestergruppe der Gattung Broscus und Bhutan (Abb. 18) (Schmidt & Arndt 2000) bzw. basale Position innerhalb der Subtribus Broscina (Roig-Juñent 2000). Nepalobroscus 4 Disjunkt: Zentral-Nepal, Sikkim, Vermutlich basaler Ast in der Gattung Broscus Bhutan (Abb. 18) (Schmidt & Arndt 2000). Lepcha 20 Zentral-Nepal bis Bhutan (Abb. 19) Vermutlich basaler Ast in der holarktischen Gattung Agonum (unveröffentlicht). Skoeda 15 West-Nepal bis Sikkim (Abb. 19) Taxon mit phylogenetisch isolierter Stellung in der Tribus Platynini (unveröffentlicht). Ethira-clade 63 Disjunkt: Kashmir und Nepal bis Siehe Text und Publikation IV. Arunachal Pradesh (Abb. 18) Casaleianus 3 Zentrales Südtibet (Abb. 17) Siehe Text. Calathus (s. l.) 9 Zentral- und Ostnepal (Abb. 17) Siehe Text. heinertzi-Gruppe Calathus (s. l.) 1 Kashmir (Abb. 17) Siehe Text. kirschenhoferi-Gruppe Calathus (s. l.) 11 Disjunkt: Kashmir, West-Nepal und Siehe Text. wittmerianus-Gruppe oberes Arun-Tal in Ostnepal (Abb. 17)

Die vorläufigen biogeographischen Befunde einer frühen Anhebung an der Südseite des Himalaya-Tibet Orogens beziehen sich nur auf die Entwicklung hochmontaner Lebensräume. Sichere Anhaltspunkte für eine bereits seit dem Eozän oder Paläozän anhaltende, 48 geographisch separierte Genese einer alpinen Fauna im Süden des Orogens gibt es bisher nicht. Zwar sind auch zwei Beispiele für Endemismus auf der Ebene von phylogenetisch älteren Artengruppen aus dem Alpin Südtibets bekannt (Casaleianus, Trechus pumoensis- Gruppe, Tabelle 2), doch haben diese Taxa möglicherweise erst später spezielle Anpassungen an den alpinen Lebensraum evolviert. Dies lässt sich sowohl aus der relativ geringen morphologischen und ökologischen Differenzierung zwischen den Arten dieser Taxa schließen, als auch aus dem Umstand, dass die vermutlichen Schwestertaxa die hochmontane Stufe besiedeln. Für diese Problemstellung sind noch umfassende molekulargenetische Studien nötig, um zu abgesicherten Schlussfolgerungen zu kommen.

Die geographisch separierte Evolution einer vermutlich eozän-oligozänen Bergwaldfauna am Südrand des heutigen Plateaus lässt den vorläufigen Schluss zu, dass es in der primären Hebungsphase zu keiner gemeinsamen Anhebung Süd- und Zentraltibets kam, wie von Mulch & Chamberlain (2006) und von Wang et al. (2008) angenommen. Das von Wang et al. (2008) postulierte „proto-Tibetan Plateau“, das bereits im Eozän zwischen Gangdise Shan und Tanggula Shan bis 5000 m aufgeragt haben soll (Abb. 19), hätte alpinen Artengruppen (und in der vorgehenden Uplift-Phase auch hochmontanen Artengruppen) keine Verbreitungsgrenzen entgegengestellt und kann deshalb den Endemismus phylogenetisch älterer Gruppen im Himalaya nicht erklären. Außerdem hätte dieses proto-Plateau die Evolution zahlreicher alpiner Artengruppen der Laufkäfer bereits im Eozän ermöglicht. Folglich müssten deren abgeleitete Entwicklungslinien heute sowohl entlang des Himalaya als auch in den Gebirgen Westchinas vorkommen. Alle alpinen Laufkäfer-Taxa mit transtibetischen Arealen (es gibt nur drei: Bradytulus, Deltomerodes, Zabrus) lassen aufgrund der relativ geringen morphologischen und ökologischen Differenzierungen zwischen den Arten jedoch vermuten, dass die Cladogenese in diesen Gruppen auf einen viel späteren Zeitpunkt datiert (Oberes Miozän oder Pliozän, siehe folgende Abschnitte). Demzufolge kann ein eozänes proto-Plateau in dieser Höhe nicht existiert haben. Auch auf Basis dieser transtibetischen Artengruppen können molekulargenetische Analysen zukünftig noch weitaus aufschlussreichere Daten über die tatsächlichen Entwicklungszeiträume des Alpins in Hochasien liefern.

Aus den bisher vorliegenden Laufkäferdaten lässt sich weiterhin ableiten, dass die Heraushebung der Gebirgsketten auch am Südrand des Himalaya-Tibet Orogens nicht zeitgleich erfolgte. Keine der endemischen, phylogenetisch ältesten Gruppen des Himalaya besiedelt den Gebirgsbogen in seiner gesamten Erstreckung (Tabelle 2). Vielmehr zeigt sich, dass entweder nur ein begrenzter Teil des Himalaya zum Areal gehört (Abb. 21, 23), oder dass das Areal in mehrere weiträumig getrennte Teilareale zersplittert ist (Abb. 21, 22). Dieses biogeographische Phänomen war eines jener Indizien, die zur Hypothese der tertiär- tibetischen Herkunft der im Himalaya endemischen Laufkäfer-Artengruppen führte (Schmidt 49

2003, 2006, Publikationen III+IV). Demnach erfolgte eine primäre Entwicklung dieser Artengruppen in Südtibet und eine sekundäre Radiation nach Einwanderung in den später herausgehobenen Hohen Himalaya. Die vorläufigen Befunde sprechen für eine pliozäne Einwanderung in den Hohen Himalaya und eine quartäre Radiation an dessen Südabdachung (siehe folgende Kapitel). Demzufolge hätte sich die eozän-oligozäne Heraushebung des Himalaya-Tibet Orogens auf Südtibet beschränkt. Alternativ wäre auch die frühe Anhebung einzelner, geographisch separierter Teile des Hohen Himalaya denkbar. Eine zusammenhängende Gebirgskette hat hier vor dem Miozän aber sicher nicht existiert.

Abb. 22: Beispiele für markante Arealdisjunktionen und Endemismus in phylogenetisch isolierten, hochmontanen Laufkäfer-Artengruppen des Himalaya. Die Zahlen geben die im jeweiligen Teilareal vorkommende Anzahl der Arten an. Der Ursprung dieser Gruppen lag nach der hier vertretenen Hypothese im hochmontanen Südtibet (Tibetischer Himalaya bzw. Transhimalaya) und geht vermutlich auf das Oligozän oder Eozän zurück. Das Disjunktareal ist demnach eine Folge der späteren Heraushebung des Hohen Himalaya, der begrenzten Ausbreitungsmöglichkeiten an dessen Südflanke und des Verlustes des ursprünglichen Areals durch weitere Hebung und Austrocknung.

Abb. 23: Beispiele für Endemismus von phylogenetisch isolierten Entwicklungslinien der Laufkäfer im Kaschmir- Himalaya (Einzugsgebiet des Indus) und im Zentralen Himalaya. Der Ursprung dieser Gruppen wird wie in den Beispielen von Abb. 22 im hochmontanen Südtibet vermutet; die Entwicklung begann dort vermutlich bereits im Oligozän oder Eozän. 50

Miozän

Die in Abb. 21 und 22 aufgezeigten Disjunktareale endemischer Artengruppen entlang des Himalaya und die in Abb. 21 und 23 beispielhaft dargestellten Areale endemischer Artengruppen im Zentral- bzw. im Kaschmir-Himalaya lassen sich durch die Hypothese eines primären tertiär-südtibetischen Faunengebietes und die spätere Anhebung des Hohen Himalaya relativ zum Tethys-Himalaya bzw. Transhimalaya widerspruchsfrei erklären. Da sich der Himalaya-Hauptkamm für alle diese hochmontanen Arten Südtibets gleichsam als Querriegel erhob, standen nur wenige Ausbreitungsbahnen an die sich neu formierende Südabdachung des Himalaya-Tibet Orogens zur Verfügung. Dort kam es entsprechend der oben genannten Hypothese in den meisten Artengruppen zu sekundären Radiationen, während die tibetischen Arealanteile im Zuge der weiteren Heraushebung Südtibets und des damit verbundenen Verlusts an geeigneten Lebensräumen erloschen. Die heutigen Teilareale (Areale terminaler Artengruppen) sollten somit in der Nähe der tertiären Einwanderungswege der anzestralen Arten aus Südtibet liegen.

Die markanten Arealdisjunktionen (Abb. 21, 22) weisen darauf hin, dass es bei verschiedenen Taxa zu mehreren unabhängigen Einwanderungen in den Hohen Himalaya kam. Das Indus-Tal hatte wohl eine große Bedeutung für die tertiäre Arealverschiebung an die südlichen Flanken des Himalaya: Endemische Artengruppen mit auffälligen Disjunktarealen haben meist auch ein Teilareal im Einzugsgebiet des Indus (z.B. Meganebrius und Ethira-clade, siehe Abb. 22, 24, Calathus wittmerianus-Gruppe, siehe Abb. 21). Artengruppen, die in der Gebirgsregion zwischen Ost-Afghanistan und den indischen Teilen Kaschmirs endemisch sind (z.B. Kashmirobroscus, Thaumatoperyphus und die Bembidion algidum-Gruppe, siehe Tabelle 2, Abb. 23), stand vermutlich nur dieser eine Weg der tertiären Arealverschiebung zur Verfügung. Gute Einwanderungsmöglichkeiten, eventuell über die Transverstäler, müssen aber auch in den Zentralen Himalaya existiert haben, was den dort besonders hohen Grad an Artengruppen-Endemismus erklären würde. Eingehende morphologische (Schmidt 2006) und phylogeographische Untersuchungen des Ethira-clades (Publikation IV) zeigen letzteres noch viel deutlicher (Abb. 24): Es konnten mehrere Entwicklungslinien im Himalaya identifiziert werden, deren jede nur über ein eng begrenztes Areal verfügt. Die meisten dieser Linien besiedeln kleine Areale im Zentralen Himalaya; nur jeweils eine der artenreicheren Linien kommt auch im Kaschmir-Gebiet und im Osthimalaya vor. Dieses Ergebnis ist ein starkes Indiz für die Existenz eines ursprünglichen Hochmontanareals in Südtibet, in welchem eine primäre Radiation stattfand, und von dem aus später eine Einwanderung in den aufsteigenden Himalaya erfolgte.

Wenn die Ursache für die geographische Separation der terminalen Artengruppen des Ethira-clades die Heraushebung des Hohen Himalaya zu einem Hochgebirge mit wirksamen Ausbreitungsbarrieren darstellt, dann bietet die phylogeographische Analyse die Grundlage 51 für eine Datierung dieses Ereignisses. Während die basale Kladogenese im Ethira-clade bereits in Südtibet stattfand, erfolgte die Radiation der resultierenden Artengruppen erst im Hohen Himalaya. Die ursprünglichsten Verzweigungen in der Phylogenese dieser Artengruppen entsprechen somit dem Alter hochmontaner Lebensräume an der Himalaya- Hauptkette. Nach unseren vorläufigen Berechnungen besteht eine hohe Wahrscheinlichkeit, dass diese Himalaya-Radiation frühestens auf das Untere Miozän, wahrscheinlich aber erst auf das Pliozän datiert (Publikation IV, siehe folgenden Abschnitt).

Abb. 24: Lage der Areale der terminalen Artengruppen des im Himalaya endemischen Ethira-clades der Gattung Pterostichus (ohne monotypische Artengruppen und Arten mit unklarer systematischer Stellung; nach Schmidt 2006, 2009c, Publikation IV und unveröffentlichten Daten). Das Gesamtareal des Clades ist schraffiert hinterlegt; über den Kumaon-Himalaya klafft eine große Verbreitungslücke. Die meisten Entwicklungslinien beschränken sich auf kleine Areale im zentralen Himalaya. Alle diese Linien gehen vermutlich auf separat von Südtibet eingewanderte anzestrale Arten aus.

Es besteht kein Zweifel darüber, dass in den zentralen und östlichen Teilen Tibets im Miozän hochmontane Lebensräume existiert haben müssen. Es gibt eine große Zahl an Gattungen und Artengruppen der Laufkäfer, die am Ostrand des Himalaya-Tibet Orogens endemisch sind und die keinerlei verwandtschaftliche Beziehungen mit altmediterranen Gruppen erkennen lassen, wohl aber mit Artengruppen Ostasiens und des nördlichen Zentralasiens (eigene biogeographische Datensammlung). Sie stammen sehr wahrscheinlich von Gruppen des tertiären östlichen Boreals und der Osttethys ab. Die Anzestoren haben das Plateau von Osten her besiedelt, wo sich im Zuge der weiteren Orogenese und infolge geographischer Vikarianz artenreiche Linien evolviert haben. Ein beeindruckendes Beispiel ist die Colpodes- Gattungsgruppe der Laufkäfertribus Platynini, die mit zahlreichen Gattungen und vermutlich über 800 Arten das Himalaya-Tibet Orogen besiedelt (es existiert nach eigenen Untersuchungen eine enorme Anzahl noch unbeschriebener Arten), die zahllose ursprüngliche Linien in den älteren Gebirgen Westchinas aufweist und die in der Westpaläarktis vollständig fehlt. Die Bearbeitung dieses vielversprechenden Datenfundus ist jedoch erst in den Anfängen (z. B. Schmidt 1996, 2001a, b, c, 2003, 2009b). 52

Einige typische Areale endemischer Artengruppen aus verschiedenen Tribus der Laufkäfer im Ostteil des Himalaya-Tibet Orogens sind in Abb. 25 dargestellt. Dabei zeigt sich, dass der Brahmaputra ganz im Gegensatz zum Indus (vgl. Abb. 21, 22, 24) eine sehr wirksame, alte Faunengrenze darstellt. Diese Grenze kann ökologisch nicht erklärt werden. Für rezente, geflügelte Laufkäferarten scheint sie auch nicht zu existieren, da diese, soweit bereits untersucht, sowohl im Osthimalaya als auch in Yunnan vorkommen (eigene biogeographische Datensammlung). Dass viele primär ausbreitungsschwache Taxa hier eine biogeographische Grenze finden, muss ursächlich mit der Orogenese dieses Teils des Gebirgskomplexes im Zusammenhang stehen. Basierend auf dem nachfolgend diskutierten Befund einer miozänen Zentraltibet-Faunenbrücke interpretiere ich diese Brahmaputra- Faunengrenze als Resultat einer erst spät erfolgten (pliozänen?), signifikanten Hebung am Südostrand des Orogens, was den Osthimalaya oder die burmesischen und südlichen yunnanischen Teile des Gebirgskomplexes oder auch alle diese Teile des Orogens betraf.

Abb. 25: Typische Areale von endemischen Artengruppen Osttibets. Das Tal des Brahmaputra wird nach Süden und Westen hin nicht überschritten, es stellt vermutlich eine alte Faunengrenze dar. Die Stromfurchen werden von den Arealen der Artengruppen dagegen weit überspannt, obwohl sie am Ostrand des Plateaus alle Areale auf Art- bzw. Unterartniveau trennen; sie sind somit erst junge Faunengrenzen für ausbreitungsschwache Laufkäferarten. Verbreitungsangaben aus Deuve (2004), Schmidt (2006), Wrase & Schmidt (2006b) und unveröffentlichten Daten.

Interessante Rückschlüsse auf die miozäne Hebungsdynamik des Himalaya-Tibet Orogens ergeben sich aus der biogeographischen Analyse transtibetischer Laufkäfergattungen, die primär in der Hochmontanstufe leben. Es gibt vier artenreiche Gattungen, die sowohl den Himalaya als auch Osttibet besiedeln und die nicht im Transhimalaya und in Zentraltibet vorkommen: Amerizus (ca. 50 Arten), Cychropsis (32 Arten, Abb. 22), Pristosia (ca. 100 Arten), Xestagonum (ca. 500 Arten). Ein solches Verbreitungsbild, welches bogenförmig südlich und östlich um das Plateau herum verläuft, ist auch in vielen anderen Tiergruppen häufig, wobei höchste Artenzahlen oft am Ostrand des Plateaus festgestellt wurden. Dies führte zur Annahme einer Einwanderung der Faunenelemente westchinesischer Gebirge in 53 den Himalaya (Martens 1993). Das mag auch für einzelne geflügelte Laufkäfer gelten, ist aber für ausbreitungsschwache Arten nicht wahrscheinlich: Der Ausbreitungswiderstand quer zu den Stromfurchen und längs des Himalaya-Hauptkammes ist viel zu hoch. Dies wird auch durch die phylogeographischen Untersuchungen im Ethira-clade eindrucksvoll belegt (Abb. 29, siehe folgendes Kapitel). Die biogeographische Situation in den oben genannten vier Laufkäfer-Gattungen gibt Anlass zur Vermutung, dass eine Einwanderung ausbreitungsschwacher Gruppen zu einem frühen Zeitpunkt in der Orogenese über Zentraltibet erfolgte (Abb. 26). Am Beispiel der Gattung Cychropsis zeigt sich nämlich, dass auch bei diesen hochmontanen transtibetischen Faunenelementen die größte Vielfalt an Arten und Entwicklungslinien mit Hinblick auf den Himalaya-Arealanteil in dessen zentralen Teilen zu finden ist. In dieser Gattung existiert ein weiteres Entwicklungszentrum in Sichuan und Nord-Yunnan am Ostrand des Plateaus, während über Südosttibet eine große Verbreitungslücke klafft. Bei Pristosia klafft eine große Verbreitungslücke in Zentral-Nepal und eine weitere im Osthimalaya (Publikation III). Die Verbreitungslücken sind bei Amerizus weniger ausgeprägt und existieren bei Xestagonum praktisch nicht, aber auch in diesen Taxa finden sich die markanten geographischen Polarisierungen, welche auf erhebliche Disjunktionen der Entwicklungszentren schließen lassen.

Abb. 26: Areale der Artengruppen der Gattung Cychropsis. Das Taxon hat zweifellos seinen Ursprung im östlichen Boreal. Ein primäres hochmontanes Entwicklungszentrum hat vermutlich irgendwo zwischen Ost- und Südtibet existiert. Über Zentraltibet muss ein Ausbreitungsweg der hochmontanen Waldfauna existiert haben, der Osttibet mit dem zentralen Südtibet verband. Die Zahlen geben die Artenzahlen im jeweiligen Teilareal an. Im Himalaya ist die Diversität an Arten und Entwicklungslinien auf den zentralen Teil konzentriert. In Südosttibet klafft eine Verbreitungslücke. Beides spricht gegen eine Ausbreitung entlang des Himalaya-Gebirgsbogens. Verbreitungsangaben aus Imura (2001, 2002), Deuve & Schmidt (2010) und unveröffentlichten Daten.

Ein derartiges Verbreitungsbild lässt für das Hochmontan eine transtibetische miozäne „Faunenbrücke“ zwischen dem zentralen Südtibet und Osttibet vermuten (Abb. 26). Dies würde bedeuten, das Zentraltibet im Miozän über 2000-2500 m angehoben war. Da die Teilareale im Himalaya und in Westchina bei allen genannten Gattungen jeweils basale 54

Clades trennen, existierte eine solche Faunenbrücke vermutlich bereits im Unteren oder Mittleren Miozän. Dieses Verbreitungsbild zeigt aber auch, dass der Südosten des Himalaya- Tibet Orogens von dieser Faunenbrücke nicht profitierte, was den Schluss zulässt, dass der Osthimalaya oder Südost-Tibet oder beides erst später in entsprechende Höhen gehoben wurden. Sollten sich diese Szenarien der Faunengenese nach weiteren Untersuchungen bestätigen, wären molekulargenetische Analysen in transtibetischen Laufkäfergattungen eine Möglichkeit zur genaueren Datierung der Heraushebung Zentraltibets.

In Südtibet waren zum Zeitpunkt der ersten signifikanten Hebung Zentraltibets alpine Lebensräume wahrscheinlich schon weit verbreitet. Dies würde erklären, warum einerseits die agilen Großlaufkäfer des Himalaya (Imaibius, Meganebrius, Nepalobroscus, Ethira-clade) nicht nach China vorgedrungen sind, da sie an der Südabdachung des Orogens im Hochmontan eingenischt waren. Andererseits könnte dies erklären, warum aus der enormen Fülle der östlichen Großlaufkäfer-Artengruppen nur relativ wenige den Weg zum Himalaya gefunden haben. Das ist besonders auffällig unter Berücksichtigung der großen Zahl an Carabus-Entwicklungslinien am Ostrand des Plateaus (siehe Deuve 2004). Von diesen ist nur eine einzige (Neoplesius) nach Westen und Süden bis in den Tibetischen Himalaya vorgedrungen. Eine weitere (Rhigocarabus, vgl. Abb. 25) reicht bis in das zentrale Südtibet, überschreitet aber den Yarlung Tsangpo nach Süden in den Tibetischen Himalaya nicht. Vermutlich war die oben postulierte Faunenbrücke für hochmontane Arten eher ein „Hindernislauf“ entlang der Flanken der aufsteigenden Gebirge, die sich bereits in ihrer primären Hebungsphase nach Südosten zertalten.

Ein weiterer Hinweis für die Existenz alpiner Lebensräume im Miozän Südtibets ergibt sich aus der Biogeographie von Laufkäfergruppen, die ausschließlich alpine Arten aufweisen und deren Entstehung sehr sicher in das Miozän zurückreicht. Hierzu gehört die Gattung Deltomerodes. Ihre relativ weite Verbreitung von den westchinesischen Gebirgen über mehrere Stromfurchen hinweg bis zum Zentral-Himalaya (Abb. 27) ist aufgrund der hochspezialisierten, edaphischen Lebensweise der Arten nur schwer verständlich. Die Arten kommen nach eigenen Erhebungen im Himalaya und Südtibet ausschließlich in den alpinen Frostschuttböden vor. Eine erste phylogenetische Analyse auf morphologischer Basis zeigt, dass ein Großteil des Areals von nur einer terminalen Gruppe eingenommen wird (memorabilis-Gruppe, Abb. 27), für die eine Verbreitungslücke in Südosttibet existiert, die von der vermutlich ursprünglichsten Art (D. zolotichini) eingenommen wird (Zamotajlov 2002, 2005). Auch dieses Disjunktareal kann über eine zentraltibetische „Faunenbrücke“ erklärt werde. Diese Brücke dürfte aber für die alpine Fauna später existiert haben als für die hochmontane Fauna, da sie im vorliegenden Befund relativ gering differenzierte Arten innerhalb einer terminalen Gruppe trennt, während in den obigen Beispielen die Trennung von basalen Artengruppen innerhalb von Gattungen angezeigt wurde. Die primäre 55

Deltomerodes-Radiation erfolgte demnach im Alpin des Tethys- und/oder Transhimalaya. Aufgrund der von Zamotajlov (2002, 2005) vermuteten, relativ basalen Stellung der Gattung innerhalb der Tribus Patrobini fand sie dort wahrscheinlich schon im Mittleren Miozän oder früher statt. Die Taxa in Sichuan und Yunnan sind dagegen das Resultat viel späterer Speziationen in der mimorabilis-Gruppe, was für Zentral- und Osttibet eine Anhebung in alpine Höhen erst ab dem Oberen Miozän, vielleicht auch erst ab dem Pliozän erfordert.

Abb. 27: Verbreitung der im Himalaya und Osttibet endemischen Gattung Deltomerodes (jede Zahl entspricht dem Vorkommen einer Art der jeweiligen Artengruppe) und basale Verwandtschaftsbeziehungen nach Zamotajlov (2002, 2005; die Verbreitungsangaben wurden mit neuen Daten ergänzt). Nach derzeitigem Kenntnistand hat auch dieses Taxon seinen Ursprung im östlichen Boreal. Nach Zamotajlov (2002, 2005) ist D. zolotochini (weiße 1 im schwarzen Kreis) im Osten des Transhimalaya die primitivste Art der Gattung. Die abgeleitete stenomus- Gruppe ist endemisch im Zentral-Himalaya, die ebenfalls abgeleitete memorabilis-Gruppe ist dagegen vom Zentral-Himalaya über den Transhimalaya bis nach Sichuan und Yunnan verbreitet. Folgt man dieser Phylogenie- Hypothese hat der Anzestor Südtibet von Osten aus besiedelt und den Himalaya bis Westnepal erobert. Dann muss auch die memorabilis-Gruppe in Südtibet entstanden sein und sich von dort sowohl in den Hohen Himalaya als auch nach Westchina ausgebreitet haben, aber nicht über den kürzesten Weg, sondern über Zentraltibet, was ihr Fehlen im Nyainqentanglha Shan und in den Bergen südlich des Salween und Mekong nahelegt.

Diese morphologisch basierten Befunde bedürfen einer eingehenden Prüfung. Die Nachweise einer Anzahl unbekannter Arten aus dem Himalaya und Transhimalaya seit der letzten Revision der Gattung (unveröffentlichte Daten) lassen weitere Vorkommen in noch unerforschten Gebirgsketten vermuten. Die Intensivierung der Feldforschung sollte hier also an erster Stelle stehen. Eine auf umfassenden Materialsammlungen beruhende, kombinierte morphologische und molekulargenetische Phylogeographie der Gattung Deltomerodes und weiterer transtibetischer alpiner Taxa wäre auf jeden Fall eine vielversprechende Methode zur Beantwortung der Frage, seit wann die einzelnen Teile des Orogens in alpine Höhen ragen bzw. wann sie ihre aktuelle Höhe erreichten.

Die frühere Anhebung Südtibets in alpine Höhen relativ zu Zentraltibet wird auch aus dem Arealbild der in Südtibet endemischen Taxa Casaleianus, Psilonebria und der Trechus pumoensis-Gruppe wahrscheinlich (Abb. 28). Die Gesamtverbreitung dieser Artengruppen- 56

Endemiten konzentriert sich auf den Tibetischen Himalaya, während der Transhimalaya nur sehr lokal (Casaleianus) oder bis in den Westen des Nyainqentanglha Shan (Psilonebria) besiedelt wird. Diese enge Begrenzung der Verbreitungsgebiete, die ökologisch nicht erklärbar ist, lässt vermuten, dass zum Zeitpunkt der Abspaltung dieser Entwicklungslinien aus hochmontanen Laufkäfergruppen und der Adaptation des jeweiligen Anzestors an das Alpin derartige Lebensräume weder in Zentraltibet noch in Westtibet oder am Südostrand des Orogens (Osthimalaya) vorhanden waren. Vielleicht zeigen diese Endemiten mit ihren rezenten Arealen die Lage des primären tibetischen Alpinareals im Miozän an. Das würde auch erklären, warum alle alpinen Artengruppen mit transtibetischen Arealen (Bradytulus, Deltomerodes, Zabrus) ihre höchste Artenvielfalt im zentralen Südtibet und im unmittelbar angrenzenden Teil des Himalaya haben. Dass das Areal der Südtibet-Endemiten am Himalaya-Hauptkamm endet und die Alpinlebensräume an dessen Südflanke nicht einschließt ist ein Hinweis auf die spätere Anhebung auch dieses Teils des Orogens.

Abb. 28: Areale von drei am Südrand des Tibetischen Plateaus endemischen Artengruppen der Laufkäfer. Keines dieser Taxa besitzt Vorkommen in Zentraltibet, Westtibet, Osttibet und an der Südabdachung des Himalaya. Möglicherweise umgreifen diese Verbreitungsgebiete das primäre Alpinareal des tertiären Tibets. Verbreitungsangaben nach Sciaky & Wrase (1998), Ledoux & Roux (2005), Publikation I und unveröffentlichten Daten.

Die hier zusammengefassten vorläufigen Befunde über die miozäne Genese der alpinen Fauna des Himalaya-Tibet Orogens zeigen Übereinstimmung mit mehreren modernen geologischen und paläontologischen Befunden (z.B. Tapponnier et al. 2001, Spicer et al. 2003, Currie et al. 2005, Garzione et al. 2000). Die Ergebnisse der δ18O-Analysen von Rowley & Currie et al. (2006) und DeCelles et al. (2007), wonach Zentraltibet bereits im Oligozän alpin war, werden dagegen nicht gestützt. Dasselbe gilt für die Hypothese des „proto-Tibetan Plateaus“ von Wang et al. (2008), das bereits für das Eozän postuliert wurde, aber auch im Unteren Miozän in dieser Form nicht existiert haben kann. Die rezenten Areale in endemischen, ausbreitungsschwachen Gruppen der Laufkäfer schließen eine alpine Verbindung zwischen Süd- und Osttibet vor dem Mittleren Miozän weitgehend aus. Eine 57 ungleiche Höhenentwicklung in den verschiedenen Teilen des Plateaus und eine stärkere Reliefierung Zentraltibets im Vergleich zu heute sind wahrscheinlicher. Vermutlich war der Ostabhang des Plateaus durch weite Zertalung und größere Entfernungen zwischen den einzelnen Massiven stärker aufgefächert und lag im Miozän noch viel weiter westlich als heute.

Die biogeographischen Befunde einer relativ späten, umfassenden Hebung Zentraltibets in signifikante Höhen, die vermutlich erst im Unteren Miozän begann und die vermutlich nicht vor dem Oberen Miozän großflächig alpine Höhen erreichte, steht zwar im Widerspruch zu den Ergebnissen einiger geologischer Studien (siehe oben), korreliert aber mit den Befunden verschiedener Autoren hinsichtlich des Beginns oder der markanten Verstärkung des südasiatischen Monsuns, der vor etwa 8 Millionen datiert wird (z.B. Harrison et al. 1992, Prell et al. 1992, Molnar et al. 1993, An et al. 2001, Molnar 2005). Der fossile Beleg für ca. 15 Millionen Jahre alte hygrophile Hochmontanwälder mit Salix und Alnus im Transhimalaya bei westlich von (Spicer et al. 2003) kann außerdem als eine Bestätigung der biogeographischen Befunde einer späteren Himalaya-Heraushebung gewertet werden. Eine geringe Gesamthöhe des Himalaya (<< 4000 m) wäre Voraussetzung dafür gewesen, dass ausreichend feuchte Luftmassen zur Entwicklung solcher Wälder bis zum Transhimalaya vordringen konnten. Hätte der Hohe Himalaya bereits im Unteren Miozän über eine Höhenerstreckung bis über 5000 m verfügt, dann wäre vermutlich sowohl die Entwicklung hygrophiler Wälder im Gebiet des Transhimalaya, als auch die Existenz einer miozänen, transtibetischen Brücke der Bergwaldfauna, wie sie in der vorliegenden Studie postuliert wird, nicht möglich gewesen.

Sowohl die finale Anhebung des Plateaus als auch der damit im Zusammenhang stehende Klimawandel waren zweifellos ein starker Motor für die Radiation in den hochmontanen und alpinen Artengruppen, da dies zu einer wesentlich größeren Standortvielfalt pro Fläche geführt haben muss und die regionalen Klimagegensätze an den Bergketten enorm verstärkte. Die Entstehung des weitaus größten Teils der terminalen Entwicklungslinien in den verschiedensten Tiergruppen der Bergnebelwälder, die heute mit einer noch lange nicht vollständig erfassten Vielfalt an neoendemischen Arten die südlichen und östlichen Abdachungen des Himalaya-Tibet Orogens besiedeln, dürfte mit diesem Klimawandel zusammenfallen und somit auf einen Zeitraum zwischen dem Oberen Miozän und dem Pliozän zurückgehen. Dieser vermutete Zusammenhang verspricht weitere Möglichkeiten der auf Biodatenproxys beruhenden Datierung der Hebungsphasen und des Monsunbeginns vor allem bei Hinzuziehung phylogeographischer Arbeitsmethoden. 58

Pliozän-Quartär

Im vorgehenden Abschnitt zeigte sich bereits, dass es derzeit kaum möglich ist zu entscheiden, ob bestimmte evolutive bzw. arealgeschichtliche Ereignisse im Himalaya-Tibet Orogen auf das Obere Miozän oder erst auf das Pliozän datieren. Nicht weniger schwierig ist gegenwärtig die Datierung offensichtlich jüngerer Ereignisse. Leider ist über das Alter von Laufkäferarten oder Artengruppen im Allgemeinen und in diesem Gebirgssystem im Speziellen einfach noch zu wenig bekannt. Auf Basis der Auswertung von Fossilfunden in anderen Gebieten gehen die meisten Autoren davon aus, dass Käferarten sehr langlebig sind und die meisten der rezenten Arten bereits zu Beginn des Pleistozäns existierten (siehe Zusammenfassungen in Hieke 1983 und Elias 1994). Die Separation von Laufkäferpopulationen aufgrund quartärer Klimaschwankungen soll nicht zur Erhöhung der Speziationsrate geführt haben (Ashworth 1996). Eine frühere Hypothese postglazialer Speziation nach Separation nordwestamerikanischer Gebirgs- und Inselpopulationen innerhalb einer Artengruppe der holarktischen Laufkäfergattung Nebria (Kavanaugh 1979) hat sich nach eingehender molekulargenetischer Prüfung nicht bestätigt (Reiss et al. 1999, Clarke et al. 2001).

Die meisten Befunde, die sehr lange Speziationszeiträume der Käfer vermuten lassen, gehen aber sowohl auf ausbreitungsstarke Arten zurück, für welche große Areale und entsprechende Populationsgrößen vermutet werden können, als auch auf Untersuchungen in der kalttemperierten und borealen Zone. Möglicherweise lassen sich diese Resultate nicht auf Gebirge in warmtemperierten und tropischen Gebieten anwenden, die einen sehr hohen Anteil flugunfähiger, ausbreitungsschwacher Arten aufweisen und wo die Ausbreitungsbarrieren durch größere Klimagegensätze und aufgrund längerer Abdachungen wirksamer sind. Der bereits in den vorhergehenden Kapiteln aufgezeigte extreme Lokalendemismus am Beispiel der ungeflügelten Trechus-Arten Südtibets (Abb. 8, 14) lässt geringe effektive Populationsgrößen und damit einen besonders starken Einfluss des Evolutionsfaktors Gendrift durch Isolation vermuten. Eventuell verlaufen Laufkäfer- Speziationen unter derartigen Bedingungen schneller ab. Vergleichende Untersuchungen existieren hierzu jedoch nicht.

Erste belastbare Daten zur Speziationsrate in einer Artengruppe primär flügelloser Laufkäfer wurden von Sota and Nagata (2008) geliefert. Auf der Grundlage einer umfassenden morphologischen und molekulargenetischen Analyse der Carabus Untergattung Ohomopterus der Japanischen Inseln fanden die Autoren Hinweise auf relativ hohe Speziationsraten von bis zu 2,4 pro 1 Million Jahre. Damit dürfte ein hoher Anteil aus der enorm großen Zahl neoendemischer Taxa der besonders artenreichen Entwicklungslinien der Laufkäfer des Himalaya-Tibet Orogens quartären Ursprungs sein. Eine erste 59 phylogeographische Untersuchung himalayanischer Laufkäfer bestätigt dies (Publikation IV). Die ermittelten paarweisen Distanzen (p-Distanzen, ohne Evolutionsmodell) für einen repräsentativen Sequenzabschnitt der COI mtDNA liegen zwischen Arten vieler terminaler Artengruppen des Ethira-clades der Gattung Pterostichus unter 2%. Die Ethira-spezifische Evolutionsrate ist für dieses Gen zwar noch unbekannt, nimmt man aber den in der Literatur häufig provisorisch verwendeten „universal mtDNA clock“-Wert von 2% Sequenzdivergenz pro Million Jahre (Avise 2000, Freeland 2005) zur Hilfe, dann liegen alle diese Speziationsereignisse sicher im Zeitraum des Quartärs. Diese Feststellung ändert sich nicht, wenn man den bisher für Insekten ermittelten Wertebereich für die Evolutionsrate im COI- Gen berücksichtigt, der von 1,5% Sequenzdivergenz pro Millionen Jahre in der Bockkäfergattung Tetraopes (Farrell 2001) und der Ameisengattung Crematogaster (Quek et al. 2004) bzw. 1,6% in der Blattkäfergattung Plateumaris (Sota & Hayashi 2007) bis 2,3% in der Tagfaltergattung Heliconius (Brower 1994) reicht.

Zwischen Arten verschiedener terminaler Artengruppen des Ethira-clades liegen die p- Distanzen nach unseren Erhebungen meist über 2% und reichen bis 5%, womit erst bei Annahme sehr langsamerer Evolutionsraten im COI-Gen die Entstehung dieser Artengruppen auf das Pliozän datiert. Aber auch bei einer theoretisch möglichen extrem langsamen Evolutionsrate dieses Gens von nur 1% Sequenzdivergenz pro Millionen Jahre lassen die vorliegenden Sequenzdaten eine Entstehung der terminalen Ethira-Artengruppen vor dem Oberen Miozän nicht zu. Da diese evolutiven Ereignisse entsprechend der Hypothese des tertiär-tibetischen Ursprungs des Ethira-clades in einem direkten Zusammenhang mit der Entwicklung hochmontaner Lebensräume im Hohen Himalaya stehen dürften, unterstreichen die Ergebnisse die bereits im vorgehenden Kapitel getroffenen Aussagen zur späten Heraushebung in diesem Teil des Orogens. Nach gegenwärtigem Kenntnisstand ist es wahrscheinlich, dass solche Lebensräume im Hohen Himalaya erst im Pliozän, frühestens aber im Oberen Miozän zur Verfügung standen.

In Zukunft sind weitere aufschlussreiche Daten zur pliozän-quartären Dynamik der Orogenese am Südrand des Tibetischen Plateaus aus phylogeographischen Analysen verschiedener Laufkäfergruppen des Himalaya zu erwarten. So gibt es bereits im Ergebnis morphologischer Voruntersuchungen konkrete Hinweise darauf, dass der Himalaya wenigstens in Teilen auch im Quartär einer signifikanten Hebungsdynamik unterlag. Der wohl eindrucksvollste Beleg für eine solche relativ rezente Hebung ist der Fund des Calathus martensi aus der im Himalaya endemischen wittmerianus-Gruppe im Arun-Tal im Osten Nepals (Schmidt 1999, Abb. 21). 60

Abb. 29: Phylogeographie der in Zentral-Nepal endemischen balachowskyi-Gruppe des Ethira-clades auf Basis eines 1444bp langen Sequenzabschnittes der COI mtDNA (Publikation IV). Die Zahlen in den Kästchen bezeichnen Haplotypen. Alle Speziationen gehen sicher auf das Quartär zurück. Die Entstehung der Artengruppe fand vermutlich im Pliozän Südtibets statt, von wo aus der später aufsteigende Hohe Himalaya besiedelt wurde. Bei der Einwanderung des Anzestors der balachowskyi-Gruppe war der Himalaya somit hochmontan, aber noch nicht zum alpinen Gebirgsriegel angehoben. Die strenge geographische Separation der vier basalen Clades (farblich markiert) und der ausgeprägte Lokalendemismus aller Subtaxa zeigt an, dass Ausbreitung entlang des Himalaya-Hauptkammes in allen Entwicklungsphasen des Gebirges nur sehr eingeschränkt möglich war. Dies macht alternative Hypothesen der Arealgenese entlang des Himalaya-Gebirgsbogens von Ost nach West oder vice versa sehr unwahrscheinlich. 61

Die Calathus wittmerianus-Gruppe umfasst ausschließlich mittelgroße Laufkäfer, die in mesophilen Wäldern der Hochmontanstufe leben (im Himalaya bis maximal 4000 mNN). Das in Abb. 21 dargestellte Disjunktareal der Gruppe ist ökologisch nicht erklärbar, wenn man die beiden regionalen Diversitätszentren im Westhimalaya und in West-Nepal als Maßstäbe ansetzt und die weite Verbreitung potentieller Lebensräume entlang des Himalaya- Hauptkammes im Kumaon Himalaya und in Zentral-Nepal berücksichtigt, wo die Gruppe nicht vorkommt. Folgt man der oben diskutierten Hypothese einer tertiär-tibetischen Entstehung der Gruppe, dann wird dieses Disjunktareal durch den Zerfall des ehemaligen südtibetischen Arealteils schlüssig. Es ist deshalb sehr wahrscheinlich, dass in Südtibet noch mindestens bis in das späte Pliozän hochmontane Lebensräume mit mesophilen Wäldern existiert haben, die über niedrige Pässe und z.B. über das Arun-Tal Anschluss an den Himalaya-Hauptkamm hatten. Seit dem Auseinanderreißen dieses hochmontanen Areals hat sich der Tibetische Himalaya also um mindestens weitere 500 m gehoben. Unabhängig davon können lokale Erhebungen im Tethys-Himalaya auch im Pliozän weit über alpine Höhen hinaus aufgeragt haben.

Dieser biogeographische Befund hochmontaner mesophiler Wälder im späten Pliozän oder sogar noch im frühen Quartär scheint im Widerspruch zu den meisten modernen geologischen Auffassungen zu stehen (z.B. Garzione et al. 2000, Rowley et al. 2001, Tapponnier et al. 2001, Mulch & Chamberlain 2006, Saylor et al. 2009). Am klarsten hatte sich bereits Fort (1996) gegen ähnliche Befunde chinesischer Arbeitsgruppen positioniert, welche ebenfalls eine signifikante spätpliozän-quartäre Himalaya-Hebung auf der Basis von Fossilfunden an dessen Nordflanke postulierten (siehe Diskussion oben). Die Autorin führt eine Vielzahl von unabhängigen geologischen Belegen an (Lößablagerungen in Zentral- China, Sedimentologie und Geochronologie des Himalaya und südasiatischer Ozeanbecken), die ihrer Meinung nach keinen Zweifel daran lassen, dass das Himalaya- Tibet Orogen seine aktuelle Höhe vor dem Quartär erreicht haben muss. Dennoch liegt mindestens in dem fossilen Nachweis von spätpliozänen Wäldern mit Quercus semecarpifolia an der Nordabdachung des Zentralen Himalaya (Xu 1981, 1982) ein stichhaltiges Indiz dafür vor, dass der Innere Himalaya wenigstens partiell einer Anhebung von ca. 1000 m in den letzten 3 Millionen Jahren unterlag. Eventuell liegen diese scheinbaren Widersprüche zwischen geologischen Befunden auf der einen Seite und Fossilbefunden sowie biogeographischen Daten rezenter Arten auf der anderen Seite darin begründet, dass der Innere Himalaya im Pliozän ein markanteres Relief aufwies mit deutlich tiefer hinab reichenden Tälern neben lokalen Aufragungen mit absoluten Höhen vergleichbar zu heute (inklusive hochalpinen Deltomerodes-Lebensräumen, siehe vorgehenden Abschnitt). Über tiefer liegende Transverstäler und Pässe hätten feuchte Luftmassen nach Südtibet vordringen können und somit sowohl die Ausbildung von Nebelwäldern der Mittleren 62

Nebelwaldstufe mit Quercus semecarpifolia (bis max. 3000 mNN, vgl. Miehe 1991) als auch der Oberen Nebelwaldstufe mit dem Laufkäfer Calathus martensi (bis max. 4000 mNN) ermöglicht. Ähnlich könnten die einleitend aufgezeigten, anscheinend widersprüchlichen Ergebnisse verschiedener Arbeitsgruppen der Geowissenschaften im Gyirong Becken gedeutet werden. Sollte die pliozän-quartäre Hebungsdynamik tatsächlich noch erhebliche Ausmaße gehabt haben wie oben vermutet, dann wäre es durchaus wahrscheinlich, dass das Tal des Yarlung Zhangbo im ausgehenden Miozän noch Lebensraum für Arten mit Anpassung an warmtemperierte Klimabedingungen war (vgl. Wang et al. 2006), von dem aus wandernde Herbivorenherden auch die Seitentäler beweideten, während die Bergketten des Tibetischen Himalaya lokal bereits über 5000 m ragten (vgl. Rowley et al. 2001).

Geomorphologische Untersuchungen von Schotterterrassen an der Südabdachung des Himalaya (Lavé & Avouac 2001) lassen ein solches Szenario ebenfalls realistisch erscheinen. Die Autoren ermittelten jährliche Erosionsraten von 4-8 mm im Bereich des Hohen Himalaya. Setzt man Hebung als Ursache für Erosion voraus, dann dürfte der ermittelte Wert der durchschnittlichen Heraushebung des Himalaya-Hauptkammes entsprechen, womit bei Annahme einer etwa gleichbleibenden Hebungsdynamik eine Gesamthebung von über 8000 m allein für den Zeitraum des Quartärs anzusetzen wäre. Unklar bleibt, inwieweit dieser Wert eine Auskunft über die absolute Höhe des Hohen Himalaya in verschiedenen Phasen seiner pliozänen-quartären Orogenese gibt. Letztlich zeigen die Resultate von Lavé & Avouac (2001) aber, dass eine Anhebung der Inneren Täler seit dem späten Pliozän oder dem frühen Quartär um mindestens 500 m, wie sie sowohl der Fund des Calathus martensi im oberen Aruntal als auch der Fossilbeleg von Quercus semecarpifolia an der Himalaya-Nordabdachung (Xu 1981, 1982) fordert, durchaus im Bereich des Möglichen liegt.

Eine detaillierte phylogeographische Analyse des rezenten Artenbestandes der Calathus wittmerianus-Gruppe würde somit ideale Möglichkeiten liefern, um das Auseinanderreißen des ehemaligen Areals nördlich des Zentralen Himalaya zeitlich einzuordnen bzw., um die terminale Hebungsphase der Hochtäler im Tibetischen Himalaya genauer zu datieren. Gleichzeitig ließe sich damit eine Aussage machen, wann die letzten mesophilen Wälder in Südtibet ausgestorben sind, oder wann der monsunale Einfluss durch die Gebirgshebungen so stark reduziert wurde, dass derartige Lebensräume keine zonale Verbreitung in Südtibet mehr einnehmen konnten.

Der biogeographisch bedeutsame Fund des Calathus martensi lässt zudem vermuten, dass weitere derartig aufschlussreiche Zeugen südtibetischer Pliozänwälder existieren, die entweder noch nicht entdeckt oder noch nicht identifiziert wurden. Detaillierte feldbiologische Erkundungen sind deshalb zukünftig insbesondere in den oberen Abschnitten der Himalaya- Transverstäler und entlang der Massive im mittleren Tal des Yarlung Zhangbo notwendig. 63

Weitere Entdeckungen wären durchaus aber auch auf Basis intensivierter phylogenetisch- systematischer und molekulargenetischer Analysen in den bereits bekannten tibetisch- himalayanischen Laufkäfergruppen möglich.

Für die Vorberge des Hohen Himalaya lieferten die Ergebnisse von Lavé & Avouac (2001) Indizien für deutlich geringere jährliche Hebungsraten („a few millimeter“, S. 561), als für den Hohen Himalaya. Das Pollendiagramm des Paläo-Kathmandu-Sees (Fuji & Sakai 2002) zeigt außerdem, dass es in den das Kathmandu-Tal einrahmenden Bergketten an der Südflanke des Himalaya über das gesamte Quartär hinweg zu keinen wesentlichen klimatischen Veränderungen kam. Das Alter hochmontaner Lebensräume im Mittleren Himalaya dürfte also bis in das Tertiär reichen, obwohl einige dieser Himalaya-Vorberge auch heute nicht über die Hochmontanstufe hinaus reichen. Auch diese Ergebnisse werden durch biogeographische Daten gestützt. Aus dem Mittleren Himalaya sind einige extrem ausbreitungsschwache, endemische Artengruppen der Laufkäfer bekannt, die an bestimmte Lebensräume der Hochmontanstufe gebunden sind. Aufgrund spezieller morphologischer Anpassungen muss für diese Entwicklungslinien eine tertiäre, vermutlich miozäne Entstehung angenommen werden. Eine quartäre Genese des Gesamtareals kann aufgrund der Lebensweise der Arten völlig ausgeschlossen werden. Hierzu gehören die winzigen, edaphisch in Waldböden der Hochmontanstufe lebenden Himalodes-Arten. Das Taxon ist mit mehreren lokalendemischen Arten entlang der Südabdachung des Himalaya extrem disjunkt verbreitet, wobei eine Art auch in den Bergen um das Kathmandu-Becken (Shivapuri, Phulchoki, Dostal 1993) vorkommt. Ein weiteres Beispiel ist der bislang einzige bekannte blinde, hypogäische Laufkäfer des Himalaya, Himalaphaenops nishikawai, der aus dem Solu Khumbu Massiv aus 2730 m Höhe beschrieben wurde (Uéno 1980). Die Vorkommen dieser Taxa sind sowohl ein weiterer Hinweis für das tertiäre Alter hochmontaner Lebensräume in den Vorbergen des Himalaya, als auch darauf, dass es in diesem Teil des Orogens zu keiner so erheblichen quartären Anhebung gekommen sein kann, wie sie die Daten vom Himalaya- Hauptkamm (Lavé & Avouac 2001) und aus den Hochtälern des Inneren Himalaya (Xu 1981, 1982, Laufkäferdaten in dieser Studie) vermuten lassen.

Zu einer erheblichen pliozän-quartären Hebung kam es nach den vorliegenden Laufkäferbefunden vermutlich auch in den mehr zentral gelegenen Teilen Tibets. Wie vorher schon für den Tethyshimalaya angedeutet, muss aber auch auf dem Plateau zwischen bereits früher vorhandenen signifikanten Erhebungen, welche die Ausbildung alpiner Lebensräume im großen Umfang ermöglichte (z. B. Gangdise Shan, Nyainqentanglha Shan) und dazwischen liegenden, erst später angehobenen Becken unterschieden werden. Letztere wären nach dieser Hypothese dafür verantwortlich, dass sich transtibetische Areale alpiner Entwicklungslinien der Laufkäfer (Bradytulus, Deltomerodes, Zabrus) frühestens im Obermiozän, wahrscheinlich aber erst im Pliozän herausbildeten. Vorläufige morphologische 64

Untersuchungen machen für diese Entwicklungslinien ein Alter, welches das Pliozän deutlich übersteigt, wenig wahrscheinlich. Da für die Arealerweiterung der primär ungefügelten Anzestoren der jeweiligen Gruppen ein zusammenhängendes alpines Gebiet vorausgesetzt werden muss, dürfte der Zeitraum der Trennung der nordost- und osttibetischen von den südtibetischen Linien der terminalen Anhebung Zentraltibets entsprechen. Zukünftige molekulargenetische Untersuchungen in den entsprechenden Gruppen lassen hier eindeutige Aussagen erhoffen.

Zu gleichen Ergebnissen kommt man bei ausschließlicher Berücksichtigung der besonders ausbreitungsschwachen, edaphisch lebenden Trechus-Laufkäfer. Die bereits in Kapitel 2.1 vorgestellte Arealanalyse erbrachte in dieser Gattung Hinweise auf Artengruppen- Endemismus für bestimmte Teile des Himalaya-Tibet Orogens (Publikation I). Nur eine späte (pliozän-quartäre) Anhebung der intramontanen Beckenlandschaften und des Yarlung Zhangbo Tales in die jeweils aktuellen Höhen über den Meeresspiegel lässt diesen Endemismus alpiner Artengruppen zwischen dem Tanggula Shan und dem Nyainqentanglha Shan sowie zwischen dem Transhimalaya und dem Tibetischen Himalaya verständlich werden.

Letztlich stehen diese Aussagen noch unter dem Vorbehalt weiterer biogeographischer Erkundungen in Tibet. Die Datenlage ist insbesondere in Zentral- und Westtibet so dünn, dass Fehleinschätzungen über die Lage der Areale bestimmter Artengruppen derzeit nicht ausgeschlossen werden können. Dennoch zeigen die vorläufigen Ergebnisse bereits jetzt, dass die Biogeographie mit ausbreitungsschwachen Laufkäfer-Entwicklungslinien hervorragend geeignete Werkzeuge besitzt, welche die Abwägung widersprüchlicher Ergebnisse der bisherigen geologische Erkundung der Paläoumwelt Hochasiens ermöglicht. 65

3. Zusammenfassung

In der vorliegenden Studie wird der aktuelle Kenntnisstand zur Entwicklungsgeschichte der Laufkäfer im Himalaya-Tibet Orogen mit Hinblick auf mögliche Aussagen zur zeitlichen und räumlichen Differenziertheit der Gebirgshebung und dem damit verbundenen regionalen Wandel der Paläoumwelt zusammengefasst. Ein weiterer Schwerpunkt fokussiert auf die Anwendung phylogenetisch-biogeographischer Laufkäferdaten zur Modellierung von LGM- Umweltbedingungen in Hochasien. Die Ergebnisse zeigen die umfassende Bedeutung der Endemiten-Biogeographie für die Paläoumweltforschung im Hochgebirge. Die Laufkäfer erweisen sich als besonders geeignete Zeitzeugen, da sie einen sehr hohen Anteil an flugunfähigen, neoendemischen Entwicklungslinien mit jeweils stark eingeschränkter Ausbreitungsfähigkeit evolviert haben. Jede dieser Linien und ihre Untereinheiten, die endemischen Artengruppen, Arten, Unterarten und Populationen, sind ausgezeichnet durch Anpassungen an einen bestimmten Toleranzbereich hinsichtlich der herrschenden Standortfaktoren in ihrem Hochgebirgslebensraum und durch ein definiertes Verbreitungsgebiet. Letzteres ist das Resultat der laufaktiven Ausbreitung der Käferindividuen in einer Umwelt, die flugunfähigen und nicht-vektorausbreitenden Bodenorganismen wirksame Barrieren entgegenstellt. Somit liefern genaue Kenntnisse über Ökologie und rezente Verbreitung der endemischen Laufkäfer-Taxa und über die Verwandtschaftsverhältnisse zwischen den terminalen Entwicklungslinien dieser Taxa einen Datenfundus, welcher die Rekonstruktion der Paläoumweltbedingungen in jenem Teil Hochasien ermöglicht, der im Verlauf der Stammesgeschichte durch diese Linien besiedelt wurde. Da in allen Gebieten Hochasiens eine große Zahl Laufkäferarten aus verschiedenen Artengruppen vorkommt, erscheint eine flächendeckende Bearbeitung verschiedener Fragestellungen der Paläoumweltforschung auf dieser Basis zukünftig möglich.

Die Ergebnisse der Studie basieren auf den Publikationen I-IV, auf früheren Arbeiten und auf derzeit laufende Untersuchungen und sind in drei Abschnitte gegliedert. Diese umfassen 1) die geographische Eingrenzung von LGM-Refugien der alpinen und hochmontanen Bodenfauna sowie hierauf aufbauenden Aussagen zu den Vereisungsgrenzen im LGM Südtibets und im Nepal-Himalaya, 2) die Erarbeitung und Erprobung einer neuen Methode zur Bestimmung der LGM-Temperaturabsenkung in Hochasien und 3) einen Abriss der tertiären Besiedlungsgeschichte der Laufkäfer im Himalaya-Tibet Orogen mit der Ableitung wesentlicher Merkmale der Paläoumwelt in den verschiedenen Hebungsphasen des Orogens. Einleitend zu diesen Themenkomplexen wird der jeweilige Kenntnisstand der Geowissenschaften kurz zusammengefasst. Im Folgenden wird eine kurze Übersicht zu den Ergebnissen der drei Arbeitsschwerpunkte gegeben.

1) In den zentralen Teilen Südtibets und im Inneren Himalaya Nepals existiert eine große Fülle an Mikroareal-Endemiten alpiner Laufkäfer, die ihre eiszeitlichen Refugien hangabwärts 66 derselben Abdachungen und in denselben Seitentalsystemen des Gebirgsabschnittes besaßen, in denen sie heute noch vorkommen. Der Nachweis dieser Refugien ist ein sicherer Beleg gegen die Hypothese eines LGM-Eisschildes über Tibet und eines LGM- Eisstromnetzes im Himalaya von Kuhle (1982-2010) und unterstützt die Arbeiten anderer Autoren der Geowissenschaften, die eine lokale LGM-Vergletscherung im Himalaya-Tibet Orogen postulieren. In verschiedenen Massiven der zentralen Teile Südtibets konnten außerdem artenreiche, endemische Entwicklungslinien alpiner Laufkäfer nachgewiesen werden. Damit lässt sich ein Tabula rasa-Szenario auf dem Tibetischen Plateau, wie es aus der Eisschildhypothese resultieren würde, für alle quartären Kaltzeiten ausschließen.

2) Bisherige Befunde zur Temperaturabsenkung im LGM-Sommer (Juli-maxΔT) Südtibets schwanken über einen weiten Bereich von 0-9K, was die Ableitung konkreter LGM- Umweltverhältnisse auf dem Plateau unmöglich machte. In der vorliegenden Studie wird eine neue Methode entwickelt und getestet, welche die Juli-maxΔT aus der Lage der vertikalen Arealgrenzen lokalendemischer Laufkäferarten ableitet. Für das Damxung-Becken in Südtibet wurde eine Wertespanne von 3-4K Juli-maxΔT ermittelt. Daraus ergeben sich erstmals sichere Hinweise auf die weite Verbreitung alpiner LGM-Lebensräume auf dem Plateau, was auch das Überleben alpiner Arten in Zentraltibet ermöglicht haben kann. Die Ergebnisse werden durch Arealbefunde lokaler Juniperus tibetica-Haplotypen gestützt. Weitere Wacholderwaldrefugien in Südtibet werden aufgrund dieser Daten an geeigneten Standorten bis in Höhen von 4200-4300 m wahrscheinlich. Die Methode ist geeignet, lokale Juli-maxΔT für ganz Hochasien und andere Gebirge niederer Breiten herzuleiten.

3) Die Fragen nach Zeitpunkt, Abfolge und Ausmaß der Heraushebung der verschiedenen Teile des Himalaya-Tibet Orogens seit der Indo-Asiatischen Plattenkollision werden von den Geowissenschaften teilweise noch unterschiedlich beantwortet. Eine Ableitung tertiärer Umweltbedingungen in Hochasien ist deshalb nur für winzige Zeitfenster und für solche Gebiete möglich, aus denen sichere Fossilbefunde vorliegen. In der vorliegenden Studie wird gezeigt, dass phylogenetisch-biogeographische Analysen in rezenten, endemischen Laufkäfer-Artengruppen belastbare Daten zur Rekonstruktion der Hebungs- und Umweltgeschichte Hochasiens bereitstellen können, welche eine Abwägung der verschiedenen geowissenschaftlichen Hypothesen ermöglichen. Die vorläufigen Befunde machen eine frühe (eozän-oligozäne) Hebung Südtibets in hochmontane Höhen mit mesophilen Bergwäldern und eine miozäne Hebung in alpine Höhen wahrscheinlich. Hier entwickelte sich zunächst eine eigenständige Fauna. Spätestens im Unteren Miozän entwickelte sich auch eine hochmontane Fauna in Osttibet, die sich vermutlich im Mittleren Miozän aufgrund einer Hebung Zentraltibets in hochmontane und später (Pliozän-Quartär) in alpine Höhen im Gebiet des zentralen Südtibets mit der dortigen Fauna vermischte. In Zentraltibet müssen deshalb im Miozän hochmontane Waldgebiete existiert haben. Der 67

Ostrand des Plateaus war vermutlich weitläufig zertalt. Die Heraushebung des Hohen Himalaya erfolgte wahrscheinlich erst ab dem Unteren Miozän. Südtibetische Faunenelemente besiedelten von Norden aus den aufsteigenden Himalaya und erfuhren hier eine enorme Radiation im Verlaufe des Quartärs. Vermutlich konnten feuchte Luftmassen noch im frühen Quartär in solchem Umfang nach Südtibet vordringen, dass sie dort die Existenz von Nebelwäldern ermöglichten. Im Unterschied zu den meisten geologischen Hebungsmodellen deuten die Laufkäferbefunde an, dass die Heraushebung der einzelnen Teile des Orogens vermutlich sehr viel differenzierter erfolgte, was über lange Zeiträume das Nebeneinander hoch aufragender Bergketten und tief hinab reichender, ausgedehnter Becken und Täler ermöglichte. Der heutige Charakter eines generell über 4500 mNN aufragenden Hochplateaus ist deshalb wohl eine geologisch junge Erscheinung.

Große Gebiete in Hochasien sind hinsichtlich der Laufkäfer bislang kaum untersucht worden. Viele Artengruppen sind systematisch und phylogenetisch nur unzureichend bekannt. Diese Tatsachen ziehen die derzeitigen Grenzen der biogeographischen Paläoumweltforschung in Hochasien und schränken die Aussagekraft der Laufkäferdaten ein. Eine intensivierte Feldforschung und eine umfassende biogeographisch-phylogenetische Aufarbeitung des Laufkäfermaterials würden sowohl eine detaillierte Kartierung der LGM-Umweltbedingungen auf dem Tibetischen Plateau als auch weiterreichende Aussagen zur Entwicklungsgeschichte des Himalaya-Tibet Orogens ermöglichen.

4. Ausblick

Der folgende, in der vorliegenden Studie herausgearbeitete Sachverhalt macht eine weitere Auseinandersetzung mit der Endemiten-Biogeographie der Laufkäfer Hochasiens sehr lohnenswert: Hochgebirgs-Laufkäfer bilden aufgrund ihrer geringen Ausbreitungsfähigkeit und der damit verbundenen Tendenz zur Evolution neoendemischer Entwicklungslinien zweifellos eine hervorragende Gruppe von Modellorganismen, die auf viele verschiedene Fragestellungen der Paläoumweltforschung Antworten liefern kann. Die entscheidenden Voraussetzungen für die Qualität der Aussagen liegen im biogeographischen und phylogenetischen Bearbeitungsstand des rezenten Artenbestandes des Gebirgssystems. Hier besteht zwar noch ein erheblicher Verbesserungsbedarf, jedoch sind dies aufgrund der umfangreichen Vorarbeiten durchaus lösbare Aufgaben. Eine weitere Hilfestellung für solche Fragestellungen, die bis an den Beginn der Heraushebung des Himalaya-Tibet Orogens zurückreichen, liefert der fossile Schatz im Baltischen Bernstein, der hinsichtlich der Laufkäfer reichhaltig ist, aber noch ungenügend bearbeitet wurde. Auch hierin verbirgt sich ein lösbares Problem. Aus diesen Vorbemerkungen lassen sich mit Hinblick auf die weitere Beschäftigung mit Fragestellungen der Umweltgeschichte Hochasiens folgende Aufgabenstellungen formulieren: 68

A) Arbeitsgebiet quartäre Umweltgeschichte Hochasiens

1) Modellierung der LGM-Umwelt für ganz Hochasien

Eine Kartierung der horizontalen und vertikalen Arealgrenzen lokalendemischer Laufkäfer in den verschiedenen Teilen des Himalaya-Tibet Orogens ermöglicht a) die Darstellung der lokalen Vereisungsgrenzen aus der Lage der jeweiligen LGM-Refugien, b) die Ableitung der lokalen LGM-Temperaturabsenkung anhand der hier präsentierten neuen Methode sowie c) grundsätzliche Aussagen zu den LGM-Niederschlagsverhältnissen aufgrund der Bindung der einzelnen Arten an eine spezifische Bodenfeuchte und winterliche Schneebedeckung. Basierend auf den umfangreichen Vorarbeiten lässt eine flächendeckende Erfassung der hochalpinen Trechus-Arten Hochasiens aussagekräftige Ergebnisse vor allem für die zentralen Teile des Plateaus erwarten. Verschiedene weitere Artengruppen der Laufkäfer wären hinzuzuziehen, deren Vertikalareale tiefer liegen. Dies würde die Ableitung der lokalen LGM-Umweltbedingungen auch in den Randgebieten des Plateaus und eine Kartierung der LGM-Waldgebiete in Hochasien ermöglichen. Da der Zeitraum seit dem Letztglazial zu gering ist, um Isolation von Käferpopulationen in Mikrorefugien anhand morphologischer Untersuchungen zu identifizieren, sollten die bisherigen Analysemethoden mit molekulargenetischen Methoden an schnell evoluierenden Markern erweitert werden. Parallel muss ein Feldarbeitsprogramm zur Erfassung der regionalen Werte für das Temperaturgefälle entlang der Berghänge in verschiedenen Gebieten Tibets installiert werden. Aus der Differenz der bislang verfügbaren Werte resultiert eine zu große Schwankungsbreite der ermittelten Werte für die LGM-Temperaturabsenkung.

2) Erarbeitung von Methoden zur Modellierung der Paläoumweltbedingungen Hochasiens früherer Vereisungsperioden

Der Nachweis endemischer Entwicklungslinien der Trechus-Laufkäfer auf dem Tibetischen Plateau, deren Entstehung in das Tertiär zurückreicht, lieferte bereits hinreichende Indizien, dass keine der quartären Eiszeiten zu einer vollständigen Auslöschung der tertiären Fauna auf dem Plateau geführt hat. Damit bietet sich die Möglichkeit, anhand phylogeographischer Analysen der in den zentralen Teilen Tibets endemischen Laufkäfer-Artengruppen die Umweltbedingungen früherer Kaltzeiten zu rekonstruieren. Dazu muss die Arealgenese der jeweiligen Entwicklungslinien nachgezeichnet werden. Hierzu wären Sequenzanalysen verschiedener mitochondrialer und kerngenomischer Marker erforderlich. Es liegen bereits umfangreiche eigene Studien in der Gattung Carabus vor, welche die zügige Erarbeitung geeigneter molekulargenetischer Methoden für diese Aufgabenstellung ermöglichen. Der zusätzlich notwendige Feldarbeitsaufwand würde relativ geringfügig ausfallen, da er mit der vorhergehenden Aufgabenstellung weitgehend korreliert. 69

B) Arbeitsgebiet Hebungsgeschichte Hochasiens

1) Eichung der „Molekularen Uhr“ in endemischen Laufkäfer-Artengruppen Hochasiens mittels Bernsteinfossilien

In der vorliegenden Studie wurde dargestellt, dass phylogenetisch-biogeographische Untersuchungen in endemischen Artengruppen die Datierung bestimmter Phasen in der Heraushebung des Himalaya-Tibet Orogens ermöglichen. Voraussetzung ist die Kenntnis über die Evolutionsgeschwindigkeit der untersuchten Genabschnitte. Da die Eichpunkte nicht aus der Paläogeographie Hochasiens selbst gewonnen werden können, ist es notwendig, vorrangig auf Fossilbefunde zurückzugreifen. Idealerweise liegt mit den Inklusen des Baltischen Bernsteins ein Datenfundus vor, dessen Entstehung vermutlich auf dieselbe Epoche zurückgeht, wie die primäre Heraushebung des Orogens. Dieses Material bedarf aber einer eingehenden Analyse, da über die systematische Stellung der Bernstein-Laufkäfer noch zu wenig bekannt ist. Hierzu müssen die Inklusen-Sammlungen verschiedener naturkundlicher Museen eingehend morphologisch untersucht werden. Ziel ist der Nachweis solcher Taxa, die abgeleitete Entwicklungslinien in Hochasien besitzen. Durch den Fund des Calathus elpis (Ortuño & Arillo 2009) ist dies bereits in einem Falle gelungen (siehe Kapitel 2.3). Die Ergebnisse sind eine der Grundlagen für die Erarbeitung der folgenden Arbeitsschwerpunkte.

2) Datierung der Heraushebung des Hohen Himalaya

Für die Geowissenschaften ist dies eines der interessantesten und zugleich scheinbar schwierigsten Themen in der Hebungsgeschichte des Himalaya-Tibet Orogens. (vgl. Mulch & Chamberlain 2006). Die Biogeographie kann hierzu vermutlich belastbare Daten liefern. Grundlage ist die Entdeckung des tertiär-tibetischen Ursprungs der im Himalaya endemischen Artengruppen. In der Datierung der Genese der terminalen Artengruppen solcher Endemiten liegt der Schlüssel für die Datierung der Himalaya-Hebung. Phylogeographische Untersuchungen in den artenreichen Taxa Calathus wittmerianus- Gruppe, Carabus Subgenus Meganebrius und Pterostichus Ethira-clade, für die bereits umfangreiche morphologische und z.T. auch molekulargenetische Voruntersuchungen vorliegen, bieten gleich drei unabhängige Wege zur Bearbeitung dieses Themas.

3) Datierung der Heraushebung Zentraltibets

Analog zum vorhergehenden Punkt liefert die phylogeographische Analyse transtibetischer Artengruppen den Schlüssel für die Datierung der Heraushebung der Gebirgsareale zwischen Transhimalaya und Tanggula Shan sowie weiter bis zum Kunlun Shan. Entsprechend der Anpassung der betreffenden Gruppen an verschiedene Höhenstufen dürften Aussagen zur Anhebung Zentraltibets in das Hochmontan (z.B. Cychropsis), 70

Subalpin (z.B. Zabrus) oder Alpin (Bradytulus, Deltomerodes) möglich sein. Auch dieser Arbeitsschwerpunkt scheint realistisch, da sowohl morphologische Vorarbeiten und umfangreiche Datensammlungen aus allen genannten Gruppen vorliegen, sowie erste molekulargenetische Befunde (Cychropsis).

4) Lokalisierung und Datierung der primären Gebirgshebungen im Himalaya-Tibet Orogen

Hierunter verbirgt sich vermutlich das interessanteste und anspruchsvollste Thema in der historischen Biogeographie Hochasiens. Damit wird nicht nur ein wichtiges und in wesentlichen Punkten ungelöstes Problem der Geowissenschaften angegangen (vgl. Kapitel 2.3), es werden auch basale Fragestellungen zur Faunengenese Asiens aufgegriffen. Die Lokalisierung der primären Evolutionszentren der Fauna Hochasiens und die phylogenetische Einordnung der Entwicklungslinien ihrer Laufkäfer würde sowohl die Fragen nach der Lage und dem Hebungsbeginn der frühesten Gebirge des Himalaya-Tibet Orogens beantworten können, als auch eine biogeographische Charakterisierung Süd- und Ostasiens zum Zeitpunkt dieser Hebungen ermöglichen. Sicher ist bereits, dass sich die Laufkäferfauna des Himalaya-Tibet Orogens aus verschiedenen Ursprungsgebieten rekrutiert und dass sie verschiedene primäre Evolutionszentren besaß (Kapitel 2.3). Unter Letzteren wurden Südtibet und Osttibet bereits als eigenständige Entwicklungsgebiete identifiziert, die vermutlich aber nicht gleichzeitig entstanden. Gerade für Osttibet ist aufgrund der enormen Artengruppen-Diversität und der biogeographischen Heterogenität die ursprüngliche Existenz vieler Sekundärzentren wahrscheinlich. Die in der vorliegenden Studie getroffenen Aussagen über den Zeitpunkt der Entstehung dieser Faunen sind noch sehr unsicher. Umfassende kombinierte morphologisch-molekulargenetische Analysen in Laufkäfer-Artengruppen, die in den verschiedenen Teilen Hochasiens endemisch sind, dürften in Zukunft erhebliche Beiträge zur Klärung solcher fachübergreifenden Fragestellungen liefern. 71

5. Danksagung

Diese Studie wäre ohne die Anregungen und vielfältigen praktischen Hilfestellungen meiner Freunde und Kollegen und ohne die beständige Unterstützung durch meine Familie nicht möglich gewesen. Georg Miehe motivierte mich auf unserem ersten Zusammentreffen in Erfurt 2002 dazu, die Biogeographie nicht nur von den Resultaten der Geowissenschaften profitieren zu lassen, sondern auf Basis der Laufkäfer selbst einen Beitrag zur Erkundung der Hebungs- und Klimageschichte Hochasiens zu leisten. Seitdem erhalte ich von ihm und seiner Frau Sabine beständige Unterstützung, Unmengen wertvoller Hinweise und Denkanstöße sowie das nötige Adrenalin, um selbst bei schier aussichtsloser Terminlage genügend Energie für das Abgraben gewaltiger Arbeitsberge zu finden. Jochen Martens hat mir mit seinen zoogeographischen Schriften und zahllosen Himalaya-Expeditionen entscheidende fachliche Grundlagen und eine wichtige Materialbasis für meine eigene Arbeit bereitgestellt. Die aus seinem gewaltigen Wissensschatz resultierenden Ratschläge, seine fachliche Unterstützung und die tatkräftige Beförderung meiner Tibetforschung sind wichtige Fundamente der vorliegenden Arbeit. Ohne den erfolgreichen Projektantrag bei der DFG durch Jochen und Georg wäre dieses Promotionsprojekt nicht zustande gekommen. Der Deutschen Forschungsgemeinschaft danke ich an dieser Stelle, dass sie meine Arbeiten über vier Jahre großzügig unterstützt hat. Meine Frau Karin hat mir in all diesen Jahren den Rücken freigehalten, das „normale“ Leben organisiert, das Reisebüro, die Bürokratie und die Nervenheilkunde übernommen und mit mir den Sommerurlaub im Schnee des Himalaya verbracht, um weiteres hochalpines Käfermaterial zu bergen.

Die Einladung zu einem Vortrag 2006 an die Universität Bergen durch Torstein Solhøy verschaffte mir die Möglichkeit, einen herausragenden Wissenschaftler und Hochschullehrer kennenzulernen, der mit hohem persönlichem Einsatz den Nachwuchs begeisterter Zoologen und Ökologen weltweit fördert. Torstein legte die Grundlagen für meine erste Tibetreise 2007, bei der wir mit tibetischen und nepalesischen Freunden und Kollegen den Nyainqentanglha Shan gemeinsam erkundeten. Dabei profitierte ich von seinen langjährigen Tibet-Erfahrungen. Darüber hinaus verursacht die Zusammenarbeit mit Torstein größte Leistungsfähigkeit, weil sie in einem hohen Maße mit Lebensfreude verbunden ist.

Ralf Bastrop hat mich nachhaltig für die Molekulargenetik begeistert. Er ermöglichte mir den Einstieg in die Arbeitsmethoden und gewährte mir kontinuierliche Unterstützung zur Gewinnung sauberer Sequenzdaten der Laufkäfer. Seinem Wohlwollen gegenüber dem eingefleischten „Morphologen“, seiner Geduld und seinem kritischen Blick auf die Resultate ist es zu verdanken, dass trotz meiner beständigen Zeitnot, verursacht durch die gleichzeitige Arbeit an mehreren „Baustellen“, inzwischen hochinteressante Resultate vorliegen. Seine Arbeitsgruppe an der Universität Rostock umfasst sehr hilfsbereite Menschen, die mir mehr als einmal unter die Arme gegriffen haben: Heike, Jens, Kerstin, 72

Lukas und Marike. Mein herzlicher Dank richtet sich an Steffen Höll für seinen großen Einsatz bei der Gewinnung von Sequenzdaten und vor allem für sein besonderes Interesse an der vorliegenden Thematik und die daraus resultierenden gemeinsamen Diskussionen. Bei der phylogenetischen Auswertung der molekularen Datensätze haben mich außerdem Anna Hundsdörfer (Senckenberg Museum für Tierkunde Dresden) und Lars Opgenoorth (Universität Marburg) unterstützt. Ich hoffe, dass ich die Möglichkeit haben werde, mit diesem hervorragenden Team noch viele weitere Laufkäfer-Phylogeographien zu erarbeiten.

Die Zeit, die ich mit Rucksack und Zelt im Himalaya fernab der Zivilisation verbracht habe, summiert sich auf Jahre. Dass alle diese Expeditionen mit wertvollen Materialsammlungen endeten und trotz aller erdenklichen Abenteuer immer gut ausgingen, habe ich nicht zuletzt meinen nepalesischen Helfern zu verdanken, allen voran Santos Tamang. Auch mein langjähriger Reisegefährte Olaf Jäger (Museum für Tierkunde Dresden) hat wesentlich zum Gelingen dieser Expeditionen beigetragen. Der Anstoß für eine Erforschung der Laufkäfer Nepals geht auf meinen Freund Matthias Hartmann (Naturkundemuseum Erfurt) zurück. Von Matthias und Olaf erhielt ich alle nur denkbare Unterstützung, die ich über die vielen Jahre Freizeitforschung im Himalaya benötigte. In Tibet haben mir neben Torstein vor allem Pubu, Sonam Tso und Tsering geholfen, meine Feldarbeiten erfolgreich durchzuführen.

Last but not least, bedanke ich mich bei den Mitarbeitern im Fachbereich Geographie der Universität Marburg für die unkomplizierte Gewährung der vielen Extrawünsche aufgrund meines Arbeitsplatzes im fernen Rostock. Ganz besonders herzlich bedanke ich mich bei Frau Christina Philippi für ihre beständige Unterstützung und unproblematische Hilfe zur Bewältigung der Bürokratie. Frau Christiane Enderle hat außerdem für die vorliegende Studie hervorragende Kartengrundlagen erarbeitet. Auf diesen basieren die Abbildungen 8-9, 13-14 und 21-28. 73

Literatur

Abe, M., Yasunari, T. & Kitoh, A. (2005): Sensitivity of the central Asian climate to uplift of the Tibetan Plaetau in the coupled climate model (MRI-CGCM1). – The Island Arc, 14: 378-388. An, Z., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001): Evolution of Asian monsoons and phased uplift of the Himalayan-Tibetan plateau since late Miocene times. – Nature, 411: 62-66. Ashworth, A.C. (1996): The response of arctic Carabidae (Coleoptera) to climate change based on the fossil record of the Quaternary Period. – Annales Zoologici Fennici, 33: 125-131. Atkinson, T.C., Briffa, K.R., Coope, G.R. (1987): Seasonal Temperatures in Britain During the Past 22,000 Years, Reconstructed Using Beetle Remains. – Nature, 325: 587-592. Avis, J.C. (2000): Phylogeography. The history and formation of species. – Havard University Press, Cambridge, London, 447 S. Belousov, I.A. & Kabak, I.I. (2005): New Sinozolus species from China (Coleoptera, Carabidae). – In: Konstantinov, A., Tishechkin, A. & Penev, L. (Eds.): Contributions to systematics and biology of beetles. Papers celebrating the 80th birthday of Igor K. Lopatin. – Pensoft Publishers, Sofia: 199-218. Benn, D.I. & Owen, L.A. (2002): Himalayan glacial sedimentary environments: a framework for reconstructing and dating former extents of glaciers in high mountains. – Quaternary International, 97/98: 3-26. Blanford, H.F. (1884): On the connexion of the Himalayan snowfall with dry winds and seasons of drought in India. – Proceedings of the Royal Society of London, 37: 3-12. Blisniuk, P.M., Hacker, B.R., Glodny, J., Ratschbacher, L., Bi, S., Wu, Z., McWilliams, M.O. & Calvert, A. (2001): Normal faulting in central Tibet since at least 13.5 Myr ago. – Nature, 412: 628. Böhner, J. & Lehmkuhl, F. (2005): Environmental change modelling for Central and High Asia: Pleistocene, present and future scenarios. – Boreas, 34: 220-231. Brower, A.V.Z. (1994): Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. – Proceedings of the National Academy of Sciences, USA, 91: 6491-6495. Chen, W.Y. (1981): Natural environment of the Pliocene basin in Gyirong, Xizang. – In: Geological and Ecological studies of Qinghai-Xizang Plateau, Science Press, Beijing, 1: 343-352. Clarke, T.E., Levin, D.B., Kavanaugh, D.H. & Reimchen, T.E. (2001): Rapid evolution in the Nebria gregaria group (Coleoptera: Carabidae) and the paleogeography of the Queen Charlotte Islands. – Evolution, 55 (7): 1408- 1418. Coope, G. R. (1986): Coleoptera analysis. – In: Berglund, B.E. (Ed.): Handbook of Holocene Palaeoecology and Palaeohydrology. – John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto: 703-713. Coope, G.R. (2002): Changes in the thermal climate in northwestern Europe during Marine Oxygen Isotope Stage 3, estimated from fossil assemblages. – Quaternary Research, 57: 401-409. Coope, G.R. & Elias, S.A. (2000): The environment of upper Palaeolithic (Magdalenian and Azilian) hunters of Hautrive-Champreveyres, Neuchâtel, Switzerland, interpreted from Coleopteran remains. – Journal of Quaternary Science, 15: 157-175. Coope, G.R., Lemdahl, G., Lowe, J.J. & Walking, A. (1998): Temperature gradients in northern Europe during the last glacial-Holocene transition (14-9 14C kyr BP) interpreted from coleopteran assemblages. – Journal of Quaternary Science, 13 (5): 419-433. Coleman, M. & Hodges, K. (1995): Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum estimate for east-west extension. – Nature, 374: 49-52. Cui, Z., Gao, Q., Liu, G., Pan, B. & Chen, H. (1997): The initial elevation of palaeokarst and planation surfaces on Tibetan Plateau. – Chinese Science Bulletin, 42 (11): 934-939. Currie, B.S., Rowley, D.B. & Tabor, N.J. (2005): Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. – Geology, 33 (3): 181-184. Cyr, A.J., Currie, B.S. & Rowley, D.B. (2005): Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet: implications for paleoaltimetry oft he Eocene Tibetan Plateau. – Journal of Geology, 113: 517-533. Dai, S., Fang, X., Dupont-Nivet, G., Song, C., Gao, J., Krijgsman, W., Langereis, C. & Zhang, W. (2006): Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. – Journal of Geophysical Research, 111: 1-19. Dajoz, R. (2002): Les Coléoptères Carabidés et Ténébrionidés. Écologie et Biologie. – Editions TEC & DOC, London, Paris, New York, 522 S. 74

DeCelles, P.G., Robinson, D.M. & Zandt, G. (2002): Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. – Tectonics, 21 (6): 12/1-12/25. DeCelles, P.G., Quade, J., Kapp, P., Fan, M., Dettman, D.L. & Ding, L. (2007): High and dry in central Tibet during the Late Oligocene. – Earth and Planetary Science Letters, 253 (3-4): 389-401. De Lattin, G. (1967): Grundriss der Zoogeographie. – Gustav Fischer, Stuttgart, 602 S. Derbyshire, E., Shi, Y., Li, J., Zheng, B., Li, S. & Wang, J. (1991): Quaternary glaciation of Tibet: The geological evidence. – Quaternary Science Reviews, 10: 485-510. Deuve, T. (1996): Nouveaux Trechus du Tibet et des régions limitrophes (Coleoptera, Trechidae). – Bulletin de la Société entomologique de France, 101 (1): 65–70. Deuve, T. (1997a): Nouveaux Trechini du Tibet et des régions limitrophes (Coleoptera, Trechidae). – Revue Francaise d’Entomologie (Nouvelle série), 19 (3-4): 139–154. Deuve, T. (1997b): Sinozolus yuae n. gen., n. sp., premier représentant des Zolinae dans l’hémisphèr Nord (Coleoptera, Trechidae). – Bulletin de la Société entomologique de France, 102 (1): 31–37. Deuve, T. (2004): Illustrated Catalogue of the genus Carabus of the World (Coleoptera: Carabidae). – Pensoft, Sofia, Moscow, 461 S. Deuve, T. & Schmidt, J. (2010): Descriptions de deux nouveaux Cychropsis Boileau, 1901, du Népal (Coleoptera, Carabidae). – Bulletin de la Société entomologique de France, 115 (3): 305-309. Dostal, A. (1993): Neue Taxa aus der Gattung Reicheiodes (stat. nov.) (Coleoptera, Carabidae: Scaritini). – Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 45 (3/4): 99-106. Du, M., Kawashima, S., Yonemura, S., Yamada, T., Zhang, Z., Liu, J., Li, Y., Gu, S. & Tang, Y. (2007): Temperature distribution in the high mountain regions on the Tibetan Plateau - Measurement and simulation. – In: Oxley, L. & Kulasiri, D. (Eds.): MODSIM 2007 International Congress on Modelling and Simulation. – Modelling and Simulation, Society of Australia and New Zealand: 2146-2152. Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S. & Fang, X. (2007): Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition. – Nature, 445: 635-638. Dupont-Nivet, G., Dai, S., Fang, X., Krijgsman, W., Erens, V., Reitsma, M. & Langereis, C. (2008a): Timing and distribution of tectonic rotations in the northeastern Tibetan Plateau. – Geological Society of America Special Paper, 444: 73-87. Dupont-Nivet, G., Hoorn, C. & Konert, M. (2008b): Tibetan uplift prior to the Eocene-Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. – Geology, 36 (12): 987-990. Elias, S.A. (1994): Quaternary and their environments. – Smithonian Institution Press, Washington, London, 284 S. Elias, S.A. (2000): Climatic tolerances and zoogeography of the late Pleistocene beetle fauna of Beringia. – Géographie physique et Quaternaire, 54 (2): 143-155. Elias, S.A. (2007): Beetle Records. – In: Elias, S. A. (Ed.): Encyclopedia of Quaternary Sciences. – Elsevier, Amsterdam: 153-163. Elias, S.A. (2010): Advances in Quaternary entomology. – Developments in Quaternary Science, 12 (series editor J.J.M. van de Meer). – Elsevier, Amsterdam usw., 288 S. Ellenberg, H. (1986): Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Vierte, verbesserte Auflage. – Eugen Ulmer, Stuttgart, 989 S. Farrell, B.D. (2001): Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. – Molecular Phylogenetics and Evolution, 18: 467-468. Fort, M. (1995): The himalayan glaciation: Myth and reality. – Journal of Nepal Geological Society, 11: 257-272. Fort, M. (1996): Late Cenozoic environmental changes and upilft on the northern side of the central Himalaya: a reappraisal from field data. – Palaeogeography, Palaeoclimatology, Palaeoecology, 120: 123-145. Fort, M. (2004): Quaternary glaciation in the Nepal . – In: Ehlers, J., Gibbart, P.L. (Eds.): Quaternary glaciations - extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. – Elsevier, Amsterdam: 261–278. Franz, H. (1979): Ökologie der Hochgebirge. – Eugen Ulmer, Stuttgart, 495 S. Freeland, J.R. (2005): Molecular Ecology. – Wiley, Chichester, 388 S. Fujii, R. & Sakai, H. (2002): Palaeoclimatic changes during the last 2.5 myr record in the Kathmandu basin, Central Nepal Himalayas. – Journal of Asian Earth Sciences, 20: 255-266. 75

Garzione, C.N., Dettman, D.L., Quade, J., DeCelles, P.G. & Butler, R.F. (2000): High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. – Geology, 28: 339-342. Giddings, L. E. (1980): The physical environment of the highlands. – In: Mani, M.S. & Giddings, L.E. (Eds.): Ecology of highlands. – Dr. W. Junk Publishers, The Hague, Boston, London: 11-34. Grimaldi, D. & Engel, M.S. (2005): Evolution of the insects. – Cambridge University Press, New York, 755 S. Harris, N. (2006): The elevation history of the Tibetan Plateau and its implications fort he Asian monsoon. – Palaeogeography, Palaeoclimatology, Palaeoecology, 241: 4-15. Harrison, T.M., Copeland, P., Kidd, W.S.F. & Yin, A. (1992): Raising Tibet. – Science, 255: 1663-1670. Heberdey, F. (1933): Die Bedeutung der Eiszeit für die Fauna der Alpen. – Zoogeographica, 1 (3): 353-412. Herzschuh, U., Kürschner, H. & Mischke, S. (2006): Temperature variability and vertical vegetation belt shifts during the last ~ 50,000 yr in the Qilian mountains (NE margin oft he Tibetan Plateau, China). – Quaternary Research, 66: 133-146. Herzschuh, U. & Liu, X. (2007): Vegetation evolution in arid China during marine isotope stages 3 and 2 (~65-11 ka). – Developments in Quaternary Sciences, 9: 37-45. Hieke, F. (1983): Die historische Entwicklung der Käfer (Coleoptera). – Entomologische Nachrichten und Berichte, 27 (3): 105-158. Hodges, K.V. (1998): The thermodynamics of Himalayan orogenesis. – In: Treloar, P.J. & O’Brien, P.J. (Eds.): What drives metamorphism and metamorphic reactions? – Geological Society, London, Special Publications, 138: 7-22. Hodges, K.V. (2007): Wie das Klima Berge versetzt. – Spektrum der Wissenschaft, Februar 2007: 52-59. Holdhaus, K. (1906): Über die Verbreitung der Koleopteren in den mitteleuropäischen Hochgebirgen. – Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien, 56: 629-639. Holdhaus, K. (1912): Kritisches Verzeichnis der boreoalpinen Tierformen (Glazialrelikte) der mittel- und südeuropäischen Hochgebirge. – Annalen des Naturhistorischen Hofmuseums in Wien, 37: 123-293 + 18 Tafeln. Holdhaus, K. (1954): Die Spuren der Eiszeit in der Tierwelt Europas. – Abhandlungen der Zoologischen Gesellschaft Wien, Wagner, Innsbruck, 18, 493 S. Hövermann, J. & Lehmkuhl, F. (1994): Die vorzeitlichen Vergletscherungen in Ost- und Zentraltibet. – Göttinger Geographische Abhandlungen, 95: 71-114. Hovorka, O. & Sciaky, R. (2003): Subtribe Calathina Laporte, 1834. – In: Löbl, I. & Smetana, A. (Eds.): Catalogue of Palaearctic Coleoptera, Volume 1. Archostemata-Myxophaga-. – Apollo Books, Stenstrup: 524- 529. Imura, Y. (2001): On the genus Cychropsis (Coleoptera, Carabidae) of the Himalayas and China. – Gekkan- Mushi, 361: 2-13. Imura, Y. (2002): Shuocychropsis, a new subgenus of the genus Cychropsis (Coleoptera, Carabidae) from Southwest China. – Elytra, Tokyo, 30: 47-48. Jost-Stauffer, M., Coope, G.R. & Schlüchter, C. (2005): Environmental and climatic reconstruction during Marine Oxygen Isotope Stage 3 from Gossau, Swiss Midlands, based on coleopteran assemblages. – Boreas, 34: 53- 60. Kavanaugh, D.H. (1979): Rates of taxonomically significant differentiation in relation to geographical isolation and habitat: Examples from a study of the Nearctic Nebria fauna. – In: Erwin, T.L., Ball, G.E. & Whitehead, D.R. (Eds.): Carabid beetles, their evolution, natural history, and classification. – Dr. W. Junk bv Publishers, The Hague, Boston, London: 35-57. Klausnitzer, B. (2005): Käfer. – Nikol Verlagsgesellschaft, Hamburg, I-XIV, 238 S. Klinge, M. & Lehmkuhl, F. (2004): Pleistocene glaciations in southern and eastern Tibet. – In: Ehlers, J. & Gibbart, P.L. (Hrsg.): Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. – Elsevier, Amsterdam: 243-254. Körner, C. (2003): Alpine plant life. Functional plant ecology of high mountain ecosystems. Second edition. – Springer, Berlin usw., 344 pp + 4 plates. Kuhle, M. (1982a): Was spricht für eine pleistozäne Inlandvereisung Hochtibets? – Sitzungsberichte und Mitteilungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 6 (Sonderband: Die Chinesisch/Deutsche Tibet-Expedition 1981, Braunschweig-Symposium vom 14.-16.04.1982): 68-77. Kuhle, M. (1982b): Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. – Zeitschrift für Geomorphologie, Supplementband 41, Textteil, 229 S. + Abbildungsteil. 76

Kuhle, M. (1983): Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Empirische Grundlage. – Gebrüder Borntraeger, Berlin, Stuttgart, 383 S. Kuhle, M. (2001): The glaciation of High Asia and its causal relation to the onset of Ice Ages. – Die Erde, 132: 339-359. Kuhle, M. (2004): The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. – In: Ehlers, J. &. Gibbart, L. (Eds.): Quaternary glaciations - extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. – Elsevier, Amsterdam: 175-199. Kuhle, M. (2005): Glacial geomorphology and ice ages in Tibet and the surrounding mountains. – Island Arc, 14: 346-367. Kuhle, M. (2007): Critical approach to methods of glacier reconstruction in High Asia and discussion of the probability of a Quinghai-Xizang (Tibetan) inland ice. – Journal of Mountain Science, 4 (2): 91-123. Kuhle, M. (2010): New indicators of a former Tibetan ice sheet and an ice stream network in the surrounding mountain systems: new field observations and dating on the SE-, S- and W-margin of Tibet from expeditions in 2004-2009. – In: Leech, M.L., Klemperer, S.L. & Mooney, W.D. (Eds.): Proceedings for the 25th Himalaya- Karakoram-Tibet workshop: U.S. Geological Survey, open-file report 2010-1099: 2 S. [http://pubs.usgs.gov/of/2010/1099/kuhle/]. Kuhle, M. & Kuhle, S. (2010): Review on dating methods: numerical dating in the Quaternary geology of High Asia. – Journal of Mountain Science, 7: 105-122. Kuhle, M. & Roesrath, C. (1990): Geographie und Geologie der Hochgebirge. – Alpin-Lehrplan 11, Deutscher Alpenverein in Zusammenarbeit mit dem Oesterreichischen Alpenverein, München, Wien, Zürich, 160 S. Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F. & Prell, W.L. (1989): The sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments. – Journal Geophysical Research, 94: 18393-18407. Larsson S.G. (1978): Baltic amber - a palaeobiological study. – Entomograph,1: 1-192. Lavé, J. & Avouac, J.P. (2001): Fluvial incision and tectonic uplift across the Himalayas of central Nepal. – Journal of Geophysical Research, 106 (B11): 26.561-26.591. Ledoux, G. & Roux, P. (2005): Nebria. – Chirat, Saint-Just-la-Pendue, 976 S. Leier, A.L., DeCelles, P.G., Kapp, P. & Ding, L. (2007): The Takena Formation of the Lhasa terrane, southern Tibet: The record of a Late Cretaceous retroarc foreland basin. – GSA Bulletin, 119 (1/2): 31-48. Lehmkuhl, F., Klinge, M. & Lang, A. (2002): Late Quaternary glacier advances, lake level fluctuations and aeolian sedimentation in Southern Tibet. – Zeitschrift für Geomorphologie, Supplementband 126: 183-218. Lehmkuhl, F., & Owen, L.A. (2005): Late Quaternary glaciation of Tibet and the bordering mountains: a review. – Boreas, 34: 87-100. Li, J. (1991): The environmental effects of the uplift of the Qinghai-Xizang Plateau. – Quaternary Science Reviews, 10: 479-483. Liebherr, J.K. & McHugh, J.V. (2003): Coleoptera (Beetles, Weevils, Fireflies). – In: Resh, H.V. & Cardé, R.T. (Eds.): Encyclopedia of Insects. – Academic Press, Amsterdam etc.: 219-230. Lindroth, C.H. (1931): Die Insektenfauna Islands und ihre Probleme. – Inaugural-Dissertation, Uppsala: 599 S. Lindroth, C.H. (1935): The Boreo British Coleoptera. A study of the faunistical connections between the British Isles and Scandinavia. – Zoogeographica 2 (4): 579-634. Lindroth, C.H. (1949): Die fennoskandischen Carabidae. Eine tiergeographische Studie. III Allgemeiner Teil. – Göteborgs Kungliga Vetenskaps- och Vitterheds-Samhälles Handlinger, 4 (3): 1-911. Liu, J., Yu, G. & Chen, X. (2002): Palaeoclimate simulation of 21 ka for the Tibetan Plateau and Eastern Asia. Climate Dynamics, 19: 575-583. Klebs, R (1910): Über Bernsteineinschlüsse im allgemeinen und die Coleopteren meiner Bernsteinsammlung. – Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg 51: 217-242. Manabe, S. & Terpstra, T.B. (1974): The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. – Journal of the Atmospheric Sciences, 31: 3-42. Mani, M.S. (1968): Ecology and Biogeography of High Altitude Insects. – Junk Publishers, The Hague: 527 S.. Mani, M.S. (1974a): Biogeography of the Himalaya. – In: Mani, M.S. (Hrsg.): Ecology and Biogeography in India. – Junk Publishers, The Hague: 664-681. Mani, M.S. (1974b): Biogeographical evolution in India. – In: Mani, M.S. (Hrsg.): Ecology and Biogeography in India. – Junk Publishers, The Hague: 698-724. 77

Martens, J. (1979): Die Fauna des Nepal-Himalaya - Entstehung und Erforschung. – Natur und Museum 109: 221-243. Martens, J. (1984): Vertical distribution of Palaearctic and Oriental Faunal components in the Nepal Himalayas. – Erdwissenschaftliche Forschung, Stuttgart 18: 321-336. Martens, J. (1993): Bodenlebende Arthropoden im zentralen Himalaya: Bestandsaufnahme, Wege zur Vielfalt und ökologische Nischen. – In: Schweinfurth, U. (Hrsg.): Neue Forschungen im Himalaya. – Steiner, Stuttgart: 231-250. Miehe, G. (1991): Der Himalaya, eine multizonale Gebirgsregion. – In: Walter, H. & Breckle, S.-W. (Hrsg.): Ökologie der Erde, Band 4. Spezielle Ökologie der Gemäßigten und Arktischen Zonen außerhalb Euro- Nordasiens. – Gustav Fischer, Stuttgart: 181-230. Miehe, G., Miehe, S., Kaiser, K., Reudenbach, C., Behrendes, L., Duo L. & Schlütz, F. (2009): How old is pastoralism in Tibet? An ecological approach to the making of a Tibetan landscape. – Palaeogeography, Palaeoclimatology, Palaeoecology, 276 (1-4): 130-147. Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. (2007): Highest treeline in the northern hemisphere found in southern Tibet. – Mountain Research and Development, 27: 169-173. Miehe, G., Miehe, S., Will, M., Opgenoorth, L. & Duo, L. (2008): An inventory of forest relicts in the pastures of Southern Tibet (Xizang A.R., China). – Plant Ecology, 194: 157-177. Miehe, G., Winiger, M., Böhner, J. & Zhang, Y. (2000): Climatic diagram map of High Asia 1 : 4 000 000. – Georg Miehe, Marburg. Molnar, P. (2005): Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate. – Palaeontologia Electronica, 8 (1): 1-23. Molnar, P., Boos, W.R. & Battisti, D.S. (2010): Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. – Earth and Planetary Sciences, Volume 38: 77-102. Molnar, P. & England, P. (1990): Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? – Nature, 346: 29-34. Molnar, P., England, P. & Martinod, J. (1993): Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. – Reviews of Geophysics, 31: 357-396. Mulch, A. & Chamberlain, C.P. (2006): The rise and growth of Tibet. – Nature, 439: 670-671. Murphy, M.A., Yin, A., Harrison, T.M., Durr, S.B., Chen, Z., Ryerson, F.J., Kidd, W.S.F., Wang, X. & Zhou, X. (1997): Did the Indo-Asian collision alone create the Tibetan plateau? – Geology, 25: 719-722. Ober, K.A. & Heider, T.H. (2010): Phylogenetic diversification patterns and divergence time in ground beetles (Coleoptera: Carabidae: Harpalinae). – BMC Evolutionary Biology, 10 (262): 1-14. Opgenoorth, L., Vendramin, G.G., Mao, K.S., Miehe, G., Miehe, S., Liepelt, S., Liu, J. Q. & Ziegenhagen, B. (2010): Tree endurance on the Tibetan Plateau marks the world's highest known tree line of the Last Glacial Maximum. – New Phytologist, 185: 332-342. Ortuño, V.M. & Arillo, A. (2009): Fossil carabids from Baltic amber – I – A new species of the genus Calathus Bonelli, 1810 (Coleoptera: Carabidae: ). – Zootaxa, 2239: 55-61. Owen, L.A. (2009): Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. – Quaternary Science Reviews, 28: 2150-2164. Owen, L.A. & Benn, D.I. (2005): Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. – Quaternary International, 138/139: 55-78. Owen, L.A., Caffee, M.W., Finkel, R.C. & Seong, Y.B. (2008): Quaternary glaciation of the Himalayan-Tibetan orogen. – Journal of Quaternary Science, 23: 513-531. Prell, W.L., Murray, D.W., Clemens, S.C. & Anderson, D.M. (1992): Evolution and variability of the Indian Ocean summer monsoon: evidence from the western Arabian Sea drilling program. – In: Duncan, R.A., Rea, D.K., Kidd, R.B., von Rad, U. & Weissel, J.K. (Eds.): Synthesis of Results from Scientific Drilling in the Indian Ocean, Geophysical Monograph, 70: 447–469. Prüser, F. (1996): Variabilität mitochondrialer DANN-Sequenzen und die Phylogenie der Gattung Carabus Linné 1758 (Coleoptera: Carabidae). – Dissertation Universität Bremen: 173 S. Quek, S.P., Davies, S.J., Itino, T. & Pierce, N.E. (2004): Codiversification in an ant-plant mutualism: stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) inhabitants of Macaranga (Euphorbiaceae). – Evolution, 58: 554-570. Rabitsch, W. & Essl, F. (Hrsg., 2009): Endemiten. Kostbarkeiten in Österreichs Pflanzen- und Tierwelt. – Naturwissenschaftlicher Verein für Kärnten, Klagenfurt, 924 S. 78

Raymo, M.E. & Ruddiman, W.F. (1992): Tectonic forcing of late Cenocoic climate. – Nature, 359: 117-122. Reiss, R.A., Ashworth, A.C. & Schwert, D.P. (1999): Molecular genetic evidence for the post-Pleistocene divergence of populations of the arctic-alpine Amara alpina (Paykull) (Coleoptera: Carabidae). – Journal of Biogeography, 26: 785-794. Robinson, D.M., Dupont-Nivet, G., Gehrels, G.E. & Zhang, Y. (2003): The Tula uplift, northwestern China: Evidence for regional tectonism of the northern Tibetan Plateau during late Mesozoic-early Cenozoic time. – GSA Bulletin, 115 (1): 35-47. Roig-Juñent, S. (2000): The subtribes and genera of the tribe Broscini (Coleoptera: Carabidae): Cladistic analysis, taxonomic treatment, and biogeographical considerations. – Bulletin of the American Museum of Natural History, 255: 1-90. Rowley, D.B. & Currie, B.S. (2006): Paleo-altimetry of the Late Eocene to Miocene Lunpola basin, central Tibet. – Nature 439: 677-681. Rowley, D.B., Pierrehumbert, R.T. & Currie, B.S. (2001): A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. – Earth and Planet Science Letters, 188: 243-268. Royden, L.H., Burchfiel, B.C. & van der Hilst, R.D. (2008): The geological evolution of the Tibetan plateau. – Science, 321: 1054-1058. Ruiz, C., Jordal, B.H. & Serrano, J. (2009): Molecular phylogeny of the tribe Sphodrini (Coleoptera: Carabidae) based on mitochondrial and nuclear markers. – Molecular Phylogenetics and Evolution, 50: 44-58. Ruiz, C., Jordal, B.H., Emerson, B.C., Will, K.W. & Serrano, J. (2010): Molecular phylogeny and Holarctic diversification of the subtribe Calathina (Coleoptera: Carabidae: Sphodrini). – Molecular Phylogenetics and Evolution, 55: 358-371. Saylor, J.E., Quade, J., Dettman, D.L., DeCelles, P.G., Kapp, P.A., Ding, L. (2009): The late Miocene through present paleoelevation history of southwesten Tibet. – American Journal of Science, 309: 1-42. Schmidt, J. (1996): Neue Arten der Gattung Xestagonum aus dem bhutanesischen Himalaya (Col., Carabidae). – Entomologische Nachrichten und Berichte, 40 (4): 245-251. Schmidt, J. (1999): Revision of the genus Calathus from Nepal (Descriptions of new species of Carabidae from Nepal Himalayas, part 6) (Coleoptera Carabidae Sphodrini). – In: Zamotajlov, A. & Sciaky, R. (Eds.): Advances in Carabidology. – MUISO Publishers, Krasnodar: 299-318. Schmidt, J. (2001a): Archicolpodes n. gen.- eine neue Laufkäfergattung der Tribus Platynini aus China (Coleoptera, Carabidae). – Entomologische Blätter, 96 (2000): 211-218. Schmidt, J. (2001b): Revision der Gruppe des Colpodes semiaeneus Fairmaire, 1886 (Insecta: Coleoptera: Carabidae: Platynini). – Reichenbachia, 34 (11): 101-112. Schmidt, J. (2001c): Die Xestagonum-Fauna des Emei Shan Gebirges (Sichuan) und Beschreibungen der Gattungen Dinocolpodes gen. n. und Chaetosaurus gen. n. (Coleoptera, Carabidae, Platynini). – Coleoptera, 5: 13-40. Schmidt, J. (2003): Neue und interessante Laufkäferarten der Gattung Xestagonum Habu, 1978 aus dem Himalaya (Insecta: Coleoptera: Carabidae). – In: Hartmann, M. & Baumbach, H. (Hrsg.): Biodiversität und Naturausstattung im Himalaya. – Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 85-106. Schmidt, J. (2004): Verbreitung und Variabilität von Bembidion (Thaumatoperyphus) ajmonis Netolitzky, 1935 (Coleoptera: Carabidae, Bembidiini). – Mitteilungen der Münchner Entomologischen Gesellschaft, 94: 97-102. Schmidt, J. (2006): Die Pterostichus-Arten des Subgenus Pseudethira Sciaky, 1996, in Zentral- und West-Nepal (Coleoptera, Carabidae): Taxonomie, Phylogenie, Biogeographie. – In: Hartmann, M. & Weipert, J. (Hrsg.): Biodiversität und Naturausstattung im Himalaya. Band 2. – Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 179-243. Schmidt, J. (2007): Neue Pseudethira-Funde im Annapurna-Massiv im westlichen Zentral-Nepal-Himalaya mit Hinweisen zur Lage von Glazialrefugien im oberen Kali Gandaki- und Marsyangdi Khola-Tal (Coleoptera, Carabidae, Pterostichus) . – Veröffentlichungen Naturkundemuseum Erfurt, 26: 13-25. Schmidt, J. (2009a): Platyderus anandi sp. n., ein Tertiärrelikt im zentralen Nepal-Himalaya (Insecta: Coleoptera: Carabidae: Sphodrini). – In: Hartmann, M. & Weipert, J. (Hrsg.): Biodiversity and Natural Heritage of the Himalaya. Vol. III. – Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 137-140. Schmidt, J. (2009b): Taxonomie und Verbreitung von Arten der Gattung Lucicolpodes Schmidt, 2000, stat. n. (Insecta: Coleoptera: Carabidae: Platynini). – In: Hartmann, M. & Weipert, J. (Hrsg.): Biodiversity and Natural Heritage of the Himalaya. Vol. III. – Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 141-161 + plate VII. 79

Schmidt, J. (2009c): Neue Arten und Unterarten der Pterostichus Untergattung Pseudethira Sciaky, 1996 aus Nepal (Coleoptera, Carabidae). – VERNATE, 28: 183-196. Schmidt, J. & Arndt, E. (2000): Die Gattung Broscus Panzer im Zentral-Himalaya (Insecta: Coleoptera: Carabidae: Broscini). – Entomologische Abhandlungen, Staatliches Museum für Tierkunde Dresden, 58 (1): 5- 28. Sciaky, R. & Wrase, D.W. (1998): Two new genera of Sphodrini Dolichina from China (Coleoptera Carabidae): Bolletino della Società entomologica italiana, 130 (3): 221-232. Searl, M.P. (1996): Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: Implications for the limited extrusion oft he Tibetan Plateau. – Tectonics, 15 (1): 171-186. Shen, J., Liu, X., Wang, S. & Matsumoto, R. (2005): Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. – Quaternary International, 136: 131-140. Shi, Y., Zheng, B. & Li, S. (1992): Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle’s ice sheet hypothesis. – Zeitschrift für Geomorphologie, N.F., Supplement 84: 19- 35. Shi, Y. (2002): Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. – Quaternary International, 97/98: 79-91. Sota, T. & Hayashi, M. (2007): Comparative historical biogeography of Plateumaris leaf beetles (Coleoptera: Chrysomelidae) in Japan: interplay between fossil and molecular data. – Journal of Biogeography, 34: 977- 993. Spicer, R.A., Harris, N.B., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A. & Kelley, S.P. (2003): Constant elevation of southern Tibet over the past 15 million years. – Nature, 42: 622-624. Stork, N.E. (1997): Measuring global biodiversity and its decline. In: Reaka-Kudla, M.L., Wilson, D.E. & Wilson, E.O. (Eds.): Biodiversity II. Understanding and protecting our biological resources. – Joseph Henry Press, Washington D.C.: 41-68. Tang, L.Y., Shen, C.M., Liu, K.B. & Overpeck, J.T. (1999): New high-resolution pollen records from two lakes in Xizang (Tibet). Acta Botanica Sinica, 41: 896-902. Tapponier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G. & Jingsui, Y. (2001): Oblique stepwise rise and growth of the Tibet Plateau. – Science, 294: 1671-1677. Thiele, H.U. (1974): Physiologisch-ökologische Studien an Laufkäfern zur Kausalanalyse ihrer Habitatbindung. – Verhandlungen der Gesellschaft für Ökologie, 1973: 39-54. Uéno, S.-I. (1980): Occurrence of an eyeless trechine beetle in the Nepal Himalaya. – Journal of the speological Society of Japan, 5: 13-20. Uéno, S.-I. (1981): The first flightless trechodine (Coleoptera, Trechinae) from the Nepal Himalaya. – Annotationes Zoologicae Japonenses, 54 (1): 59-66. Wang, C., Zhao, X., Liu, Z., Lippert, P.C., Graham, S.A., Coe, R.S., Yi, H., Zhu, L., Liu, S. & Li, Y. (2008): Constraints on the early uplift history of the Tibetan Plateau. – Proceedings of the National Academy of Sciences, USA, 105 (13): 4987-4992. Wang, F.B., Li, B.Y. & Zhang, Q.S. (1981): The Pliocene and Quaternary environment of the Qinghai-Xizang Plateau. – In: Geological and Ecological studies of Qinghai-Xizang Plateau, Science Press, Beijing, 1: 231- 238. Wang, Y. & Deng, T. (2005): A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau. – Earth and Planetary Science Letters, 236: 322-338. Wang, Y., Deng, T. & Biasatti, D. (2006): Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. – Geology, 34 (4): 309-312. Wang, Y., Wang, X., Xu, Y., Zhang, C., Li, Q., Tseng, Z.J., Takeuchi, G. & Deng, T. (2008): Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan Plateau: Paleo-climatic and paleo-elevation implications. – Earth and Planetary Science Letters, 270 (1-2): 73-85. Weitschat, W. & Wichard. W (1998): Atlas der Pflanzen und Tiere im Baltischen Bernstein. – Dr. Friedrich Pfeil, München: 276 S.. Weigold, H. (2005): Die Biogeographie Tibets und seiner Vorländer. – Mitteilungen des Vereins sächsischer Ornithologen 9 (Sonderheft 3), 445 S. Wrase, D.W. & Schmidt, J. (2006a): A first representative of the tribe Metriini in the Palaearctic: Sinometrius gen. nov. turnai spec. nov. (Coleoptera, Carabidae, Metriini). – In: Hartmann, M. & Weipert, J. (Hrsg.): Biodiversität und Naturausstattung im Himalaya. Band 2. – Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 315-324. 80

Wrase, D.W. & Schmidt, J. (2006b): Description of a new subgenus and five new species of the genus Pterostichus Bonelli, 1810 (Coleoptera, Carabidae, Pterostichini) from northern Myanmar and Yunnan. – Veröffentlichungen Naturkundemuseum Erfurt, 25: 202-215. Xu, R. (1981): Vegetational changes in the past and the uplift of the Qinghai-Xizang Plateau. – In: Geological and Ecological studies of Qinghai-Xizang Plateau, Science Press, Beijing, 1: 139-144. Xu, R. (1982): [The discovery of Quercus semecarpifolia at Mount Xixiabangma and its significance on Quaternary research (auf Chinesisch)]. – In: Monograph on Mount Xixiabangma scientific expeditions, 1964, Science Press, Beijing: 356-365. Xu, S., Zhang, W. & Xu, D. (1984): Discussion on development of the periglacial features in northeast margin of the Qinghai-Xizang Plateau. – Journal of Glaciology and Geocryology, 6: 15-16. Yao, T.D., Shi, Y.F. & Thompson, L.G. (1997): High resolution record of paleoclimate since the little ice age from the Tibetan ice cores. – Quaternary International, 37: 19-23. Yin, A. & Harrison, T.M. (2000): Geologic Evolution of the Himalayan-Tibetan Orogen. – Annual Review Earth Planet Science, 28: 211-280. Zamotajlov, A.S. (2002): [Inferring phylogenetic system of the carabid subfamily Patrobinae (Coleoptera, Carabidae)] (in Russian). – Meetings in memory of N.A. Cholodkovsky, 55 (1): 1-145. Zamotajlov, A.S. (2005): [Geographic and ecological evolution of the carabid subfamily Patrobinae (Coleoptera, Carabidae)] (in Russian). – Adygei State University Publishers, Maykop, 208 pp. Zhang, D., Fengquan, L. & Jianmin, B. (2000): Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. – Environmental Geology, 39 (12): 1352-1358. Zhang, P., Zhang, B.T., Lowenstein, K., & et.al. (1993): [Origin of ancient abnormal Kaolium evaporate-taking Kali salt in qarhan Salt Lake as an example] (in Chinese). – Science Press, Beijing [zitiert nach Shi 2002]. Zhang, Z., Wang, H., Guo, Z. & Jiang, D. (2007): What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? – Palaeogeography, Palaeoclimatology, Palaeoecology, 245: 317-313. Zhang, K.X., Wang, G.C., Cao, K., Liu, C., Xiang, S.Y., Hong, H.L., Kou, X.H., Xu, Y.D., Chen, F.N., Meng, Y.N. & Chen, R.M. (2008): Cenozoic sedimentary records and geochronological constraints of differential uplift of the Qinghai-Tibet Plateau. – Science in China Series D, Earth Sciences, 51 (11): 1658-1672. Zheng, T., McAuley Powell, C., An, Z., Zhou, J. & Dong, G. (2000): Pliocene uplift of the northern Tibetan Plateau. – Geology, 28: 715-718. Zheng, Y.Q., Yu, G., Wang, S.M., Xue, B., Zhuo, D.Q., Zeng, X.M. & Liu, H.Q. (2004): Simulation of paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model. – Climate Dynamics, 23: 513-529. Zhou’Li Jijun, Zhang, S.Q., Zhao, J.D. & Cui, J.X. (2004): Quaternary glaciations in China. – In: Ehlers, J. & Gibbart, P.L. (Hrsg.): Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. – Elsevier, Amsterdam: 105-113.

Publikation I

Schmidt, J.

Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini).

Zootaxa (2009) 2178: 1-72.

TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Zootaxa 2178: 1–72 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition)

ZOOTAXA

2178

Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini)

JOACHIM SCHMIDT Faculty of Geography, University of Marburg, Deutschhausstrasse 10, 35037 Marburg, Germany. Email: [email protected]

Magnolia Press Auckland, New Zealand

Accepted by P. Johnson: 2 Jul. 2009; published: 6 Aug. 2009 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Joachim Schmidt Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from the Tibetan Hima- laya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini) (Zootaxa 2178) 72 pp.; 30 cm. 6 Aug. 2009 ISBN 978-1-86977-403-5 (paperback) ISBN 978-1-86977-404-2 (Online edition)

FIRST PUBLISHED IN 2009 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/

© 2009 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.

ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition)

2 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Table of contents

Abstract ...... 4 Introduction ...... 5 Material and methods ...... 5 Taxonomy ...... 7 A Key to Trechus species of the Tibetan Himalaya and the Southern Tibetan Plateau ...... 7 The Trechus thibetanus group ...... 11 Trechus eutrechoides Deuve, 1992 ...... 13 Trechus eutrechoides mondaensis Deuve, 1997...... 13 Trechus thorongiensis Schmidt, 1994 ...... 17 Trechus thibetanus Jeannel, 1928...... 17 Trechus namtsoensis sp. n...... 18 Trechus dongulaensis sp. n...... 19 Trechus glabratus sp. n...... 20 The Trechus wrzecionkoi group ...... 21 Trechus wrzecionkoi Deuve, 1996 ...... 22 Trechus korae sp. n...... 22 Trechus martinae sp. n...... 23 The Trechus franzianus group...... 24 Trechus pumoensis Deuve, 1997 ...... 25 Trechus tilitshoensis Schmidt, 1994 ...... 25 Trechus franzianus Mateu & Deuve, 1979...... 26 Trechus muguensis sp. n...... 27 Trechus eremita sp. n...... 28 Trechus aedeagalis sp. n...... 29 Trechus sculptipennis sp. n...... 35 The Trechus dacatraianus group ...... 37 Trechus damchungensis Deuve, 1997 ...... 37 Trechus hodeberti Deuve, 1997 ...... 38 Trechus bastropi sp. n...... 38 Trechus mieheorum sp. n...... 40 The Trechus solhoeyi group ...... 41 Trechus solhoeyi sp. n...... 41 The Trechus antonini group ...... 42 Trechus budhaensis sp. n...... 43 Trechus yeti sp. n...... 44 Trechus antonini Deuve, 1997 ...... 45 Trechus religiosus sp. n...... 46 Trechus yak sp. n...... 47 Trechus yak shogulaensis ssp. n...... 48 Trechus folwarcznyi Deuve, 1997 ...... 49 Trechus tsampa sp. n...... 49 Trechus rarus sp. n...... 50 Trechus singularis sp. n...... 51 Trechus tseringi sp. n...... 52 Trechus astrophilus sp. n...... 53 Trechus lama sp. n...... 55 The Trechus chaklaensis group ...... 56 Trechus chaklaensis sp. n...... 57 The Trechus stratiotes group ...... 58 Trechus stratiotes sp. n...... 58 Trechus stratiotes malikasthana ssp. n...... 60 The Trechus rolwalingensis group ...... 61

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 3 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Trechus rolwalingensis sp. n...... 61 Trechus rolwalingensis daldunglana ssp. n...... 62 Remarks on type locality of Trechus numatai Uéno, 1967 ...... 63 A preliminary assessment on the biogeography of Trechus of the Tibetan Himalaya and the Southern Central Plateau..63 Critical analysis of the data set...... 63 Trechus species range extensions and range evolution ...... 65 Biogeographical borders within the Himalayan-Tibetan Orogen ...... 67 Localisation of glacial refugia...... 69 Acknowledgments ...... 70 References ...... 71

Abstract

This paper summarizes the taxonomic and biogeographical knowledge of Trechus species known so far from the Transhimalaya of Central Tibet and from the southern adjacent Tibetan Himalaya of Tibet and Nepal. Nine species groups are proposed, 25 new species as well as three additional new subspecies are described: The species group of Trechus antonini Deuve, 1997, with ten species newly described: T. astrophilus sp. n., T. budhaensis sp. n., T. lama sp. n., T. rarus sp. n., T. religiosus sp. n., T. singularis sp. n., T. tsampa sp. n., T. tseringi sp. n., T. yak sp. n., with an additional subspecies T. yak shogulaensis ssp. n., and T. yeti sp. n., all from South Central Tibet; the monotypic species group of the newly described Trechus chaklaensis sp. n. from South Central Tibet; the species group of Trechus dacatraianus Deuve, 1996, with two species newly described: T. bastropi sp. n., and T. mieheorum sp. n., both from South Central Tibet; the species group of Trechus franzianus Mateu & Deuve, 1979, with four species newly described: T. aedeagalis sp. n. from Far West Nepal, T. eremita sp. n. from West Nepal, T. muguensis sp. n. from West Nepal, and T. sculptipennis sp. n. from Far West Nepal; the monotypic species group of the newly described Trechus rolwalingensis sp. n. from the upper Rolwaling Valley of Central Nepal, with an additional subspecies T. rolwalingensis daldunglana ssp. n. from the lower Rolwaling Valley; the monotypic species group of the newly described Trechus solhoeyi sp. n. from South Central Tibet; the monotypic species group of the newly described Trechus stratiotes sp. n. from north eastern Saipal Himal of Far West Nepal, with an additional subspecies T. stratiotes malikasthana ssp. n. from south eastern Saipal Himal; the species group of Trechus thibetanus Jeannel, 1928, with three species newly described: T. dongulaensis sp. n., T. glabratus sp. n., and T. namtsoensis sp. n., all from South Central Tibet; the species group of Trechus wrzecionkoi Deuve, 1996, with two species newly described: T. korae sp. n., and T. martinae sp. n., both from South Central Tibet. The following two synonymies are proposed: Trechus franzianus Mateu & Deuve, 1979 = Trechus surdipennis Mateu & Deuve, 1979, syn. n.; Trechus thibetanus Jeannel, 1928 = Trechus pseudocameroni Deuve, 1996, syn. n. A key to all species known of South Central Tibet and the Tibetan Himalaya is presented for the first time, and the distributional data of all these species are mapped. The distributional maps highlight the extremely limited distribution of all wingless Trechus species. In situ speciation following the geographical separation of the range of the ancestral species and lack of subsequent range expansion of strictly edaphic species is postulated. Trechus species do not only exhibit a stronger local endemism, but the individual species groups are also endemic to several parts of the Himalayan-Tibetan Orogen. This indicates that the evolution of these Trechus species groups is directly linked to separate geological formations. Based on geological knowledge, the evolution of the species groups endemic to the Tibetan Himalaya and the Transhimalaya started already in the Miocene after these mountains were lifted up to high montane elevations. The recent distributional area of the species can therefore not be the result of range expansion during the Holocene from Pleistocene refugia outside the Tibetan Himalaya or the Transhimalaya. Instead the existence of glacial refugia can be postulated to be in the lower parts of the same mountain slope on which the species occur today. These results clearly challenge the theory of a Tibetan inland ice sheet stretching through the Himalayan transverse valleys during the Last Glacial Maximum.

Key words: Taxonomy, biogeography, fauna of China, fauna of Nepal, key to species, new species, new synonymy, endemism, glacial refuge

4 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Introduction

Trechus Clairville, 1806, is one of the most species rich carabid beetle genera. In the second edition of his world catalogue of ground beetles Lorenz (2005) listed 765 species just within the subgenus Trechus s. str., and most of them occur in the Palaearctic region. The number of newly described species increases every year. The remarkably high species diversity within the genus must be the result of several factors, but a low capability for dispersal appears to be among the most important. Trechus ground beetles have a small body size, and a very high percentage of the species have the hind wings reduced to small stubs (“wingless” species). The genus contains semi-edaphic or strictly edaphic species which are highly adapted to humid and shaded soil and to relatively low soil temperature. Therefore, in high mountainous areas, which provide a range of suitable habitats for wingless Trechus species, the habitats are often isolated. Distributional barriers can be glaciers, torrents, deep tropical valleys or dry slopes, and the last two are probably especially persistent for periods of million of years after the mountains uplift. It is therefore not surprising that, on the one hand, the distributional ranges of high montane or alpine Trechus species are usually very small and, on the other hand, high mountains of temperate and tropical regions such as the Appalachians, the Alps, the Apennines and Carpathians, the Balkans, the Caucasus and Anatolia, the mountains of Central Asia including Western China and the Himalaya, or the East African mountains, are all characterised by swarms of closely related species which have evolved due to vicariance caused by the mountains (e. g. Jeannel 1926, 1927, 1935, 1954, 1960, Pawlowski 1973, 1979, Barr 1979, Belousov 1990, Belousov & Kabak 1996, 2000, 2001, Shilenkov 1992). However, it is unknown up to now whether this is also true for the Tibetan Himalaya and central parts of the Tibetan Plateau. Although several species have already been described from both these areas (Jeannel 1928, Deuve 1992, 1996, 1997, Schmidt 1994), the Trechus fauna of the extensively uplifted regions north of the High Himalaya remains only partially discovered. Taking into account that during the Pleistocene, Tibet and adjacent mountains were presumably periodically covered by extensive ice shields as stated by Kuhle (last in 2001, 2004), for the Tibetan Himalaya and for central parts of the Plateau recent occurrences of at most a few wingless Trechus species may be expected which, furthermore, should not be strictly edaphic and should have wider distributional areas with occurrences also along the borders of the Plateau and along the Himalayan transverse valleys, respectively. However, a mainstream in Quaternary Science disagree with Kuhle. Their results refer to the small scale of glaciations in High Asia (see discussions in Klinge & Lehmkuhl 2004, Owen & Benn 2005). From the viewpoint of biogeography, the discovery of four presumably endemic Trechus species on the central Nyainqentanglha Shan Massif (see Deuve 1997) suggests that during the last glaciation, alpine species might have taken refuge along mountain slopes of southern central Tibet. To find more evidence for glacier extension during the last glaciation maximum in High Asia, in June and July 2007 I visited the Plateau between Yarlung Zhangbo Valley and Namtso Lake for a more detailed study of the soil dwelling beetle fauna. This cooperative project is part of the university partnership of the Tibet University, Lhasa, China, and the universities of Marburg, Germany, and Bergen, Norway. The study drew on my experience from 20 expeditions to the High Himalaya and the Tibetan Himalaya of Nepal, and my previous study of comprehensive Trechus material from that area housed in various European Museums and private collections. As a result, a further 25 new Trechus species can now be described, and a key to species, as well as more detailed distributional data for all species hitherto known from South Central Tibet and the Tibetan Himalaya can now be presented. In the second part of this paper the new data are evaluated with reference to the existence and locations of last glaciation refugees of the Tibetan and Himalayan alpine fauna.

Material and methods

Taxonomic material. This study was based on approximately 2130 specimens of the genus Trechus from the Tibetan Himalaya and from the Southern Tibetan Plateau, in addition to comprehensive material from China

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 5 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. and Himalaya used for species comparison. Institutional codens used in the taxonomic treatment, cooperating curators, as well as private collectors are listed below.

BMNH The Natural History Museum, London, Max Barclay & Conrad Gillett. CBALL George E. Ball, Alberta, Canada. CBQ Yves Bousquet, Ottawa, Canada. CCAS Achille Casale, Sassari, Italy. CGITZ Artur Gitzen, Neuhofen, Germany. CGR Eckehard Grill, Gröna, Germany. CKAB Ilia I. Kabak and Igor A. Belousov, St. Petersburg, Russia. CKOP Andreas Kopetz, Kerspleben, Germany. CLOR Wolfgang Lorenz, Tutzing, Germany. CSCHM Joachim Schmidt, Admannshagen and Marburg, Germany. CVT Vigna Taglianti, Roma, Italy. CWG Andreas Weigel, Wernburg, Germany. CWR David Wrase, Berlin, Germany. MNHN Museum National d’Histoire Naturelle, Paris, Thierry Deuve. NHMB Naturhistorisches Museum, Basel, Eva Sprecher, Michel Brancucci. NMBE Naturhistorisches Museum, Bern, Charles Huber. NME Naturkundemuseum Erfurt, Matthias Hartmann. SMNS Staatliches Museum für Naturkunde, Stuttgart, Wolfgang Schawaller. SMTD Staatliches Museum für Tierkunde, Dresden, Olaf Jäger. ZSM Zoologische Staatssammlung, München, Martin Baehr.

Examination methods. Specimens were examined using an Olympus SZ 40 stereomicroscope from 10x to 160x. Suggested magnifications for viewing particular characters are suggested in the text in parentheses. Drawings were made using an ocular grid (10 x 10 squares). Body size was quantified by using the standardized body length, i.e., the sum of: (1) the distance from apex of right mandible in closed position to cervical collar, (2) the median length of pronotum, (3) the distance from base of scutellum along suture to apex of left elytron. The width of the head was measured across the widest portion including compound eyes. The width of pronotum and the width of elytra were measured at their widest points. The width of pronotal base was measured between the tips of the hind angles. The length of aedeagal median lobe was measured across the longest distance without consideration of the basal bulb velum. The following abbreviations where used in the species descriptions:

LA Length of aedeagal median lobe LE Length of elytra LP Length of pronotum WE Width of elytra WH Width of head WP Width of pronotum WPB Width of pronotal base

Genitalia of dry conserved material were prepared after soaking specimens in water with vinegar and mild detergent for one day, followed by dissection. Aedeagi were cleared in lactic acid for two days. After examination, the prepared genitalia were stored in Euparal on cards, and pinned beneath the specimen from which they had been removed. Geographical specifications. See Fig. 97. The taxonomic treatment of this paper is confined to the Tibetan Himalaya (Inner Himalaya, Tethys Himalaya) and to the southern central parts of the Tibetan Plateau

6 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

(Transhimalaya). Thus, the actual research area spans a mountainous sector of High Asia from the northern slopes of the High Himalaya of Nepal, Sikkim (India) and Bhutan, north to the Nyainqentanglha Shan mountain range of Tibet (China). To get important information on species group distribution of a hitherto poorly known area, in the case of the Western Nepal Himalaya I also include in the taxonomic treatment such species or subspecies whose distributional areas are located along the transverse valleys of the High Himalaya but whose sibling species lives in the Tibetan Himalaya. Moreover, in the case of the Rolwaling Valley of Central Nepal I also take into consideration an inner longitudinal valley of the High Himalaya which is located close to the Tibetan border, and which is known to have a high degree of congruence of carabid beetle species with the Rongshar Valley on the Tibetan side of the border (Schmidt, unpublished data; the carabid beetles of the Rongshar Valley were studied by Andrewes 1930). For details of geography, geological evolution and ecology of the Himalayan-Tibetan Orogen [see Fort (1996), Miehe (1991), Miehe & Miehe (2000), Royden, Burchfield & van der Hilst (2008), and Yin & Harrison (2000)].

Taxonomy

A Key to Trechus species of the Tibetan Himalaya and the Southern Tibetan Plateau

1. Pronotal base with outer quarters distinctly angulated anteriorly towards hind angles, the latter always poorly developed; laterobasal depressions linear and sharply limited towards the convex disc (Figs. 2–6)...... 2 - Pronotal base slightly concave or rectilinear throughout, or rectilinear in middle and with outer fifth or sixth +/- strongly curved or shifted anteriorly towards hind angles, the latter often well produced; laterobasal depressions broad, diffuse limited towards disc (Figs. 1, 7–11, 28–38)...... 9 2. Protibia with longitudinal groove on external surface distinct. Species of the Trechus quadristriatus group sensu lato occurring in the High Himalaya of Western and Central Nepal, but not in the Tibetan Himalaya or on the Tibetan Plateau. - Protibia with longitudinal groove on external surface more strongly reduced, shallow and indistinct or absent...... The Trechus thibetanus group...3 3. Upper surface of body very shiny with discs of pronotum and elytra polished; micromeshes on elytra not visible under x100 magnification. Both the sclerotized portions of aedeagal internal sac in lateral view remarkably thin, needle like (Fig. 23). Species from the western Nyainqentanglha Shan Massif...... T. glabratus sp. n. - Elytral surface somewhat dull with micromeshes clearly visible under x50 magnification. Both the sclerotized parts of aedeagal internal sac larger with their base broad ...... 3 4. Aedeagal internal sac with sclerotized portions remarkably large, extending from median lobe basal quarter to apex (Fig. 12–14)...... 5 - Aedeagal internal sac with sclerotized portions not extending basad to median lobe basal third ...... 7 5. Aedeagal internal sac with both the sclerotized portions (copulatory pieces) elongated towards base; total length of the shorter copulatory piece distinctly more than half of length of the longer one (Fig. 12). Species from Muktinath Himal of western Central Nepal...... T. thorongiensis Schmidt, 1994 - Aedeagal internal sac with the shorter copulatory piece stouter, approximately triangular, with its length about one third that the longer one (Figs. 13, 14)...... 6 6. Antennae and legs slightly shorter, pedicel 2–2.2 times longer than wide. Subspecies from Tibetan Himalaya of Nyalam County, South Tibet...... T. eutrechoides eutrechoides Deuve, 1992 - Antennae and legs slender, pedicel approximately 2.5 times longer than wide. Subspecies from Tibetan Himalaya of Lhodrak County, South Tibet...... T. eutrechoides mondaensis Deuve, 1997 7. Pronotal hind angles more obtuse, almost rounded (Fig. 3). Apex of the longer copulatory piece of aedeagal internal sac slightly clubbed (Fig. 21). Species from the western Nyainqentanglha Shan Massif...... T. dongulaensis sp. n. - Pronotal hind angles more distinctly produced, slightly obtuse to almost rectangular (Fig. 2, 4). Form of apex of the longer copulatory piece different (Fig. 19, 20, 22)...... 8 8. Terminal lamella of aedeagal median lobe longer and slender (Fig. 18). Apex of the longer copulatory piece slightly bent upwards before tip, the latter shortly bent downwards (Fig. 22). More widely distributed species from the northern slope of central Nyainqentanglha Shan Massif and Namtso Lake area to Eastern parts of the Plateau ......

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 7 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

...... T. namtsoensis sp. n. - Terminal lamella of aedeagal median lobe shorter (Figs. 15, 16). Apex of the longer copulatory piece strongly bent upwards before tip, the latter bilobate, seen laterally (Figs. 19, 20). Species from the Tibetan Himalaya north of Sikkim ...... T. thibetanus Jeannel, 1928 9. Surface of head with moderately engraved isodiametric meshes throughout. Elytral disc with faintly engraved strongly transverse meshes; meshes much narrower than on head, and at least 3 times broader than long. Species from the High Himalaya and the Tibetan Himalaya, but not on the Plateau ...... 10 - Micromeshes on surface of head distinctly more deeply engraved in frontal furrows and on neck than on supraorbital area; micromeshes on supraorbital area usually faintly engraved and only visible under high magnification (> x60; only one species from the Southern Tibetan Plateau with moderately engraved micromeshes on supraorbital area: T. rarus sp. n.). Elytral disc with faintly engraved slightly transverse meshes; meshes hardly narrower than on head, and less than 2 times broader than long ...... 13 10. Aedeagal median lobe with basal bulb veliform appendix present, and with ostium densely covered by strongly sclerotized longitudinal bands (Figs. 63, 64). Species from the Rolwaling Himal of Central Nepal...... The monotypic species group of T. rolwalingense sp. n. ...11 - Aedeagal median lobe with basal bulb veliform appendix absent, and with ostium sheet not exceeding slightly sclerotized (Fig. 51). Species from Saipal Himal of Far Western Nepal...... The monotypic species group of T. stratiotes sp. n. ...12 11. Pronotal hind angles rectangular or slightly obtuse, not bent outwards (Fig. 10). Subspecies from the upper Rolwaling Valley...... T. rolwalingense rolwalingense ssp. n. - Pronotal hind angles more acute and distinctly bent outwards (Fig. 11). Subspecies from western parts of Rolwaling Valley...... T. rolwalingense daldunglana ssp. n. 12. Elytra with sixth stria faintly impressed but distinct; seventh striae absent in anterior half. Subspecies from north eastern macro slope of Saipal Himal...... T. stratiotes stratiotes ssp. n. - Outer elytral striae more strongly reduced with sixth and seventh striae absent. Subspecies from eastern macro slope of Saipal Himal ...... T. stratiotes malikasthana ssp. n. 13. Aedeagal median lobe stout, with terminal lamella remarkably broad and almost parallel at sides but abruptly constricted towards tip, seen dorsally (Fig. 27). Median lobe not bent behind basal bulb, seen laterally (Figs. 24–26). All species from the Transhimalaya east of Lhasa...... The Trechus wrzecionkoi group..14 - Aedeagal median lobe slender, distinctly bent in basal half, seen laterally, and with form of terminal lamella different...... 16 14. Body size larger, distinctly above 4 mm (two male specimens investigated: 4.5–4.7 mm). Aedeagal median lobe see Fig. 24...... T. wrzecionkoi Deuve, 1996 - Smaller body size, maximum at about 4 mm...... 15 15. Outer elytral striae much shallower impressed, with striae VI–VII almost completely reduced. Aedeagal median lobe evenly curved downwards in middle; sclerotized internal sac portion folded as a tripartite propeller, seen laterally (Fig. 25)...... T. korae sp. n. - Elytral striae VI–VII slightly impressed, but always visible. Aedeagal median lobe strongly curved downwards at the end of the second third; internal sac with sclerotized portion saccate (Fig. 26)...... T. martinae sp. n. 16. Temples distinctly pubescent. Aedeagal median lobe with basal bulb spherically enlarged and terminal lamella strongly hooked at tip; internal sac with sclerotized portion extending almost half of length of median lobe or even more; folding lobes in dorsal view bilaterally symmetrical, whereas the more basal pair of lobes forms a sheath for the more distal pair (Figs. 52–59). All species from Tibetan Plateau...... The Trechus dacatraianus group...17 - Temples indistinctly pubescent, with very fine and very short hairs or completely smooth. Aedeagal median lobe with basal bulb average and terminal lamella not distinctly hooked; sclerotized portion of internal sac often poorly developed and/or much more simply folded (+/- linear or saccate) ...... 21 17. Eyes larger: Temporae approximately 2/3 of eye diameter. Pronotum larger and more transverse (WP/LP = 1.28–1.38, WP/WH = 1.28–1.34, WE/WP = 1.48–1.54, Fig. 34). Elytra less constricted towards base (see Deuve 1996, p. 67, Fig. 1; Deuve 1997, p. 143, Fig. 3). Aedeagal median lobe with basal velum completely reduced (Figs. 52, 53) ...... 18 - Eyes smaller: Temporae 3/4 of eye diameter or longer. Pronotum smaller and, on average, less transverse (WP/LP max: 1.34, WP/WH max: 1.30, WE/WP min: 1.61, Figs. 1, 35). Elytra more distinctly ovate due to more strongly constricted sides towards base (Fig. 1). Aedeagal median lobe with basal velum present...... 19 18. Terminal lamella of aedeagal median lobe with a single upward directed hook at tip (see Deuve 1996, p. 69, Fig. 8.

8 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

[While using this paper, notice that numbering of figures at the second plate is confused: Fig. 1 has to be changed to Fig. 8, and in legend for “T. traianus” read “T. dacatraianus”!]. Species from North Eastern Tibet...... T. dacatraianus Deuve, 1996 - Terminal lamella of aedeagal median lobe with a larger upward directed hook and a smaller downward hook at tip (Figs. 52, 53). Presumably polytypic species from central Nyainqentanglha Shan Massif and from Tanggula Shan...... T. damchungensis Deuve, 1997 19. Colour of body surface mature yellowish brown or light reddish brown. Body slender, with proportions WP/LP = 1.15–1.25; WP/WH = 1.16–1.21; WE/WP = 1.62–1.68; LE/WE = 1.48–1.63. Aedeagal median lobe see Fig. 56. Species from central Nyainqentanglha Shan Massif...... T. hodeberti Deuve, 1997 - Colour of body surface mature reddish brown to dark brown. Pronotum, on average, more transverse (WP/LP = 1.21–1.34), and elytra shorter (LE/WE = 1.39–1.52) ...... 20 20. Pronotum with sides straight towards base or slightly concave just anterad of hind angles, the latter relatively poorly developed; outer fifth of pronotal base distinctly bent anteriorly towards hind angles (Fig. 1). Elytral striae VI and VII finely impressed but distinct. Basal antennal joints slender, with pedicellus 1.8–2 times longer than wide. Aedeagal median lobe much larger (LE/LA = 2.10–2.16), with terminal hook long and more strongly reflexed (Fig. 55). Species from central Nyainqentanglha Shan Massif...... T. bastropi sp. n. - Pronotal sides concavely curved towards hind angles, the latter well developed; outer sixth or seventh of pronotal base slightly bent anteriorly towards hind angles. Elytral striae VI and VII completely reduced. Basal antennal joints stouter, with pedicellus approximately 1.5 times longer than wide. Aedeagal median lobe smaller (LE/LA = 3.04–3.06), with terminal hook short and slightly reflexed (Fig. 54). Species from Transhimalaya northeast of Lhasa...... T. mieheorum sp. n. 21. Internal sac of aedeagus with sclerotized portion large and tripartite; external folding lobes in dorsal view bilaterally symmetrical (Figs. 59, 60). Species from central Nyainqentanglha Shan Massif...... The monotypic Trechus solhoeyi group: T. solhoeyi sp. n. - Internal sac of aedeagus with sclerotized portion different, not bilaterally symmetrical ...... 22 22. Aedeagal median lobe relatively long to very long (proportion LE/LA below 2.3, in most species below 2.0), strongly curved just behind basal bulb, elongated towards apex, in dorsal view with sides distinctly widened before apex, and in lateral view with ventral side with an undulate curve at apex (Figs. 39–50). The Trechus franzianus group...... 23 - Aedeagal median lobe in most species distinctly shorter (proportion LE/LA above 2.3, but often above 3.0), +/- evenly curved from basal bulb towards apex, in dorsal view with left and/or right sides not widened before apex, and with ventral side without an undulate curve at apex...... 29 23. Eyes relatively large: Temporae distinctly longer than eye diameter (Fig. 28). Eighth elytral stria moderately impressed from the level of the fifth umbilicate pore backwards and deeply impressed on levels of the seventh and eighth umbilicate pore. Aedeagal median lobe see Fig. 39. Species from the Tibetan Himalaya of Lhodrak County, South Tibet...... T. pumoensis Deuve, 1997 - Eyes more strongly reduced: Temporae as long as eye diameter or slightly longer (Fig. 29–31). Eighth elytral stria almost completely reduced, but sometimes visible at levels of seventh and eighth umbilicate pores. Species from Nepal...... 24 24. Colour of dorsal surface of matured specimen yellowish brown. Pronotum with sides more strongly contracted towards base and therefore, posterior margin nearly as broad as anterior margin or slightly narrower. Pronotal hind angles very obtuse or rounded (Fig. 30). Aedeagal median lobe see Fig. 42. Species from the Tibetan Himalaya of Western Central Nepal (east of Dhaulagiri Himal)...... T. tilitshoensis Schmidt, 1994 - Colour of dorsal surface of matured specimen reddish-brown or dark brown. Base of pronotum usually somewhat broader than anterior margin. Pronotal hind angles slightly obtuse to almost rectangular (Figs. 29, 31). Species from West and Far West Nepal (west of Dhaulagiri Himal)...... 25 25. Aedeagal median lobe in lateral view moderately curved behind basal bulb and with terminal lamella straight towards tip (Fig. 47)...... T. sculptipennis sp. n. - Aedeagal median lobe more strongly curved behind basal bulb and with terminal lamella distinctly bent upwards, seen laterally...... 26 26. Aedegal median lobe in dorsal view with sides strongly widened just behind middle, and with apical border of terminal lamella broad and broadly notched (Fig. 41)...... T. franzianus Mateu & Deuve, 1979 - Aedeagal median lobe in dorsal view with sides somewhat widened before apex, and with tip of terminal lamella smaller, truncate or rounded...... 27

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 9 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

27. Pronotal base distinctly curved anteriorly towards hind angles (Fig. 31). Aedeagal median lobe remarkably long, with a length of about 40% of total body length (Proportion LE/LA = 1.49–1.55; Figs. 49, 50)....T. aedeagalis sp. n. - Pronotal base almost rectilinear (Fig. 29). Aedeagal median lobe shorter, with length of about 1/3 of total body length (Proportion LE/LA above 1.6)...... 28 28. Aedeagal median lobe longer (LE/LA = 1.63–1.65), with apical quarter distinctly bent upwards, seen laterally (Fig. 45) ...... T. eremita sp. n. - Aedeagal median lobe shorter (LE/LA = 1.86–1.87), in lateral view almost straight before terminal lamella (Fig. 43) ...... T. muguensis sp. n. 29. Internal sac of aedeagal median lobe with sclerotized portions longitudinally folded, often weakly developed (see Figs. 61, 62, 65–70, 73–80)...... The Trechus antonini group...30 - Internal sac of aedeagal median lobe with sclerotized portion transversal folded, and well developed to a leaf-like copulatory piece (Figs. 71, 72). Species from Transhimalaya northeast of Lhasa...... The monotypic Trechus chaklaensis group: T. chaklaensis sp. n. 30. Aedeagal median lobe with terminal lamella relatively long, and more strongly curved upwards towards tip (Figs. 61, 62, 77) ...... 31 - Aedeagal median lobe with terminal lamella short, not or slightly curved upwards towards tip. When in doubt, follow this lead...... 34 31. Smaller species: Body length 2.7–3.7 mm...... 32 - Larger: Body length > 3.8 mm...... 33 32. Aedeagal median lobe in lateral view more strongly curved near base and more elongated towards apex, and with terminal lamella more strongly curved upwards (see Deuve, 1996: 69, Fig. 10, but wrongly figured 3). A remarkably small species with body length of approximately 2.7 mm from North Eastern Tibet...... T. claudiae Deuve, 1996 - Aedeagal median lobe in lateral view more evenly curved from basal bulb towards ostium, and with terminal lamella more slightly curved upwards (Fig. 77). Larger: Body length 3.2–3.7 mm. Species from central Nyainqentanglha Shan...... T. antonini Deuve, 1997 33. Aedeagal median lobe larger (LE/LA = 2.38–2.45), with internal sac sclerotisation almost completely reduced (Fig. 61). Species from western Nyainqentanglha Shan...... T. yeti sp. n. - Aedeagal median lobe smaller (LE/LA = 2.85–3.06); internal sac in lateral view with a thin but distinct longitudinal sheet below ostium (Fig. 62). Species from central Nyainqentanglha Massif...... T. budhaensis sp. n. 34. Head with microsculpture on supraorbital area consist of moderately engraved almost isodiametric meshes which are distinctly visible under x50 magnification...... 35 - Head with supraorbital area almost smooth; microsculpture consist of faintly engraved meshes which are visible under magnification of at least x80...... 36 35. Head broader (WP/WH = 1.14–1.18) with eyes larger and with temples almost 1/2 of length of eyes (Fig. 36). Aedeagal median lobe smaller (Fig. 79). Species from western Nyainqentanglha Shan east of Jomo Gangtse Peak...... T. rarus sp. n. - Head slender (WP/WH approximately 1.28) with eyes smaller and with temples approximately 2/3 of length of eyes (Fig. 37). Aedeagal median lobe larger (Fig. 67). Species from western Nyainqentanglha Shan south of Jomo Gangtse Peak...... T. singularis sp. n. 36. Dorsal surface of mature specimen yellowish brown or light reddish brown, but with head and elytra sometimes cloudy darkened...... 37 - Dorsal surface of mature specimen dark brown, but with pronotum often reddish brown...... 40 37. Outer elytral striae more strongly reduced with striae V–VII hardly visible, incomplete or absent. Aedeagal median lobe see Fig. 77. See also key number 32...... T. antonini Deuve, 1997 - Outer elytral striae indeed more slightly impressed than inner stria, but striae V–VI always distinct...... 38 38. Aedeagal median lobe more robust with terminal lamella in lateral view distinctly bent upwards (Fig. 69); internal sac with a strongly sclerotized strongly refractive portion (copulatory piece). Species from central and western Nyainqentanglha Shan...... T. yak sp. n. ....39 - Aedeagal median lobe slender, with terminal lamella in lateral view almost straight (Fig. 70); internal sac not exceeding weekly sclerotized, without a distinct copulatory piece. Species from west slope of Peak Nyainqentanglha Feng...... T. religiosus sp. n. 39. Hind angles of pronotum pointed and distinctly bent outwards (Fig. 8). Copulatory piece in dorsal view broader with basal portion less constricted (Fig. 76). Subspecies from central Nyainqentanglha Shan...... T. yak yak ssp. n. - Hind angles of pronotum more obtuse and not protruding laterally (Fig. 9). Copulatory piece in dorsal view slender

10 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

with basal portion more strongly constricted (Fig. 75). Subspecies from Shogu La area of western Nyainqentanglha Shan...... T. yak shogulaensis ssp. n. 40. Aedeagal median lobe smaller (LE/LA > 3.3)...... 41 - Aedeagal median lobe larger (LE/LA < 2.9) ...... 43 41. Aedeagal median lobe very small (LE/LA = 4.1), with terminal lamella slightly bent downwards at tip (Fig. 68). Species from Transhimalaya northwest of Lhasa...... T. tsampa sp. n. - Aedeagal median lobe somewhat longer (LE/LA > 3.9), with terminal lamella slightly bent upwards at tip ...... 42 42. Internal sac of aedeagal median lobe with two distinctly more strongly sclerotized folds longitudinally below the ostium (Fig. 78). Species from Shogu La area of western Nyainqentanglha Shan...... T. folwarcznyi Deuve, 2007 - Folding of internal sac of aedeagal median lobe weakly sclerotized (Fig. 80). Species from Dongu La pass area of westernmost foothills of Nyainqentanglha Shan Massif...... T. tseringi sp. n. 43. Internal sac in distal half of aedeagal median lobe extensively sclerotized, with a distinct copulatory piece (Fig. 65). Species from south slope of central Nyainqentanglha Shan Massif north of Yangpachem...... T. astrophilus sp. n. - Folding of internal sac of aedeagal median lobe weakly sclerotized (Fig. 66). Species from southern foothills of central Nyainqentanglha Shan Massif northwest of Lhasa...... T. lama sp. n.

The Trechus thibetanus group

[Trechus quadristriatus group sensu Jeannel (1927): partim; Trechus thibetanus group sensu Casale (1979): partim; Trechus cameroni group sensu Deuve (1996)]

Diagnosis: Head with frontal furrows deep and strongly curved at middle. Frons and supraorbital areas strongly convex. Temples convex, smooth. Mandibles rather stout. Pronotum transverse, with hind angles poorly developed. Pronotal base with outer quarters distinctly angulated anteriorly. Pronotal basal transverse depression and laterobasal foveae linear and sharply limited towards the convex disc. Pronotal median line distinct, not or slightly deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII deeply impressed behind the level of the fifth umbilicate pore. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs moderately short with fairly thick femora and rather thin tibia and tarsi; protibiae moderately dilated towards apices and hardly bowed; longitudinal groove on external surface of protibia more strongly reduced, shallow and indistinct or absent. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe +/- evenly rounded in basal half, seen laterally, with basal bulb of average size but with basal velum relatively large. Median lobe apex not hooked. Internal sac with sclerotized portion separated into two distinct parts, both of which are elongated towards the ostium; the ostium is capped by the bent or lobed tip of the longer internal sac sclerotized part (copulatory piece). Parameres relatively slender, with left paramere distinctly longer than right one, both with four or five setae at tip. Remarks: According to apomorphic pronotal character states the T. thibetanus group in the sense of this paper is part of the highly diverse Palaearctic T. quadristriatus species group sensu Jeannel (1927). Based on the current state of knowledge, the monophyly of the T. thibetanus group is difficult to prove because a comprehensive character analysis of the T. quadristriatus species group is still needed. This is, however, beyond the intent of the present paper. In part I am following Casale (1979) who understood the T. thibetanus group in a much wider sense but here I am excluding those species more closely related to T. indicus Putzeys, 1922 (T. indicus group sensu Jeannel 1927) which have different aedeagal characters to those described in the diagnosis above and which have a perfectly developed longitudinal groove on external surface of protibiae. Due to striking similarities in the external shape of aedeagal median lobe and the general structure of sclerotized internal sac portions species of the T. thibetanus group in the sense of this paper seems to be more closely related to the following species of the fauna of the High Himalaya of Western Nepal: T. anae Morvan, 1981, T. boudikae Morvan, 1981, T. gradloni Morvan, 1981, T. gwiomarchi Morvan, 1981, T. jarrigei

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 11 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Morvan, 1972, T. ledouxianus Mateu & Deuve, 1979, T. levillaini Morvan, 1981, T. perpusillus Mateu & Deuve, 1979, T. roparzhemoni Morvan, 1981, T. soma Mateu & Deuve, 1979, T. yengensis Morvan, 1981. However, all the latter species also possess a distinct longitudinal groove on the external surface of protibiae which is more strongly reduced in the species of the T. thibetanus group.

FIGURE 1. Habitus of Trechus bastropi sp. n., paratype, male.

12 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Species included: T. boulbeni Deuve, 1997 (China, Gansu), T. cameroni bistriatus Jeannel, 1928 (India, Punjab), T. cameroni cameroni Jeannel, 1923 (India, Punjab), T. dongulaensis sp. n. (South Central Tibet), T. eutrechoides eutrechoides Deuve, 1992 (South Central Tibet), T. eutrechoides mondaensis Deuve, 1997 (South Central Tibet), T. glabratus sp. n. (South Central Tibet), T. namtsoensis sp. n. (South Central Tibet), T. thibetanus Jeannel, 1928 (South Central Tibet), T. thorongiensis Schmidt, 1994 (Tibetan Himalaya, Nepal).

Trechus eutrechoides Deuve, 1992 (Figs. 5, 13)

Catalogue: Trechus eutrechoides Deuve, 1992: 176. Locus typicus: South Central Tibet, Nyalam County, Nyalam Xian (environment “friendship highway” Lhasa – Kathmandu), altitude 4700 m.

Type material: Not studied. Species identification is based on the original description including a drawing of male genitalia characters which allows an unambiguous diagnosis, as well on additional material from places near the type locality. Additional material: CHINA: South Central Tibet: 1 male, 2 females, Lamna La, 15.000 ft., 17.vi.1924, Maj. R.W.G. Hingston, Everest Exp. Brit. Mus. 1924-386, “thibetanus R. Jeannel det.”, the female has an additional round and red bordered label “type” (BMNH); 1 male, Phuse La, 16.500 ft., 3.vii.1924, Maj. R.W.G. Hingston, Everest Exp. Brit. Mus. 1924-386 (BMNH); 1 female, Pangle, 15.000 ft., 8.v.1924, Maj. R.W.G. Hingston, Everest Exp. Brit. Mus. 1924-386, “thibetanus R. Jeannel det.” (BMNH); 1 male, Tasam, Rongshar Valley, 12.000 ft., 20.vi.1924, Maj. R.W.G. Hingston, Everest Exp. Brit. Mus. 1924-386, “thibetanus R. Jeannel det.” (BMNH). Remarks: This material is not a part of the type series of T. thibetanus Jeannel, 1928, as suggested by the label data of the specimen from Lamna La. This ‘type label’ was doubtless subsequently added to the specimen, but not by R. Jeannel. However, all these specimens were mentioned by Jeannel (1928) as additional material of T. thibetanus beside the type series (see also discussion below). Identification: See key above. Relationships: See T. thorongiensis Schmidt, 1994, below. Distribution and geographical variation: Fig. 98. Tibetan Himalaya of Nyalam County, South Central Tibet, north of Central Nepal. An allopatric subspecies mondaensis was described from the Tibetan Himalaya of Lhodrak County, South Tibet, north of Bhutan which slightly differs in the length of the appendages (see below). Habitat: Lower alpine zone; vertical distribution approximately 4000–5000 m (but see also ssp. mondaensis).

Trechus eutrechoides mondaensis Deuve, 1997 (Fig. 14)

Catalogue: Trechus eutrechoides mondaensis Deuve, 1997: 176. Locus typicus: South Central Tibet, Lhodrak County, Monda La [= Manda La] pass, altitude 5200 m.

Type material: Paratypes: 2 males, with label data: “CHINA-C. Tibet, Monda La, 5200 m, 30 km W of Lhoduk, 22.5.1997, leg. A. Wrzecionko” (CSCHM). Identification: See key above. Distribution: Fig. 98. Tibetan Himalaya of Lhodrak County, South Central Tibet, north of Bhutan. Habitat: Unlike the nominotypical form, ssp. mondaensis was found in the higher alpine zone (altitude 5200 m).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 13 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 2–11. Pronotum. Fig. 2, Trechus thibetanus Jeannel, 1928, Lectotype. Fig. 3, T. dongulaensis sp. n., paratype, male. Fig. 4, T. namtsoensis sp. n., paratype, male. Fig. 5, T. eutrechoides eutrechoides Deuve, 1992, non-type male specimen from Lamna La. Fig. 6, T. glabratus sp. n., paratype, male. Fig. 7, T. korae sp. n., paratype, male. Fig. 8, T. yak yak ssp. n., paratype, male. Fig. 9, T. yak shogulaensis ssp. n., paratype, male. Fig. 10, T. rolwalingensis rolwalingensis ssp. n., paratype, male. Fig. 11, T. rolwalingensis daldunglana ssp. n., paratype, male.

14 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 12–27. Aedeagal median lobe with sclerotized portions of internal sac in lateral view (Figs. 12–18, 23–26; Figs. 14, 17, 23, 26 in addition with parameres) and in dorsal view (Fig. 27); apical portion of the longer copulatory piece (Figs. 19–22). Fig. 12, Trechus thorongiensis Schmidt, 1994, paratype, the arrow pointed to the prolongated basal portion of the shorter copulatory piece. Fig. 13, T. eutrechoides eutrechoides Deuve, 1992, non-type specimen from Rongshar Valley. Fig. 14, T. eutrechoides mondaensis Deuve, 1997, paratype. Figs. 15, 19, T. thibetanus Jeannel, 1928, holotype. Figs. 16, 20, T. thibetanus Jeannel, 1928, non-type specimen from Kampa La. Figs. 17, 21, T. dongulaensis sp. n., paratype. Figs. 18, 22, T. namtsoensis sp. n., paratype. Fig. 23, T. glabratus sp. n., paratype. Fig. 24, T. wrzecionkoi Deuve, 1996, non-type specimen from Gyama, Chungenpo Chong side valley. Fig. 25, T. korae sp. n., paratype. Figs. 26, 27, T. martinae sp. n., paratype.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 15 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 28–35. Head, pronotum. Fig. 28, Trechus pumoensis Deuve, 1997, paratype, male. Fig. 29, T. eremita sp. n., paratype, female. Fig. 30, T. tilitshoensis Schmidt, 1994, paratype, male. Fig. 31, T. aedeagalis sp. n., paratype, male. Fig. 32, T. antonini Deuve, 1997, non-type female specimen from Lhachen La. Fig. 33, T. yeti sp. n., paratype, male. Fig. 34, T. cf. damchungensis Deuve, 1997, paratype, male from Tangula Pass. Fig. 35, T. hodeberti Deuve, 1997, non-type female specimen from Lhachen La.

16 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 36–38. Head, pronotum. Fig. 36, Trechus rarus sp. n., holotype. Fig. 37, T. singularis sp. n., holotype. Fig. 38, T. tseringi sp. n., paratype, male.

Trechus thorongiensis Schmidt, 1994 (Fig. 12)

Catalogue: Trechus thorongiensis Schmidt, 1994: 131. Locus typicus: Central Nepal, Manang Distr., E-slope of Thorung La pass north of Annapurna Massif, altitude 4900–5200 m.

Type material: Holotype male, with label data “NEPAL-HIMALAYA, Annapurna Mts., 1993, leg. Schmidt”, “Thorong Pass, 8. VI., N Manang, E slope, 4900–5200 m”, “HOLOTYPUS Trechus thorongiensis des. J. Schmidt 1993” (SMTD). Paratypes: 126 specimen (males, females), with same label data as holotype (BMNH, CCAS, CBALL, CBQ, CGITZ, CKAB, CLOR, CVT, CSCHM, CWR, NHMB, NME, SMTD, ZSM). Identification: See key above. Relationships: According to derived aedeagal internal sac features T. thorongiensis Schmidt, 1994 is doubtless the sister species of T. eutrechoides (see above). Distribution: Fig. 98. Tibetan Himalaya of Manang Distr., Central Nepal. Hitherto only found on the eastern slope of the Thorung La pass, Muktinath Himal, north of Annapurna Massif. Habitat: Higher alpine zone; vertical distribution approximately 4900–5000 m. On ascent to Thorung La pass the species was found along small humid depressions. The type locality is now completely built over by a complex of lodges for trekking tourists called ‘High Camp’ on the way to Thorung La pass.

Trechus thibetanus Jeannel, 1928 (Figs. 2, 15, 16, 19, 20)

Catalogue: Trechus (s. str.) thibetanus Jeannel, 1928: 284. Locus typicus: South Central Tibet, Dromo County, Duna [= Tuna] S of Bam Tso lake, altitude approximately 4400 m. = Trechus pseudocameroni Deuve, 1996: 66, syn. n. Locus typicus: South Central Tibet, Nakartse County [=Nagartse], Karo La W of Nakartse and Yam Tso lake, altitude approximately 5000 m.

Type material: Trechus thibetanus Jeannel, 1928: Lectotype male, J. Schmidt designated 2008, with label

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 17 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. data “Tuna: Tibetan plateau. 14.500ft. 11.vi.1924. Maj. R.H. Hingston.”, “Everest Exp. Brit. Mus. 1924- 386.”, “H.E. Andrewes Coll. B.M. 1945-97.”, “thibetanus Jeannel R. Jeannel det.” (BMNH). Paralectotypes 5 males, 3 females, with same label data as holotype (BMNH). Remarks: In the original description Jeannel (1928) has expressly designated the type locality and syntype series deposition as follows: “Types: nombreux exemplaires de Tuna, sur le plateau du Thibet, vers 4600 m. d’alt. (Brit. Mus.).” In the same paper he added more material of his T. thibetanus from further South Tibetan localities in a chapter “Chorologie”. A part of this material is conserved at BMNH and has now been examined. As a result, T. thibetanus sensu Jeannel, 1928, has been found to be polytypic, including at least three distinct species: Material cited by Jeannel (1928) from Lamna La, Phuse La, Pangle, and from Rongshar Valley belongs to T. eutrechoides Deuve (1992) (see above). A single female specimen from Gautsa belongs to a third Trechus species but remains unidentified. Moreover, the true identity of T. thibetanus was hitherto really confused because Jeannel (1928) published a figure of male genitalia characters of a specimen from a locality other than the type locality: The figured aedeagus (Jeannel 1928: p. 285, Fig. 1) is that of T. eutrechoides Deuve (1992). Trechus pseudocameroni Deuve, 1996: Not studied. Identification is based on a male specimen determined and sent to the author by Thierry Deuve (MNHN) in February 2008 (see below), as well as on additional material from localities near the type locality. Remarks on synonymy: The taxa T. thibetanus and T. pseudocameroni were described from two localities in South Tibet relatively close to each other (see distributional map, Fig. 98). In this portion of the Tibetan Himalaya between the Bam Tso and Yam Tso lakes the relief dynamic is not so striking and significant distributional barriers for alpine species seem not to occur. Anyway, on comparison of more comprehensive material from different localities within this area, no significant differences could be found between the populations, even in aedeagal characters, that indicate specific or subspecific differentiation (see Figs. 13, 14, 17, 18). Additional material: CHINA: South Central Tibet: 1 male, Kambala [= Gampa La, Kampa La], 120 km S Lhasa, 4612 m, leg. A. Wrzecionko, with determinational label “Trechus pseudocameroni m. Th. Deuve det. 2005” (MNHN); 1 male, 3 females, Khampa La (Lhoka), 4650 m, 3.VII.1995, leg. W. Heinz (CSCHM); 7 males, 3 females, Yamtso-ufer bei Nagartse [shore of Yam Tso lake near Nagartse], 4450 m, 28°58’31,9N 90°24’06,0E, 28.VII.1998, leg. O. Jäger (CSCHM). Identification: See key above. Relationships: According to synapomorphic character states of the longer copulatory pieces of the aedeagal internal sac within the T. thibetanus group T. thibetanus belongs to a terminal species group comprising T. boulbeni Deuve, 1997 as well both the below newly described species T. dongulaensis sp. n. and T. namtsoensis sp. n. Distribution and geographical variation: Fig. 98. Tibetan Himalaya between Sikkim and Yarlung Zhangbo valley. Habitat: Lower alpine zone; vertical distribution approximately 4400–5000 m.

Trechus namtsoensis sp. n. (Figs. 4, 18, 22)

Type material: Holotype male, with label data “TIBET (South Central) S Namtso 4730–5000 m, lake shore and Langma Vall., 12–13.VII.07”, “30°14’19,6N 90°51’10,7E to ca. 30°37’39N 90°51’56E” (SMNS). Paratypes: 50 males, 27 females, with same label data as holotype (BMNH, CGITZ, CKAB, CSCHM, CWR, MNHN, SMNS); 3 males, 3 females, S Namtso, Langma Valley, 5100–5150 m, 30°37’39,1N 90°51’56,5E, 13.VII.07 (CSCHM); 1 male, 1 female, E-Tibet, 75 km E of Nakchu, 5000 m, 4.VII.1997, leg. A. Wrzecionko, with additional determinational label “Trechus pseudocameroni Th. Deuve det. 1997” (CSCHM).

18 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Description: Body length: 3.5–4.1 mm. Colour: Dorsal surface dark brown, moderately shiny. Antennal joints 1–2, palpi, legs, elytral lateral margin and suture light brown. Anterior elytral quarter diffuse bordered lighter brown than posterior parts. Microsculpture: Discs of head and pronotum smooth, with very faintly engraved almost isodiametric meshes (x100). Surface of elytra with moderately engraved transverse meshes in both sexes (x50). Head: Average sized, with eyes relatively large and moderately protruding. Temples approximately 1/3 times of length of eyes and strongly wrinkled to the neck. Frontal furrows deep, flattened at level of hind suborbital seta. Antennae moderately long, four antennomeres extend beyond the pronotal base. Antennomere III distinctly longer than antennomeres II and IV, both the latter are alike in length. Pronotum: Broad and transverse, with sides moderately contracted towards base; proportions WP/LP = 1.38–1.48, WP/WPB = 1.32–1.42, WP/WH = 1.18–1.23, WE/WP = 1.57–1.63. Surface strongly convex, sides evenly rounded and slightly concave bent just anterad of posterior setae. Hind angles small but almost rectangular or slightly obtuse. Marginal gutter narrow, scarcely widened toward base. Basal groove smooth. Elytra: Oval, broadest almost at mid-length; proportion: WE/LE = 1.30–1.44. Surface convex, not flattened on disc. Shoulders distinct but rounded. Striae impunctate, inner two striae deeply impressed overall, outer striae finer, not deepened before apex, striae VII–VIII usually disappeared. Intervals I–IV slightly convex. The preapical seta is located on the prolonged second stria near to the apex at the beginning of the posterior elytral tenth part. Male genitalia: Aedeagal median lobe more slender, LE/LA = 2.34–2.52, evenly curved basally and remarkably elongated towards apex, with terminal lamella slightly curved upwards, seen laterally. Basal bulb average in size with velum large. Apex of longer copulatory piece slightly bent upwards before tip, the latter shortly bent downwards. Parameres slender, each with 5 (seldom the right one with 4) setae at tip (same as in Fig. 17). Etymology: The specific epithet refers to the largest lake on central Tibetan Plateau, the Namtso, which extends below the north slope of Nyainqentanglha Shan, on which the new species occurs (adjective). Identification: Within the fauna of central Tibetan Plateau north of Nyainqentanglha Shan Massif this species is easily to recognize by its aedeagal median lobe with remarkably elongated terminal lamella and by the longer copulatory piece extending needle like toward ostium. It is very similar to the allopatric T. dongulaensis sp. n. from the westernmost Nyainqentanglha Shan Massif, both in external and genital morphological characters, but differs by having two basal antennal segments lightened, pronotal hind angles sharper, aedeagal median lobe more evenly curved on basal half, seen laterally, median lobe terminal lamella longer, and by having the apex of the longer copulatory piece not clubbed. It is also very similar to the allopatric T. thibetanus Jeannel, 1928, from the Tibetan Himalaya, but differs in the same genital morphological characters as mentioned for differentiation with T. dongulaensis sp. n., and in addition, it differs by having the longer copulatory piece almost straight toward apex and not bilobate at tip, seen laterally. Relationships: Based on the robust and shortened tip of the longer copulatory piece, T. namtsoensis sp. n. together with T. boulbeni Deuve, 1997, T. dongulaensis sp. n. and T. thibetanus Jeannel, 1928 forms a terminal group of Tibetan species within the T. thibetanus group. Distribution and geographical variation: Fig. 98. Eastern parts of the central Tibetan Plateau north of Nyainqentanglha Shan Massif. Habitat: Lower alpine zone; vertical distribution approximately 4700–5100 m.

Trechus dongulaensis sp. n. (Figs. 3, 17, 21, 81)

Type material: Holotype male, with label data “TIBET South Centr., 6.VII.07, 120 km W Lhasa, 2 km NE Dongu La pass, 4800–5000 m, ca. 29°45’01N 89°51’11E” (SMNS). Paratypes: 70 males, 26 females, with same label data as holotype (BMNH, CGITZ, CSCHM, CWR, SMNS); 49 males, 63 females, W of Shogu La,

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 19 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

4650–4850 m, 29°15’18N 90°04’06E to 29°48’15N 90°02’21E, 5.VII.07 (CKAB, CSCHM, MNHN, NMBE). Description: Body length: 3.4–3.8 mm. Colour: Dorsal surface dark brown, moderately shiny. Scapus (seldom pedicellus), palpi, legs, elytral lateral margin and suture light brown. Anterior elytral third diffuse bordered lighter brown than posterior parts. Microsculpture: As described in T. namtsoensis sp. n. Head: Eyes slightly protruding, temples approximately 2/5 times of length of eyes, frontal furrows moderately deep, not flattened at level of hind suborbital seta. In all other characters agreeing with T. namtsoensis sp. n. Pronotum: Proportions: WP/LP = 1.32–1.39, WP/WPB = 1.18–1.24, WP/WH = 1.23–1.30, WE/WP = 1.65–1.70. Sides evenly rounded and straight just anterad of posterior setae. Hind angles very poorly developed, obtuse or almost rounded. In all other pronotal characters agreeing with T. namtsoensis sp. n. Elytra: Proportion WE/LE = 1.30–1.42. In all other elytral characters agreeing with T. namtsoensis sp. n. Male genitalia: Aedeagal median lobe more slender, LE/LA = 2.35–2.42, moderately curved basally, somewhat stretched before middle, elongated towards apex, with terminal lamella slightly curved upwards, seen laterally. Basal bulb average in size with velum large. Apex of the longer copulatory piece slightly clubbed. Parameres slender, each with 5 (seldom the right one with 4) setae at tip. Etymology: The specific epithet refers to the Dongu La pass on whose slopes the new species occurs (adjective). Identification: T. dongulaensis sp. n. is very similar to both the allopatric species of South Tibet T. namtsoensis sp. n. and T. thibetanus Jeannel, 1928, in external and genital morphological characters as well, but can be distinguished by the more poorly developed and more obtuse pronotal hind angles and by the apex of the longer copulatory piece of aedeagal internal sac which is not lobed but somewhat clubbed. In addition, the new species is on average smaller than T. namtsoensis sp. n. and the antennae are darker with pedicellus usually dark brown in distal 4/5. The longer copulatory piece of the aedeagal internal sac is straight toward its apex and not bent upwards as in T. thibetanus, seen laterally. The new species is easily to distinguish from the sympatric T. glabratus sp. n. of the same species group by the presence of well developed micromeshes on the elytral surface in both sexes, and by the median lobe with remarkably elongated terminal lamella and large copulatory pieces. Relationships: See discussion in chapter Relationships of T. namtsoensis sp. n., above. Distribution and geographical variation: Fig. 98. Westernmost parts of Nyainqentanglha Shan Massif. Habitat: Lower alpine zone; vertical distribution approximately 4650–5000 m. The species was frequently found under stones in yak pastures.

Trechus glabratus sp. n. (Figs. 6, 23, 82)

Type material: Holotype male, with label data “TIBET South Centr. 6.VII.07, Doru Tshu Vall. SW Dongu La, 4500–4600 m, ca. 29°43’16N 89°47’12E” (SMNS). Paratypes: 48 males, 41 females, with same label data as holotype (BMNH, CGITZ, CKAB, CSCHM, CWR, MNHN, NMBE, SMNS). 4 males, 2 females, W of Shogu La, 4650–4850 m, 29°15’18N 90°04’06E to 29°48’15N 90°02’21E, 5.VII.07 (CSCHM). Description: Body length: 3.3–3.7 mm. Colour: Dorsal surface shiny dark brown, antennae, palpi, legs, elytral and pronotal lateral margins, scutellar region and elytral suture light brown. Antennae often darkened from joint III or IV toward apex. Microsculpture: Disc of head smooth, with very faintly engraved meshes (x120). Discs of pronotum and elytra polished; pronotal sides and elytral apex with micromeshes visible under high magnification (x150). Head: Average sized, with eyes moderately small and slightly protruding. Temples approximately 2/5

20 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. times length of eyes, strongly wrinkled to the neck. Anterior part of frontal furrows deep, posterior part flattened towards hind suborbital seta. Antennae moderately short, three antennomeres extend beyond the pronotal base. Antennomere III distinctly longer than antennomeres II and IV, both the latter are alike in length. Pronotum: Transverse; with sides moderately contracted towards base; proportions: WP/LP = 1.40–1.47, WP/WPB = 1.24–1.27, WP/WH = 1.28–1.32, WE/WP = 1.53–1.57. Surface strongly convex, sides evenly rounded and straight just anterad of posterior setae. Hind angles very poorly developed, obtuse or almost rounded. Marginal gutter narrow throughout. Basal groove smooth. Elytra: Oval, broadest almost at mid-length; proportion: WE/LE = 1.46–1.52. Surface convex, not flattened on disc. Shoulders distinct but rounded. Striae faintly punctate, only first stria moderately deeply impressed overall, second stria moderately impressed but absent at base, outer striae only suggested as rows of very faintly engraved punctures in elytral middle or completely absent. Intervals I–II slightly convex. Preapical seta is located on the prolonged and strongly outwardly bent second stria near to apex at the beginning of the posterior elytral twelfth to fifteens part. Male genitalia: Aedeagal median lobe moderately long (LE/LA = 2.72–2.79), evenly curved in basal 2/3 and straight toward apex, seen laterally. Terminal lamella relatively short, with apex stubby. Basal bulb average in size with velum large. Both the copulatory pieces thin and elongated, needle-like. Parameres moderately slender, each with four setae at tip. Etymology: The species is named for the reduced elytral microsculpture on the body surface, an important diagnostic feature within the T. thibetanus species group (Latin “glabrat-us, -a, -um”: smooth); adjective. Identification: Within the T. thibetanus group this new species is easily to recognize by the reduced elytral microsculpture on the one hand, and by the reduction of both the sclerotized parts of aedeagal internal sac to needle-like sclerites on the other hand. Relationships: Up to now I could not find any synapomorphy with any other taxon of the T. thibetanus species group. Moreover, according to the derived copulatory pieces of aedeagal internal sac this new species seems to be quite isolated within the species group. Distribution and geographical variation: Fig. 98. Westernmost parts of Nyainqentanglha Shan Massif. Habitat: Lower alpine zone; vertical distribution approximately 4500–4900 m. The species was frequently found under stones on yak pastures.

The Trechus wrzecionkoi group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle. Frons and supraorbital areas moderately convex. Temples convex, smooth. Mandibles normal. Pronotum subcordate, with hind angles well produced. Outer fifth of pronotal base slightly curved anteriorly toward hind angles. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae broadly developed. Pronotal median line distinct, deeper near base. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII faintly impressed behind the level of the fifth umbilicate pore and deeply impressed from level of the seventh umbilicate pore backwards. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs moderately short with fairly thick femora and rather thin tibia and tarsi; protibiae moderately dilated towards apices and hardly bowed, each without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Basal bulb of aedeagal median lobe not bent downwards, seen laterally, and with basal velum poorly developed. Median lobe apex not hooked, with terminal lamella broad and flat, seen dorsally. Internal sac with sclerotized portion moderately large to large.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 21 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Parameres relatively stout, with left paramere slightly longer than right one, both with four setae at tip. Remarks: In external characters, species of this group do not show unique differences compared to species from the T. antonini group, the T. chaklaensis group, or the T. solhoeyi group (see below) and compared to many other species from the eastern border of the Plateau. However, the form of the aedeagal median lobe with a straight base in lateral view and a remarkably broad terminal lamella in dorsal view is so striking, that based on these features the T. wrzecionkoi group can be hypothesized as monophyletic. The species T. jadodraconis Deuve, 1995, T. lijiangensis Belousov & Kabak, 2001, and T. weixiensis Belousov & Kabak, 2000 from the eastern border of the plateau, which are forming a natural group as well (Belousov & Kabak, 2001), show a similar conformation of aedeagal characters, however, these species differ more strongly in the following external characters: Habitus more robust and more ovate, base of pronotum emarginate or oblique on sides, elytra deeply striate and distinctly punctured, apical striola short, foretibia grooved on anterior surface. Despite similarities in aedeagal characters, a close relationship between these two species groups is difficult to ascertain. Another natural species group with a similar form of aedeagal median lobe is the sister species pair T. bogdoensis Belousov & Kabak, 2001, and T. inexspectatus Belousov & Kabak, 2001 from the Tian Shan mountain range (Bogda Shan, Bogdo-Ola Shan) of the Chinese province Xinjiang. Both these species differ from the T. wrzecionkoi group primarily by having pubescent temporae, distinctly grooved foretibiae and more slender parameres of the aedeagal median lobe. Based on these data a convergent development of aedeagal median lobe character may be accepted. Species included: T. korae sp. n. (South Central Tibet), T. martinae sp. n. (South Central Tibet), T. wrzecionkoi Deuve, 1996 (South Central Tibet).

Trechus wrzecionkoi Deuve, 1996 (Fig. 24)

Catalogue: Trechus wrzecionkoi Deuve, 1996: 70. Locus typicus: South Central Tibet, Medro Gonggar County, Gyama Valley, “Hepu-Sugala”, altitude 5200 m.

Type material: Holotype male, with label data “HOLOTYPE”, “Tibet 5200 m Hepu – Suga La”, “Trechus wrzecionkoi n. sp. Holotype Th. Deuve det. 1996” (MNHN). Additional material: CHINA: South Central Tibet: 1 male, Gyama Valley, ca. 60 km E Lhasa, north west ascent of Chungenpo Shong side valley, 4900–5230 m, ca. 29°40’36N 91°35’33E, 21.VII.07 (CSCHM). Identification: See key above. Within the original description Deuve (1996) noted that the copulatory piece is completely reduced. However, as shown in Fig. 24, a well sclerotized portion of aedeagal internal sac is developed in the specimen from Chungenpo Shong side valley, and it could also be verified in the holotype specimen, when the aedeagus was cleared in lactic acid. Relationships: At present species relationships within the T. wrzecionkoi group are unknown. Distribution: Fig. 99. Transhimalaya east of Lhasa: Higher mountains around Gyama Valley of Medro Gonggar County, South Central Tibet. Habitat: Higher alpine zone; vertical distribution approximately 5100–5230 m.

Trechus korae sp. n. (Figs. 7, 25)

Type material: Holotype male, with label data “TIBET South Centr. 22.VII.07, Medro Gonggar, Rutok Vall., 2 km SW Rutok, 5100–5250 m, 29°40’54N 92°12’24E” (SMNS). Paratypes: 3 males, 2 females, with same label data as holotype (CSCHM). Description: Body length: 3.4–3.7 mm.

22 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Colour: Dorsal surface brown, moderately shiny, head in four paratype specimens somewhat darker than pronotum, three basal antennal segments, palpi and legs lighter brown. Microsculpture: Clypeus and vertex with moderately engraved almost isodiametric meshes (x50); pronotum smooth on disc, with very faintly engraved slightly transverse meshes (x150), but with markedly engraved meshes in basal depressions (x50); disc of elytra with slightly engraved slightly transverse meshes (x80). Head: Average sized, with small, flat eyes; temples as long as eyes, moderately wrinkled to the neck. Anterior part of frontal furrows moderately deep, posterior part flattened towards hind suborbital seta. Antennae moderately long, four antennomeres extend beyond the pronotal base. Antennomere III as long as pedicellus, and distinctly longer (approximately 1.2 times) as antennomere IV. Pronotum: Moderately broad, subcordate, with sides strongly contracted towards base; proportions: WP/ LP = 1.24–1.30, WP/WPB = 1.32–1.40, WP/WH = 1.19–1.21, WE/WP = 1.67–1.69. Surface convex, sides evenly rounded and concave bent just anterad of hind angles, the latter well produced, almost rectangular. Marginal gutter narrow in anterior half, slightly widened towards base. Basal depressions very sparsely pointed or lengthwise wrinkled. Elytra: Oval, broadest in or a little behind mid-length; proportion WE/LE = 1.43–1.54. Surface convex, slightly flattened on disc. Shoulders distinct but rounded. Striae faintly and sparsely punctate, inner three striae deeply impressed but +/- disappearing at base and apex, striae IV–V very faintly impressed, striae VI–VII almost completely reduced. Inner intervals I–IV slightly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral sixth. Male genitalia: Aedeagal median lobe stout (LE/LA = 3.33–3.38), evenly curved downwards in middle, almost straight toward apex, seen laterally. Terminal lamella very slightly bent upwards at tip. Basal bulb relatively large. Internal sac with sclerotized portion complicatedly folded, resembling a three bladed propeller, seen laterally. Etymology: Formed as a noun (name) in the genitive case. This new species is dedicated to Mrs. Koralie Volkmann, Bonn, Germany, for her kind assistance during my fieldwork on the Tibetan Plateau in 2007. Identification: Within the T. wrzecionkoi group this new species is easily to recognize by the reduced outer elytral striae (VI + VII) on the one hand, and by the short aedeagal median lobe with propeller-like copulatory piece of internal sac on the other hand. For more details see diagnosis of T. martinae sp. n. below. Relationships: At present species relationships within the T. wrzecionkoi group are unknown. Distribution: Fig. 99. Transhimalaya east of Lhasa: Higher mountains on southern ascent of Rutok Valley of Medrogongga County, South Central Tibet. Habitat: Higher alpine zone; vertical distribution approximately 5100–5250 m. The specimens were found under stones on gently inclined slopes close to the top of a mountain crest.

Trechus martinae sp. n. (Figs. 7, 26, 27, 87)

Type material: Holotype male, with label data “TIBET (South Central) 21.VII.07, Gyama vall. ca. 60 km E Lhasa, 4900–5230 m, ca. 29°40’36N 91°35’33E”, “north west ascent of Chungenpo Shong side vall.” (BMNH). Paratypes: 34 males, 17 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS). Description: Body length: 3.4–4.0 mm. Colour: Dorsal surface brown, moderately shiny, head in most specimens somewhat darker than pronotum, two, three or four basal antennal segments, palpi and legs lighter brown. Microsculpture: Disc of head with faintly engraved almost isodiametric meshes, more clearly marked on vertex (x100); pronotum with very faintly engraved slightly transverse meshes on disc (x150), but with

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 23 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. markedly engraved meshes in basal depressions (x50). Disc of elytra with moderately engraved slightly transverse meshes (x80). Head: Average sized, with eyes flat and relatively small; temples 4/5 to 5/6 of length of eyes, strongly wrinkled to the neck. Frontal furrows moderately deep, flattened at level of hind suborbital seta. Antennae moderately short, three antennomeres extend beyond the base of pronotum. Antennomere III as long as pedicellus or slightly longer; antennomere IV with 5/6 – 7/8 of length of antennomere III. Pronotum: Moderately broad, subcordate, with sides strongly contracted towards base, and with proportions relatively variable: WP/LP = 1.27–1.38, WP/WPB = 1.32–1.42, WP/WH = 1.15–1.26, WE/WP = 1.61–1.68. Surface convex, sides evenly rounded in anterior ¾ to 4/5, and concave anterad of hind angles, the latter well produced, slightly obtuse (100–110°). Marginal gutter narrow, slightly widened just anterad of laterobasal depressions. Basal depressions very sparsely pointed or wrinkled lengthwise, seldom smooth. Elytra: More slender oval, broadest at or a little behind mid-length; proportion WE/LE = 1.49–1.62. Surface convex, slightly flattened on disc. Shoulders distinct but rounded. Striae sparsely punctate, inner three or four striae deeply impressed but +/- disappearing at base and apex, outer striae shallower, striae VI–VII only slightly impressed but visible. Five or six inner intervals convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral seventh. Male genitalia: Aedeagal median lobe stout (LE/LA = 3.07–3.20), strongly curved downwards at the beginning of apical third. Terminal lamella slightly bent upwards at tip. Basal bulb moderately large. Internal sac with sclerotized portion large, saccate. Etymology: Formed as a noun (name) in the genitive case. This new species is dedicated to Mrs. Martina Wegener, Lübeck, Germany, who kindly supported my fieldwork on the Tibetan Plateau in 2007. Identification: Body size distinctly smaller than T. wrzecionkoi, with seventh elytral striae only slightly impressed, with aedeagal median lobe more strongly bent downwards and with copulatory piece distinctly larger. Eyes slightly larger than T. korae sp. n., disc of head with micromeshes shallower, frontal furrows deeper, antennae shorter, elytra on average more slender, the preapical seta on third interval is situated a little more towards apex, aedeagal median lobe distinctly larger and strongly curved only in distal third, and with internal sac more simply folded. Relationships: At present species relationships within the T. wrzecionkoi group are unknown. Distribution: Fig. 99. Transhimalaya east of Lhasa: Higher mountains around Gyama Valley of Medro Gonggar County, South Central Tibet. Habitat: Higher alpine zone; vertical distribution approximately 5100–5230 m. The specimens were found under stones on gently inclined slopes as well on the top of a mountain crest.

The Trechus franzianus group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle. Frons and supraorbital areas moderately convex. Temples smooth (T. pumoensis Deuve, 1997) or indistinctly pubescent, with several very fine and very short hairs. Mandibles normal. Pronotum subcordate, with hind angles well produced. Pronotal base rectilinear or the outer fifth slightly curved anteriorly. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae broadly developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII moderately impressed from level of the fifth umbilicate pore and deeply impressed from level of the seventh umbilicate pore backwards (only T. pumoensis), or almost completely reduced, but sometimes visible at levels of seventh and eighth umbilicate pores (all other species). Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs rather slender with moderately thick femora and relatively thin tibia and tarsi; protibiae distinctly dilated towards apices, hardly bowed, each

24 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe elongated, with left and/or right sides widened behind middle, seen dorsally, with basal bulb moderately or strongly bent downwards, seen laterally, and with basal velum +/- largely developed. Lateral margin of median lobe with undulate curve before apex, and with terminal lamella not hooked. Internal sac with sclerotized portion relatively small and simple, saccate or reticulate. Parameres average to elongated, more slender towards tip, both with four setae; left paramere slightly longer than right one. Remarks: Due to remarkable similarities in aedeagal characters (strongly elongated form of median lobe, apically shifted internal sac sclerotized portion) the species of the T. franzianus group resemble T. gitzeni Belousov & Kabak, 2001 from the Tian Shan mountain range of the Chinese province of Xinjiang. However, this character combination is surely the result of a convergent development because many external characters argue against closer relationships between these two these groups: T. gitzeni is much larger in body size, has a quite different form of frontal furrows of head, has iridescent elytra due to serrate and strongly transverse lines of microsculpture, and has the foretibiae strongly grooved on the anterior surface. In addition, the lateral margin of the aedeagal median lobe of T. gitzeni lacks the apical sinuation that is characteristic for all species of the T. franzianus group. Particularly this apical sinuation, but also the strongly elongated middle portion of the aedeagal median lobe as well as its widened distal portion, all these conspicuous characters make the T. franzianus group distinctive within the Trechus faunas of Tibet and the Himalaya. Species included: T. aedeagalis sp. n. (Nepal), T. eremita sp. n. (Nepal), T. franzianus Mateu & Deuve, 1979 (Nepal), T. muguensis sp. n. (Nepal), T. pumoensis Deuve, 1997 (South Central Tibet), T. sculptipennis sp. n. (Nepal), T. tilitshoensis Schmidt, 1994 (Nepal).

Trechus pumoensis Deuve, 1997 (Figs. 28, 39)

Catalogue: Trechus pumoensis Deuve, 1997: 142. Locus typicus: South Central Tibet, Lhodrak County, Monda La [= Manda La] pass, altitude 5200 m.

Type material: Paratypes: 2 males, 2 females, with label data: “CHINA-C. TIBET, Mondala, 5200 m, 30 km W of Lhodak, 22.5.1997, leg. A. Wrzecionko” (CGITZ, CSCHM). Identification: See key above. Relationships: Within the T. franzianus group this species is the only one that has eyes slightly reduced (Fig. 28) and stria VIII more deeply impressed from the level of the fifth umbilicate pore. All the other species of this group share the more apomorphic character states by having more strongly reduced eyes (Figs. 29–31) and a more strongly reduced eighth elytral stria. Therefore, T. pumoensis is considered to be sister taxon of an evolutionary line comprising T. aedeagalis sp. n., T. eremita sp. n., T. franzianus Mateu & Deuve, 1979, T. muguensis sp. n., T. sculptipennis sp. n., and T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. Tibetan Himalaya of Lhodrak County, South Central Tibet, north of Bhutan. Habitat: Presumably a semi-edaphic species of the higher alpine zone.

Trechus tilitshoensis Schmidt, 1994 (Figs. 30, 42)

Catalogue: Trechus tilitshoensis Schmidt, 1994: 130. Locus typicus: Central Nepal, Manang Distr., Plateau above Tilit- shó Lake at N-slope of Annapurna Massif, altitude approximately 5000 m.

Type material: Holotype male, with label data “NEPAL-HIMALAYA, Annapurna-N-Abfall, W-Manang, 6- 8.10.92”, “Plateau über dem Tilitschok-Lake 5000 m, lg. Schmidt”, “HOLOTYPUS Trechus tilitshoensis des.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 25 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

J. Schmidt 1993” (SMTD). Paratypes: 8 males, 3 females, with same label data as holotype (CSCHM, SMTD); 10 males, 7 females, Annapurna Mts., Tilitshó Lake W Manang, 4950–5200 m, 4.VI.1993, leg. Schmidt (CSCHM); 2 males, Annapurna Mts., Thorong Pass N Manang, E slope, 4900–5200 m, 8.VI.1993, leg. Schmidt (CSCHM). Additional material: NEPAL: 8 males, 3 females, Annapurna Mts., Manang Distr., E slope Kang La Pass, 5000 m, 3.VI.1994, leg. J. Schmidt (CSCHM); 3 males, 1 female, Annapurna Mts., Yakkharka N Manang, 4500 m, 28.V.1996, leg. J. Schmidt (CSCHM); 10 males, 2 females, N Annapurna Mts., Gungdang N-slope, W Thorung Phedi, 4600–4900 m, 30.V.1996, leg. J. Schmidt (CSCHM); 24 males, 12 females, Dhaulagiri, upp. Yakkharka [place above Marpha north of Tukuche Peak], 4500–4600 m, 12.7.1998, leg. C. Berndt & J. Schmidt (CSCHM). Identification: See key above. Relationships: This species and the Western Nepalese species T. aedeagalis sp. n., T. eremita sp. n., T. franzianus Mateu & Deuve, 1979, T. muguensis sp. n., and T. sculptipennis sp. n., together forming a group of closely related species which, in external morphology, differ very slightly from each other or, in some cases are almost identical, but which evolved remarkable differences in genital morphology. Currently, based on these characters it seems impossible to determine sister species relationships. Distribution: Fig. 98. Tibetan Himalaya of Manang and Mustang Districts, Central Nepal. The species is known from several localities north of Annapurna Massif as well from the Northeast slope of Dhaulagiri Himal. Habitat: Edaphic species of the higher alpine zone; vertical distribution approximately 4900–5200 m. The specimens were found on humid, gently inclined slopes and along small depressions, often close to snow fields and melting water.

Trechus franzianus Mateu & Deuve, 1979 (Figs. 40, 41)

Catalogue: Trechus franzianus Mateu & Deuve, 1979: 103. Locus typicus: Western Nepal, Jumla Distr., SW slope of Sisne Himal, “Mahidoela-Pass” [pass at Dhauli Lake north of Maharigaon], altitude 5000 m. = Trechus surdipennis Mateu & Deuve, 1979: 104, syn. n. Locus typicus: Western Nepal, Jumla Distr., SW slope of Sisne Himal, “Mahidoela-Pass”, altitude 5000 m.

Type material: Trechus franzianus Mateu & Deuve, 1979: Not studied. Species identification is based on the original description including drawing of the very striking specific male genitalia characters which allow unambiguous diagnosis, as well on additional material from the type locality. Trechus surdipennis Mateu & Deuve, 1979: Not studied. Species identification is based on the original description and differential diagnosis which allows unambiguous determination, as well on additional material from the type locality. Remarks on synonymy: The taxa T. franzianus and T. surdipennis were described from the same locality. While the type series of the former included two males and two females, that of the latter included only female specimens (five altogether). In the differential diagnoses of both the species Mateu & Deuve (1979) noted remarkable differences in elytral microsculpture beside aberrances in depth of the frontal furrows of the head, prolongation of the temples, and proportions of the elytra. However, the study of a greater number of additional specimens from the type locality and adjacent mountain slopes suggests an uncommon case where elytral microsculpture in females are dimorphically developed: Approximately 80% of female specimens have the micromeshes deeply engraved, with surfaces of sculpticells strongly convex, making the elyta appear quite dull (“forma surdipennis”). By contrast, the remaining 20% of females have the elytral microsculpture developed as in males, with the micromeshes moderately engraved and surfaces of sculpticells only slightly convex and therefore, their elytra are moderately shiny (“forma franzianus”). In addition, all the other differential characters noted by Mateu & Deuve (1979) could not be confirmed but certain variations of these

26 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. characters could be recognized. Therefore, the taxon T. surdipennis is herewith proposed to be a junior synonym of T. franzianus. The latter taxon was described in the same work but one page before the former, and it was dedicated to the late Herbert Franz, an important zoologist and biogeographer, who first collected this species. Additional material: NEPAL: Jumla : 20 males, 12 females, 15 km N Talphi, Dhauli Lake, 4400 m, 28.VI.1997, leg. A. Weigel (CWG, NME); 1 male, Umg. Hochlager am Dhauli Lake [environment high camp at Dhauli Lake], 3800–4400 m, 29°22’26N 82°23’26E, 17.VI.1997, leg. J. Weipert (CSCHM); 3 males, 1 female, Maharigaon, Paß am Dhauli Lake, 4230–4600 m, 29°22’26N 82°23’26E, 18.VI.1997, leg. E. Grill (CSCHM, NME); 2 males, 1 female, Weg ü. Paß am Dhauli Lake [trail across pass at Dhauli Lake], 3980–4360 m, 29°23N 82°23E, 5.VII.1999, leg. E. Grill (NME); 1 male, 30 km NE Jumla, Sisne Himal, S- Hang am Dolphu Kang [Southern slope at Dolphu Kang], 4400 m, 25[29!]°28N 82°24E, 3.VII.1999, leg. A. Weigel (CWG); 2 males, S Paß Dolphu Kang, 4600–4300 m, 29°24N 82°24E, 3.VII.1999, leg. E. Grill (NME). Identification: See key above. Relationships: See remarks in chapter Relationships of T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. High Himalaya of Western Nepal: South slope of Sisne Himal, which is the western most part of Kanjiroba Massif in Jumla District. The small distributional area extends from the upper Chaudhabise Danda above Maharigaon in a northward direction as far as the south slope of Dolphu Kang pass. Habitat: Edaphic species of the lower alpine zone; vertical distribution approximately 4200–4600 m.

Trechus muguensis sp. n. (Figs. 43, 44, 85)

Type material: Holotype male, with label data “NEPAL oc. 30 km NE Jumla, Hochebene NE Dolphu Kang, 4100 m, 03.VII.1999, 29°28’N 82°25E leg. A. Weigel” (NME). Paratypes: 6 males, 2 females, with same label data as holotype (CSCHM, CWG, NME); 1 female, Nepal, Karnali Province, Mugu District, Sisne Himal, N Dolphu Kang, 3800–4100 m, 29°28’3N 82°24’4E, 2 VII.1999, leg. M. Hartmann (NME); 3 males, 4 females, Nepal, Mugu District, N Pass Dolphu Kang, 4100–4300 m, 29°28N 82°24E, 3.VII.1999, leg. E. Grill (CGR, CSCHM). Description: Body length: 3.2–3.7 mm. Colour: Dorsal surface brown or light reddish brown, moderately shiny (males) or somewhat dull on elytra (females), head in some specimens somewhat darker than pronotum, palpi, three basal antennal segments and legs yellowish brown. Microsculpture: Head almost smooth on disc, but with slightly engraved almost isodiametric meshes in frontal furrows and on neck. Pronotum with faintly engraved slightly transverse meshes on disc and deeply engraved meshes throughout basal depressions. Elytra with almost isodiametric meshes which are moderately engraved in males and more deeply engraved in females. Head: Average sized, with eyes flat and small; temples as long as eyes, strongly wrinkled to the neck. Frontal furrows deep between eyes, flattened at level of hind suborbital seta. Antennae moderately short, three antennomeres extend beyond the pronotal base. Antennomere III distinctly longer than antennomeres II and IV, both the latter are alike in length. Pronotum: Cordate and transverse, with sides strongly contracted towards base; proportions: WP/LP = 1.25–1.31, WP/WPB = 1.38–1.46, WP/WH = 1.23–1.29, WE/WP = 1.53–1.65. Surface convex, sides evenly rounded in anterior 2/3, but concave bent towards hind angles; the latter well produced, slightly obtuse to almost rectangular. Base almost rectilinear, sometimes slightly curved anteriorly at outer fifth. Marginal gutter narrow, widened at laterobasal depressions, the latter somewhat rough due to strongly convex discs of sculpticells of micromeshes, often in addition with one or two punctiform impressions.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 27 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Elytra: Oviform, broadest a little behind mid-length; proportion: WE/LE = 1.46–1.50. Surface moderately convex, somewhat flattened on disc. Sides evenly rounded with shoulders indistinct. Striae usually impunctate, but sometimes with the suggestion of fine dots. First stria moderately deep on elytral disc, absent at base and flattened on apex; second and third striae slightly impressed only on disc; fourth and fifth striae only suggested as fine incomplete lines, sixth and seventh striae usually completely reduced. Second interval slightly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral sixth or seventh. Male genitalia: Aedeagal median lobe elongate (LE/LA = 1.86–1.87), in lateral view strongly curved behind basal bulb, with ventral side slightly convex in middle with undulate curve before apex. In dorsal view, right side of median lobe somewhat widened at the beginning of distal quarter; tip of terminal lamella produced, truncate. Internal sac with sclerotized portion small, strongly flattened in lateral view. Etymology: The specific epithet is derived from the type locality, the Mugu District of Western Nepal (adjective). Identification: Body more complanate than T. pumoensis Deuve, 1997, eyes distinctly smaller, antennae shorter, outer elytral striae more strongly reduced, aedeagal median lobe more elongated. Pronotal hind angles more strongly developed than T. tilitshoensis Schmidt, 1994, the pronotal base not or slightly curved anteriorly towards basal setae, the micromeshes on vertex and frontal furrows more deeply engraved. In external characters almost identical to T. franzianus Mateu & Deuve, 1979, but elytral microsculpture in females not such as deep engraved than in “forma surdipennis” (see above). The new species clearly differs from T. franzianus by the remarkably different form of aedeagal median lobe which is smaller, more strongly curved behind basal bulb, not bent upwards behind middle, seen laterally, and not widened behind middle on left side, seen dorsally. For differentiation from the newly described species T. aedeagalis sp. n., T. eremita sp. n., and T. sculptipennis sp. n., see the diagnoses of those species below. Relationships: See remarks in chapter Relationships of T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. West slope of Sisne Himal, Western Nepal Himalaya. Up to now only known from the north slope of Dolphu Kang pass descent to Mugu Karnali River. Habitat: Edaphic species of the lower alpine zone; vertical distribution approximately 4100–4300 m.

Trechus eremita sp. n. (Figs. 29, 45, 46)

Type material: Holotype male, with label data “NEPAL oc. Karnali Prov., 34 km NE Jumla, Bachtal SE Taka, 29°30’12’’N, 82°24’20’’E, 3800 m, 01.VII.1999 leg. A. Weigel” (NME). Paratypes: 1 male, 2 females, with same label data as holotype (CSCHM, CWG). Description: Body length: 3.1–3.4 mm. Colour: Dorsal surface brown, moderately shiny, head distinctly darker than pronotum, palpi, three or four basal antennal segments and legs yellowish brown. Microsculpture: Head with slightly engraved slightly transverse meshes on disc, and with deeply engraved almost isodiametric meshes in frontal furrows and on neck; pronotum with faintly engraved slightly transverse meshes on disc but with deeply engraved meshes throughout basal depressions. Elytra with moderately engraved slightly transverse meshes in both sexes. Head: As described in T. muguensis sp. n. Pronotum: Proportions: WP/LP = 1.18–1.26, WP/WPB = 1.35–1.43, WP/WH = 1.23–1.24, WE/WP = 1.58–1.65. In all other pronotal characters agreeing with T. muguensis sp. n. Elytra: Proportion WE/LE = 1.42–1.52. Striae impunctate, two or three inner stria slightly stretched on elytral disc, absent at base and flattened on apex; fourth stria only suggested as a fine incomplete line, outer striae completely reduced. In all other elytral characters completely agreeing with T. muguensis sp. n. Male genitalia: Aedeagal median lobe elongate (LE/LA = 1.63–1.65), in lateral view strongly curved

28 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. behind basal bulb, almost straight in the middle portion, distinctly bent upwards at the beginning of distal quarter, with undulate curve at apex; ventral side slightly widened in middle. In dorsal view, right side of median lobe slightly widened at the beginning of distal quarter; tip of terminal lamella produced, rounded. Internal sac with sclerotized portion relatively small, strongly flattened in lateral view. Etymology: The specific epithet is used as a noun in apposition, and refers to the Latinized Greek word ‘eremita’, a hermit. Identification: In external characters almost identical to T. franzianus Mateu & Deuve, 1979 and the forgoing described T. muguensis sp. n., but elytral micromeshes in females not so deeply engraved. In addition, T. eremita sp. n. differs from both these species by its aedeagal characters: The median lobe is more elongated than in T. muguensis sp. n., with its basal bulb not so strongly bent downwards, but with its apical portion more distinctly curved upwards. In dorsal view, the median lobe is more slender than that of T. franzianus, and not widened behind middle on its left side. For differentiation with the newly described species T. aedeagalis sp. n. and T. sculptipennis sp. n. see diagnosis of the latter below. Relationships: See remarks in chapter Relationships of T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. North slope of Sisne Himal, Western Nepal Himalaya. Up to now only known from the southern side valley of Mugu Karnali River South East of Taka. Habitat: The few specimens of the type series were found under big stones on subalpine meadows beside a brook at an altitude of 3800 m. However, the vertical distribution of the species truly extends to the alpine zone.

Trechus aedeagalis sp. n. (Figs. 31, 49, 50)

Type material: Holotype male, with label data “NEPAL, Prov. Karnali 30°00,14’N 81°35,24’E, Chala, Hochtal SW, 4200–4400 m NN, 25.VI.2001 leg. J. Weipert” (NME). Paratypes: 2 males, 4 females, with same label data as holotype (CSCHM, CWP, NME); 1 male, 2 females, Nepal, Karnali Province, Humla District, 20 km NW Simikot, 3 km W Chala, 4100–4300 m, 29°59’77N 81°35’91E, 24.VI.2001, leg. A. Weigel (CSCHM, CWG). Description: Body length: 3.7–4.0 mm. Colour: Dorsal surface dark brown, moderately shiny, pronotum, elytral sides and first interval in some specimens reddish brown lightened, palpi, two or three basal antennal segments and legs yellowish brown. Microsculpture: Head and pronotum with faintly engraved slightly transverse meshes on discs and more deeply engraved almost isodiametric meshes in frontal furrows of head and throughout basal depressions of pronotum. Elytra with slightly transverse meshes which are moderately engraved in males and deeply engraved in females. Head: As described in T. muguensis sp. n. Pronotum: Moderately broad, subcordate, strongly contracted towards base; proportions: WP/LP = 1.20–1.27, WP/WPB = 1.32–1.37, WP/WH = 1.20–1.24, WE/WP = 1.65–1.69. Surface convex, sides evenly rounded in anterior half, straight behind middle and concave bent in posterior third towards hind angles; the latter well produced, slightly obtuse to almost rectangular. Base slightly convex in middle and more distinctly curved anteriorly at outer fifth. Marginal gutter narrow in anterior pronotal half, slightly widened towards base. Laterobasal depressions somewhat rough due to strongly convex discs of sculpticells of micromeshes, but without additional punctiformous impressions. Elytra: Proportion WE/LE = 1.41–1.49. Striae impunctate, two or three inner stria slightly streched on elytral disc, absent at base and flattened on apex; fourth stria and sometimes also fifth stria only suggested as fine incomplete lines; outer striae completely reduced. Preapical seta of second stria is located at the beginning of the posterior elytral eighth. All other elytral characters completely agree with T. muguensis sp. n.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 29 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 39–51. Aedeagal median lobe with sclerotized portions of internal sac in lateral view (Figs. 39, 40, 42, 43, 45, 47, 49; Figs. 39, 40, 47, 49 in addition with parameres) and in dorsal view (Figs. 41, 44, 46, 48, 50). Fig. 39, Trechus pumoensis Deuve, 1997, paratype. Figs. 40, 41, T. franzianus Mateu & Deuve, 1979, non-type specimen from Dhauli Lake. Fig. 42, T. tilitshoensis Schmidt, 1994, non-type specimen from Gungdang N-slope. Fig. 43, 44, T. muguensis sp. n., paratype (43) and holotype (44). Figs. 45, 46, T. eremita sp. n., paratype. Figs. 47, 48, T. sculptipennis sp. n., paratype. Figs. 49, 50, T. aedeagalis sp. n., paratype. Fig. 51, T. stratiotes sp. n., paratype.

30 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 52–64. Aedeagal median lobe with sclerotized portions of internal sac in lateral view (Figs. 52–56, 60–63; Figs. 52, 54, 55, 60, 61, 63 in addition with parameres) and in dorsal view (Figs. 57–59, 64). Fig. 52, Trechus damchungensis Deuve, 1997, holotype. Figs. 53, 57, T. cf. damchungensis Deuve, 1997, paratype from Tangula Pass. Fig. 54, T. mieheorum sp. n., paratype. Figs. 55, 58, T. bastropi sp. n., paratype. Fig. 56, T. hodeberti Deuve, 1997, non- type specimen from Lhachen La (= locus typicus). Figs. 59, 60, T. solhoeyi sp. n., paratype. Fig. 61, T. yeti sp. n., paratype. Fig. 62, T. budhaensis sp. n., paratype. Fig. 63, 64, T. rolwalingensis sp. n., paratype.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 31 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 65–80. Aedeagal median lobe with sclerotized portions of internal sac in lateral view (Figs. 65–71, 77–80; Figs. 65, 68–71, 79, 80 in addition with parameres) and in dorsal view (Figs. 72–76). Figs. 65, 74, Trechus astrophilus sp. n., paratype. Fig. 66, T. lama sp. n., paratype. Fig. 67, T. singularis sp. n., holotype. Fig. 68, T. tsampa sp. n., paratype. Figs. 69, 76, T. yak yak ssp. n., paratype. Figs. 70, 73, T. religiosus sp. n., paratype. Figs. 71, 72, T. chaklaensis sp. n., paratype. Fig. 75, T. yak shogulaensis ssp. n., paratype. Fig. 77, T. antonini sp. n., non-type specimen from Lhachen La (= locus typicus). Fig. 78, T. folwarcznyi Deuve, 1997, non-type specimen from Shogu La (= locus typicus). Fig. 79, T. rarus sp. n., holotype. Fig. 80, T. tseringi sp. n., paratype.

32 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 81–86. Habitus. Fig. 81, Trechus dongulaensis sp. n., paratype, female. Fig. 82, T. glabratus sp. n., paratype, female. Fig. 83, T. rolwalingensis rolwalingensis ssp. n., holotype. Fig. 84, T. stratiotes stratiotes ssp. n., paratype, male. Fig. 85, T. muguensis sp. n., paratype, female. Fig. 86, T. sculptipennis sp. n., paratype, female.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 33 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 87–92. Habitus. Fig. 87, Trechus martinae sp. n., paratype, female. Fig. 88, T. mieheorum sp. n., holotype. Fig. 89, T. solhoeyi sp. n., paratype, male. Fig. 90, T. yeti sp. n., holotype. Fig. 91, T. astrophilus sp. n., paratype, male. Fig. 92, T. tsampa sp. n., holotype.

34 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 93–95. Habitus. Trechus lama sp. n., paratype, male (93). T. religiosus sp. n., paratype, male (94). T. chaklaensis sp. n., paratype, female (95).

Male genitalia: Aedeagal median lobe with a length of 1.5–1.6 mm, remarkably long (about 40% of total body length! LE/LA = 1.49–1.55), in lateral view strongly curved behind basal bulb, slightly widened in middle, and with undulate curve at apex. In dorsal view median lobe slender, slightly bent behind middle and slightly widened towards apex; tip of terminal lamella truncate or rounded. Internal sac with sclerotized portion relatively long, saccate in lateral view and fishnet-like formed in dorsal view. Both the parameres elongated. Etymology: The specific epithet is used as an adjective (variable), in allusion to the exceptional aedeagal size of the new species. Identification: In external characters very similar to T. franzianus Mateu & Deuve, 1979, and the previously described T. eremita sp. n. and T. muguensis sp. n., but pronotal base more strongly convex. Females with meshes of elytral microsculpture not squamously accentuated as in T. franzianus “forma surdipennis” and in T. sculptipennis sp. n. In addition, T. aedeagalis sp. n. differs from all other species of the T. franzianus group by the shape of its aedeagus, especially by the exceptional long median lobe and the elongated parameres. Relationships: See remarks in chapter Relationships of T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. Northeast slope of Saipal Himal, Far Western Nepal Himalaya. Up to now only known from a southern side valley of the river Humla Karnali SW of Chala. Habitat: Edaphic species of the lower alpine zone; vertical distribution approximately 4100–4400 m.

Trechus sculptipennis sp. n. (Figs. 47, 48, 86)

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 35 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Type material: Holotype male, with label data “NEPAL Prov. Seti Distr. Bajura, 15 km W Simikot, Dudh Lekh/ Dudh Tal, 4650–4800 m, 29°56’09’’N, 81°40’32’’E, 01.07.2001 leg. A. Kopetz HF, stone debris, glacier lake side” (NME). Paratypes: 17 males, 8 females, with same label data as holotype (CKOP, CSCHM, NME); 31 males, 10 females, Nepal, Seti Province, Bajura District, 15 km W Simikot, Dudh Lekh/ Dudh Tal, 4700 m, snow fields and glacier lake side, 29°56N 81°40E, 1.VII.2001, leg. E. Grill (CGR, CSCHM); 6 males, 15 females, ditto, but: 4650 m, glacier lake side, 29°56’08N 81°40’32E, 2.VII.2001, leg. A. Kopetz (CKOP, CSCHM); 25 males, 11 females, ditto, but: 4600–4900 m, stone debris, glacier lake, 29°56N, 81°40E, 2.VII.2001, leg. A. Weigel (CSCHM, CWG, NME); 19 males, 9 females, with same label data, but: leg. M. Hartmann (CSCHM, NME); 4 females, ditto, but: 5200 m, stone debris and alpine mats, 29°56N 81°40E, 1.VII.2001, leg. U. Bößneck (CSCHM, NME); 3 males, 3 females, Nepal, Karnali Province, Humla District, 20 km W Simikot, 500 m W Sankha La, 4800 m, snow fields, 29°57N 81°37E, 2.VII.2001, leg. A. Kopetz (CKOP); 7 males, 6 females, with same label data, but: leg. E. Grill (CGR, CSCHM); 4 males, 3 females, 16 km W Simikot, 2 km NW Sankha La, 4250–4950 m, snow fields and alpine mats, 29°56’39N 81°39’02E, 29.VI.2001, leg. E. Grill (CGR); 19 males, 10 females, 3 km NW Sankha La, 4700–4800 m, 29°56’39N 81°39’02E, 30.VI.2001, leg. A. Weigel (CSCHM, CWG, NME); 2 males, with same label data, but: leg. E. Grill (CGR); 2 males, 3 females, ditto, but: 4300–4800 m, stone debris and alpine mats, 29°57’18 N 81°39’30E, 29–30.VI.2001, leg. A. Kopetz (CKOP, CSCHM); 1 female, 18 km W Simikot, Sankha La – Kuwadi Khola, 4600–4000 m, mt. meadows and pastures, 29°54’40N, 81°38’49E, 3.VII.2001, leg. A. Weigel (CWG); 5 males, 2 females, 10 km SE Chala, Umg. Lager SE Sankha La [environment camp South East of Sankha La], 4600–4900 m, 29°56’2N 81°40’1E, 2.VII.2001, leg. J. Weipert (CSCHM, CWP); 1 male, ditto, but: 4400–4800 m, 29°56’4N 81°40E, 1.VII.2001, leg. J. Weipert (CSCHM). Description: Body length: 3.2–3.9 mm. Colour: Dorsal surface brown or dark brown, moderately shiny (males) or dull on elytra (females), pronotum, sides and first interval of elytra in most specimens reddish brown lightened, palpi, two or three basal antennal segments and legs yellowish brown. Microsculpture: Head and pronotum with faintly engraved slightly transverse meshes on discs, and with deeply engraved almost isodiametric meshes in frontal furrows of head and throughout basal depression of pronotum. Elytra with almost isodiametric meshes which are moderately engraved in males but deeply engraved and squamously accentuated in females. Head: As described in T. muguensis sp. n. Pronotum: Proportions: WP/LP = 1.25–1.34, WP/WPB = 1.29–1.38, WP/WH = 1.25–1.30, WE/WP = 1.46–1.55. In all other pronotal characters agreeing with T. muguensis sp. n. Elytra: Oviform, moderately slender, broadest a little behind mid-length; proportion: WE/LE = 1.49–1.61. Surface moderately convex, somewhat flattened on disc. Sides evenly rounded with shoulders indistinct. Striae impunctate, first and second striae moderately deep on elytral disc, disappeared towards base and apex; third stria slightly and fourth stria very faintly impressed only on disc; outer striae usually completely reduced. Second and third interval very slightly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral seventh. Male genitalia: Aedeagal median lobe elongate (LE/LA = 1.71–1.74), in lateral view moderately curved behind basal bulb, with ventral side strongly and with dorsal side slightly convex in middle, and with ventral side with an undulate curve at apex. In dorsal view, sides of median lobe strongly widened in distal quarter, and with tip of terminal lamella rounded. Internal sac with sclerotized portion relatively large; the saccate element in its distal half is covered by smaller and less conspicuous, moderately sclerotized folding. Etymology: The specific epithet is used as an adjective (variable), referring to the conspicuous microsculpture of the female elytra. Identification: In external characters almost identical to the allopatric T. franzianus Mateu & Deuve, 1979, but easily distinguished from the latter by the very different shape of the aedeagus (compare Figs. 40, 41, T. franzianus, and 47, 48, T. sculptipennis). In addition to the exceptional aedeagal characters, the female of the new species differs from the previously described T. aedeagalis sp. n., T. eremita sp. n. and T.

36 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. muguensis sp. n., by having elytral microsculpture squamously accentuated due to the strongly convex surfaces of sculpticells. Relationships: See remarks in chapter Relationships of T. tilitshoensis Schmidt, 1994. Distribution: Fig. 98. Environment of Sankha La pass on north eastern slope of Saipal Himal, Far Western Nepal. Habitat: Higher alpine zone; vertical distribution approximately 4500–5200 m.

The Trechus dacatraianus group

Diagnosis: Head with frontal furrows deep, flattened and indistinct at level of hind suborbital seta in some species, +/- strongly curved at middle. Frons and supraorbital areas strongly convex. Temples distinctly pubescent. Mandibles normal. Pronotum subcordate, with hind angles well produced. Pronotal base rectilinear or the outer fifth slightly curved anteriorly. Basal transverse depression of pronotum diffuse, limited towards disc; laterobasal foveae broadly developed. Pronotal median line distinct, but not deepened before base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII slightly (T. dacatraianus, T. damchungensis) or faintly impressed behind the level of the fifth umbilicate pore and deeply impressed at levels of seventh and eighth umbilicate pores. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs average, with moderately slender (T. hodeberti, T. mieheorum sp. n.) or thick femora and relatively thin tibia and tarsi; protibiae distinctly dilated towards apices, hardly bowed, each without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe average to large, with basal bulb spherically enlarged and strongly bent downwards, with basal velum small or completely reduced, and with terminal lamella strongly hooked at tip. Internal sac with sclerotized portion quadripartite, extending almost half of the length of median lobe or even more; folding lobes in dorsal view bilaterally symmetrical, whereas the more basal pair of lobes forms a sheath for the more distal pair. Parameres average to relatively stout, broad at tip, both with four setae; left paramere slightly longer than right one. Remarks: Although this group includes species with relatively different external morphology, it is very likely a natural group because all the species share a more complicated structure of the internal sac of the aedeagus which is unique within the Trechus fauna of Tibet and adjacent mountainous regions, and is certainly a synapomorphic feature. However, the taxonomic position of the T. dacatraianus group within the genus is quite difficult to trace without taking into account a much more comprehensive data set of characters. Therefore, a more detailed phylogenetic study which includes the highly diverse Trechus fauna of the Western Chinese mountain ranges is needed. Species included: T. bastropi sp. n. (South Central Tibet), T. dacatraianus Deuve, 1996 (North Eastern Tibet), T. damchungensis Deuve, 1997 (Eastern Tibet), T. hodeberti Deuve, 1997 (South Central Tibet), T. mieheorum sp. n. (South Central Tibet).

Trechus damchungensis Deuve, 1997 (Figs. 34, 52, 53, 57)

Catalogue: Trechus damchungensis Deuve, 1997: 141. Locus typicus: South Central Tibet, Damzhung County, Largeh La, 5200 m (= Largen La or Lhachen La Pass N Damzhung).

Type material: Holotype male, with label data “HOLOTYPE”, “Tibet 5.VII.97 Largeh La 5200 m A.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 37 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Wrzecionko”, “Trechus damchungensis n. sp. Holotype Th. Deuve det. 1997” (MNHN). Paratypes: 2 males, each with label data “CHINA-N. TIBET, Tangula Shan Mts., Tangula Pass 5100–5300 m, 8.–11.7.97, leg. A. Wrzecionko”, “PARATYPE”, “Trechus damchungensis n. sp. Th. Deuve det. 1997” (CSCHM). Identification: See key above. Relationships: The complete reduction of the basal velum of the aedeagal median lobe on the one hand and the elongation of the median lobe distal half on the other hand are both doubtless synapomorphies of the species T. dacatraianus and T. damchungensis, and suggest a sister species relationship. Distribution and geographical variation: Fig. 99. This species is hitherto known only from the type series which comprises specimens from two geographically well separated localities: 1) Three males from the Lhachen La pass of the central Nyainqentanglha Shan Massif, approximately 12 km northeast of Damzhung, and 2) altogether 30 specimens from the Tangula pass of Tangula Shan Massif at the Tibet-Quinghai border (Deuve 1997). A careful restudy of three of the type specimens (the holotype from Lhachen La and two of the paratypes from Tangula) let me conclude tentatively that both the populations belong to distinct species or subspecies. Although almost identical in external characters, the shape of the aedeagus differs between the holotype and the two investigated paratypes: The median lobes of the latter are more elongated towards the apex, with ventral side more strongly convex in the middle, and with the upwardly directed hook of the terminal lamella longer (see Figs. 52, 53). However, study of more comprehensive material is required before taxonomic conclusions can be drawn. Habitat: Higher alpine zone; vertical distribution approximately 5000–5300 m.

Trechus hodeberti Deuve, 1997 (Figs. 35, 56)

Catalogue: Trechus hodeberti Deuve, 1997: 141. Locus typicus: Tibet, Largeh La, 5200 m (= Largen La or Lhachen La Pass north of Damzhung).

Type material: Not studied. Species identification is based on original description compared to additional material from locus typicus. T. hodeberti is characterized by highly complicated features of male genitalia which are figured in the original description and which allow an unambiguous diagnosis. Additional material: CHINA: South Central Tibet: 2 males, 5 females, S Lhachen La, N Damzhung, 5150–5250 m, 30°38’20.2N 91°05’55.6E, 14.VII.07 (CSCHM). Identification: See key above. Relationships: See chapter Relationships of T. bastropi sp. n., below. Distribution: Fig. 99. Currently only known from the type locality, the Lhachen La pass of the central Nyainqentanglha Shan Massif, approximately 12 km northeast of Damzhung. Habitat: Higher alpine zone; vertical distribution approximately 5100–5300 m. The specimens of the additional material were found under big stones on humid, gently inclined slopes.

Trechus bastropi sp. n. (Figs. 1, 55, 58)

Type material: Holotype male, with label data “TIBET South Centr. 3–4.VII.07, NE of Shogu La pass, 5000–5350 m, 29°54’48–29°57’20N 90°08’28–90°07’49E” (BMNH). Paratypes: 18 males, 5 females, with same label data as holotype (BMNH, CSCHM). Description: Body length: 4–4.5 mm. Colour: Dorsal surface dark brown, moderately shiny, pronotum, elytral margin and first interval reddish brown. Antennae, palpi and legs yellowish brown.

38 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Microsculpture: Discs of head and pronotum almost smooth, with very faintly engraved meshes, visible under high magnification only (x100). In contrast, pronotal basal depression with granulate sculpture due to strongly convex surfaces of sculpticells. Surface of elytra with moderately engraved slightly transverse meshes in both sexes. Head: Average sized, with eyes relatively small and only slightly protruding. Temples approximately 3/4 of length of eyes and strongly wrinkled to the neck. Frontal furrows deep, somewhat flattened at level of hind suborbital seta. Antennae moderately short, three antennomeres extend beyond the pronotal base. Antennomere III slightly longer than antennomeres II and IV, both the latter are alike in length. Pronotum: Slightly transverse and hardly cordate, with sides strongly contracted towards base; proportions WP/LP = 1.21–1.30, WP/WPB = 1.30–1.39, WP/WH = 1.16–1.27, WE/WP = 1.61–1.66. Surface strongly convex, sides evenly rounded in anterior 4/5–5/6 and straight or slightly concave just anterad of posterior setae. Hind angles relatively poorly developed, slightly obtuse (110–120°). Marginal gutter narrow, somewhat widened just anterad of laterobasal depressions. Base rectilinear or slightly convex in middle, but distinctly curved anteriorly at outer fifth. Basal depressions rough due to strongly convex discs of sculpticells of micromeshes, sometimes in addition of faint wrinkles at both sides of middle of base. Elytra: Oval, broadest a little behind mid-length; proportion WE/LE = 1.39–1.48. Surface strongly convex, not flattened on disc. Sides rounded with shoulders indistinct. Striae impunctate or very finely and scarcely punctate, inner three striae deeply impressed on disc, but flattened or reduced at apex and base; outer striae shallower, but always distinct. Three or four inner intervals slightly convex. Preapical seta located on second stria and at the beginning of the posterior elytral sixth. Male genitalia: Aedeagal median lobe large (LE/LA = 2.10–2.16), strongly curved basally and elongated towards apex. Basal bulb spherically enlarged but with velum narrow. Apex in lateral view with a long upwardly and finally inwardly curved hook. Internal sac extensively sclerotized: In dorsal view with two side symmetrical folds in middle of median lobe, whereas the inner fold forms a tent like structure, and the outer fold encloses the inner fold at its basal portion. In lateral view, an additional and less strongly sclerotized fold proceeds loop-like from the folding structures of median lobe middle towards apex below median lobe ostium. Etymology: I dedicate this species to my dear colleague Ralf Bastrop, University of Rostock, who kindly taught me how to deal with molecular analysis of carabid beetles. Formed as a noun (name) in the genitive case. Identification: Within the fauna of western Nyainqentanglha Shan Massif this species is easily to recognize by the large aedeagal median lobe, which is elongated in middle part and remarkably hooked at apex, but not double-hooked as in T. damchungensis Deuve, 1997. It is similar to T. hodeberti Deuve, 1997, from central Nyainqentanglha Shan, both in external and genital morphological characters, but has body darker and stouter, eyes slightly larger, frontal furrows of head not shortened behind, antennae and legs slightly shorter, elytral stria deeper, aedeagal median lobe more elongate, with apical hook much larger and internal sac more extensively sclerotized. For differentiation from T. mieheorum sp. n. see key to species and the diagnosis of the latter, below. Relationships: According to the loop-like internal sac fold below median lobe ostium, which seems a synapomorphic character state of the species T. bastropi sp. n. and T. hodeberti Deuve, 1997, a sister species relationship of both these species is very probably. Distribution: Fig. 99. Endemic species of western Nyainqentanglha Shan Massif. Currently only known from the NE slope of Shogu La pass, 40 km southwest of Yangpachem. Habitat: High alpine zone; vertical distribution approximately 5000–5300 m. The species was found under big stones on humid slopes close to the bottom of the upper Shogu Tshu river valley.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 39 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Trechus mieheorum sp. n. (Figs. 54, 88)

Type material: Holotype male, with label data “TIBET South Centr. 18.VII.07, Reting Tsangpo Vall. E Reting, upp. Kiykiy side vall. 4900–5200 m, 30°24’38N 91°41’10E” (SMNS). Paratypes: 1 male, 2 females, with same label data as holotype (CSCHM). Description: Body length: 4–4.5 mm. Colour: Dorsal surface dark reddish brown, moderately shiny, antennae and legs slightly lightened, palpi yellowish brown. Microsculpture: Head almost smooth on clypeus and frons, and with distinctly engraved almost isodiametric meshes in frontal furrows and on neck. Pronotum with very faintly engraved meshes on disc which are visible under high magnification only (x100), and with granulate sculpture due to strongly convex surfaces of sculpticells in basal depressions. Surface of elytra with slightly engraved slightly transverse meshes in both sexes. Head: Average sized, with eyes small and only slightly protruding. Temples as long as eyes, strongly wrinkled to the neck. Frontal furrows deep between the eyes, but distinctly flattened towards hind suborbital seta. Antennae short, 2.5 antennomeres extend beyond the pronotal base. Antennomere III distinctly longer (1/5 to 1/6) than antennomeres II and IV, both the latter are almost alike in length. Pronotum: Slightly transverse, subcordate, strongly contracted towards base, and with proportions relatively variable: WP/LP = 1.25–1.34, WP/WPB = 1.34–1.36, WP/WH = 1.19–1.30, WE/WP = 1.61–1.68. Surface moderately convex, sides evenly rounded in anterior ¾ and concave in posterior quarter. Hind angles relatively largely developed, almost rectangular or slightly obtuse. Marginal gutter narrow, not or only slightly widened just anterad of laterobasal depressions. Base rectilinear in middle, slightly curved anteriorly at outer fifth. Basal depressions rough due to strongly convex discs of sculpticells of micromeshes and due to wrinkles in middle of base. Elytra: Oval, broadest a little behind mid-length; proportion WE/LE = WE/LE = 1.50–1.52. Surface convex, not or slightly flattened on disc. Sides rounded with shoulders indistinct. Striae finely and scarcely punctate, inner three striae moderately deep impressed on disc, but flattened or reduced at apex; striae IV and V only faintly impressed, striae VI and VII completely reduced. Three inner intervals slightly convex. Preapical seta is located on second stria and at the beginning of the posterior elytral sixth. Male genitalia: Aedeagal median lobe relatively small (LE/LA = 3.04–3.06), in lateral view strongly curved throughout. Basal bulb spherically enlarged but with velum narrow. Tip of terminal lamella with a relatively short upward directed hook. The sclerotized portion of the internal sac forms an outer sheet-like fold in the middle of the median lobe which encloses the base of a long spur-like copulatory piece; the latter proceeds towards the ostium and is more strongly sclerotized at its tip. Etymology: The specific name is dedicated to Sabine and Georg Miehe, Marburg, for their long-time efforts on forest research and forest conservation in Tibet and especially for their kind support of my own studies on the Plateau. Formed as a noun (plural of name) in the genitive case. Identification: Within the fauna of southern Tibet this species is easily to distinguish by the shape of the aedeagal median lobe and especially by the presence of a long thorny copulatory piece of internal sac at median lobe ostium. In external characters this species is very similar to the above described T. bastropi sp. n., but differs by having the eyes more strongly reduced, frontal furrows of head more distinctly flattened towards hind suborbital setae, basal antennal joints stouter, pronotal sides more strongly concave rounded towards base, hind angles more strongly produced, pronotal base less curved anteriorly towards hind angles and outer elytral striae finer, with striae VI and VII completely reduced. Relationships: According to the more strongly reduced eyes this new species, along with T. bastropi sp. n. and T. hodeberti Deuve, 1997, seems to form a separate evolutionary lineage within the T. dacatraianus group. Due to the presumed sister species relationship of both the latter species as mentioned above, T. mieheorum sp. n. could be the more basal branch of this evolutionary lineage.

40 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Distribution: Fig. 99. Currently only known from the source area of the Kiykiy brook on north ascent of Reting Tsangpo Valley, approximately 100 km northeast of Lhasa. Habitat: Higher alpine zone. The species was found under big stones on the top of an old moraine at an altitude of 5200 m.

The Trechus solhoeyi group

Diagnosis: Head with frontal furrows deep, strongly curved at middle. Frons and supraorbital areas strongly convex. Temples smooth. Mandibles normal. Pronotum subcordate, with hind angles well produced. Pronotal base rectilinear in middle and with outer fifth slightly curved anteriorly. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae broadly developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII distinctly impressed between fifth and sixth and between seventh and eighth umbilicate pores, and reduced between sixth and seventh pores. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs short, with moderately thick femora and relatively thin tibia and tarsi; protibiae slightly dilated towards apices, hardly bowed, each without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe moderately large, with basal bulb average and strongly bent downwards, with basal velum moderately developed, and with terminal lamella not hooked at tip. Internal sac with sclerotized portion tripartite, extending almost half of length of median lobe; external folding lobes in dorsal view large and bilaterally symmetrical. Parameres average, both with four setae at tip; right paramere almost as long as left one. Species included: Monotypic: Trechus solhoeyi sp. n. (South Central Tibet).

Trechus solhoeyi sp. n. (Figs. 59, 60, 89)

Type material: Holotype male, with label data “TIBET South Centr. 17–20.VI.07, Budha Vall. N of Yangpachem, ca. 30°10’56N 90°29’21E, 5000–5200 m” (BMNH). Paratypes: 27 males, 24 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS); 18 males, 5 females, South Central Tibet, Budha Vall. N of Yangpachem, 4730–4900 m, ca. 30°10’38N 90°30’18E, 20.VI.2007 (CSCHM). Description: Body length: 3.6–4.2 mm. Colour: Dorsal surface shiny, with elytra dark brown, and with head, pronotum, elytral margin and first interval reddish brown. Antennae, palpi and legs yellowish brown. Distal third of antennal segment III and antennal segments IV–XI on the whole often darkened. Microsculpture: Supraorbital area and disc of pronotum with faintly engraved meshes, visible under high magnification (x80–x100). Frontal furrows of head and pronotal basal depression with deeply engraved almost isodiametric meshes. Elytral disc with slightly engraved slightly transverse meshes in both sexes. Head: Broad, with eyes moderately small and moderately protruding. Temples approximately 1/2 of length of eyes and strongly wrinkled to the neck. Frontal furrows deep between eyes and hardly flattened at hind suborbital seta. Antennae short, 2.5 antennomeres extend beyond the pronotal base. Antennomere III hardly longer than antennomere II, the latter is often slightly longer than antennomere IV. Pronotum: Transverse, subcordate and strongly contracted towards base; proportions WP/LP = 1.31–1.39, WP/WPB = 1.29–1.34, WP/WH = 1.21–1.26, WE/WP = 1.54–1.57. Surface strongly convex, sides evenly rounded in anterior 2/3 and concave in posterior 1/3. Hind angles large, slightly obtuse (approximately 110°).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 41 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Marginal gutter narrow, slightly widened towards laterobasal depressions. Base rectilinear in middle, slightly or moderately curved anteriorly at outer fifth; basal depressions sometimes with faint longitudinal wrinkles. Elytra: Sub-oval, moderately stout, broadest a little behind mid-length; proportion: WE/LE = 1.49–1.53. Surface strongly convex, not flattened on disc. Sides slightly rounded in elytral middle and more strongly rounded towards apex, but almost straight at level of fourth umbilicate pore; shoulders rounded but distinct and relatively broad. Striae punctate, first stria deeply impressed throughout, second and third striae deeply impressed on disc and flattened or reduced at base and apex, outer striae distinctly finer, seventh stria hardly visible. Intervals I–IV slightly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral ninth or tenth. Male genitalia: Aedeagal median lobe moderately large (LE/LA = 2.26–2.36), strongly curved basally and elongated towards apex. Terminal lamella moderately long, in lateral view slightly curved upwards, its base slightly stepped from level of ventral margin of median lobe. Internal sac extensively sclerotized: In dorsal view with two symmetrical folds extending at both sides of middle of median lobe towards apex; close to their base these folds enclose another but much smaller triangular or trapezoid sheet. Etymology: I dedicate this species to my friend Torstein Solhøy, University of Bergen, for his endeavour on zoological research on the Tibetan Plateau and to uplift scientific education of students of the Tibetan University and especially for his kind support of my own studies on the Plateau. Formed as a noun (name) in the genitive case. Identification: Within the Trechus fauna of the Tibetan Plateau this new species is easily to recognize by the shape of the aedeagal median lobe and by the unique internal sac features, especially by the presence of one pair of extensively sclerotized, side symmetrical sheets of internal sac folding. In addition with a small single sheet in the middle of median lobe the internal sac folding is therefore produced tripartite. Species of the T. dacatraianus group have indeed also side symmetrical internal sac folding lobes however, these sclerotized lobes are quadripartite produced. Moreover, in these species the external shape of the aedeagal median lobe is quite different. On central Nyainqentanglha Shan Massif, T. solhoeyi sp. n. is sympatrically distributed with three other edaphic Trechus species (T. astrophilus sp. n., T. budhaensis sp. n., T. yak sp. n.), and as well as major differences in male genitalia characters, T. solhoeyi sp. n. can also be easily distinguished from these other species using external characters: The head is broader, with larger eyes and shorter temporae (approximately 1/2 of length of eyes, but with at least 2/3 of length of eyes in the other species), the pronotal hind angles are more strongly produced, and the elytra are distinctly broader on shoulders due to less constricted elytral sides towards base. Relationships: The presence of one pair of symmetrical sheets the of aedeagal internal sac folding indicates for closer relationships with the T. dacatraianus species group. However, due to the tripartite structure of internal sac folding as well as due to the more apomorphic states of some external characters (smooth temples, strongly deepened pronotal median line before base, more strongly reduced eighth elytral stria) the new species seem to represent a separated evolutionary line. Distribution: Fig. 99. Currently only known from the Budha Valley, which is a relatively small brook valley on the south slope of central Nyainqentanglha Shan Massif north of Yangpachem. Habitat: Lower alpine zone; vertical distribution approximately 4800–5100 m. The species was frequently found under stones on humid slopes and near to the Budha brook of the Budha valley.

The Trechus antonini group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle, often flattened at level of hind suborbital pore. Frons and supraorbital areas strongly convex. Temples almost smooth, with several very fine, very short hairs which are hardly visible. Mandibles normal. Pronotum cordate or subcordate, with hind angles well produced. Pronotal base rectilinear or slightly convex in middle and with outer fifth +/- strongly curved anteriorly. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae

42 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. broadly developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII slightly or moderately impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria, but often connected to the prolonged seventh stria due to the more strongly shortened fifth and sixth striae in most species. Ventral surface smooth. Legs short or moderately slender, with thick femora and thin tibia and tarsi; protibiae slightly dilated towards apices, hardly bowed, without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe small or moderately small, with basal bulb average and strongly bent downwards, and with basal velum well developed; in dorsal view more slender, in lateral view with terminal lamella moderately long or short, the latter usually slightly curved upwards but not hooked at tip. Internal sac with more strongly sclerotized portion limited to an elongated and often bipartite structure below median lobe ostium: 1) in lateral view with a needle-like or a thorn-like folding structure which is partly surrounded by 2) a less sclerotized sheet or sac- like fold; the sclerotisation of the latter or both these folding structures are, however, strongly or completely reduced in some species. Parameres average or stout, with left paramere slightly longer than right one, both with four (seldom on one side three) setae at tip. Remarks: Beside a single species from Qamdo, Eastern Tibet, this group includes the majority of Trechus species from the Transhimalaya and the southern slope of the Nyainqentanglha Shan. Based on the character set mentioned above, the T. antonini group differs markedly from all species groups hitherto known from the High Himalaya or Tibetan Himalaya. However, the differential characters are not so strong compared to several species from the eastern parts of the Tibetan plateau because they are based mainly on +/- extensive reductions of aedeagal internal sac sclerotized portions. Although these internal sac structures as well the general shape of the aedeagal median lobe are very similar between species of the T. antonini group, parallel development of these features is not unlikely, and monophyly of that group, at present, is quite difficult to prove. Species included: T. anjuensis Deuve, 1997 (South Eastern Tibet), T. antonini Deuve, 1997 (South Central Tibet), T. astrophilus sp. n. (South Central Tibet), T. budhaensis sp. n. (South Central Tibet), T. claudiae Deuve, 1996 (East Tibet), T. folwarcznyi Deuve, 1997 (South Central Tibet), T. lama sp. n. (South Central Tibet), T. pseudocholaensis kaqiensis Deuve, 1997 (East Tibet), T. pseudocholaensis pseudocholaensis Deuve, 1997 (East Tibet), T. rarus sp. n. (South Central Tibet), T. religiosus sp. n. (South Central Tibet), T. singularis sp. n. (South Central Tibet), T. tsampa sp. n. (South Central Tibet), T. tseringi sp. n. (South Central Tibet), T. yak sp. n. (South Central Tibet), T. yak shogulaensis ssp. n. (South Central Tibet), T. yeti sp. n. (South Central Tibet).

Trechus budhaensis sp. n. (Fig. 62)

Type material: Holotype male, with label data “TIBET South Centr. 17–20.VI.07, Budha Vall. N of Yangpachem, ca. 30°10’56N 90°29’21E, 5000–5200 m” (CSCHM). Paratypes: 1 male, 1 female, South Central Tibet, Budha Vall. N of Yangpachem, 5300–5600 m, ca. 30°11’07N 90°28’42E, 19.VI.2007 (CSCHM). Description: Body length: 3.9–4.3 mm. Colour: Dorsal surface brown, moderately shiny, with head somewhat darker than pronotum and elytra. Antennae, palpi and legs yellowish brown; distal portion of antennal segments II–IV as well as antennal segments V–XI on the whole darkened. Microsculpture: Faintly engraved almost isodiametric meshes on supraorbital area and on pronotum,

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 43 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. visible under high magnification only (x100), and more deeply engraved meshes on neck, in frontal furrows of head and in pronotal basal depression. Elytral disc with slightly engraved slightly transverse meshes in both sexes (x60–x80). Head: More slender, with eyes small and slightly protruding. Temples approximately 3/4 of length of eyes and moderately wrinkled to the neck. Frontal furrows distinctly flattened at level of hind suborbital seta. Antennae more slender, 3.5 antennomeres extend beyond the pronotal base. Antennomere III distinctly longer than antennomere II and IV, both the latter are alike in length. Pronotum: Small and cordate, slightly transverse, with sides strongly contracted towards base; proportions WP/LP = 1.26–1.28, WP/WPB = 1.36–1.40, WP/WH = 1.13–1.16, WE/WP = 1.82–1.97. Surface strongly convex. Sides concave in posterior third. Hind angles large and slightly obtuse. Marginal gutter narrow, slightly widened towards laterobasal depressions. Base rectilinear in middle and strongly curved anteriorly at outer fifth; basal depressions smooth. Elytra: Oval, broadest a little behind mid-length; proportion WE/LE = 1.47–1.52. Surface strongly convex, not flattened on disc. Sides with shoulders evenly rounded. Striae finely punctate, first and second stria deeply impressed throughout, third striae only reduced at base, fourth stria shallower, fifth and sixth striae very slightly impressed, and seventh stria hardly visible. Stria VIII slightly impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus connected with the end of the fifth or seventh stria. Intervals I–IV strongly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral tenth. Legs: Moderately slender. Male genitalia: Aedeagal median lobe slender and moderately small (LE/LA = 2.85–3.06), strongly curved basally and elongated towards apex. Basal bulb average. Terminal lamella relatively long, in lateral view strongly curved upwards towards tip. Internal sac poorly sclerotized: In lateral view with a thin but distinct longitudinal sheet somewhat below the ostium. Parameres slender. Etymology: The specific name is derived from the type locality, the Budha Valley (adjective). Identification: In external characters this new species is similar to T. hodeberti Deuve, 1997, and T. mieheorum sp. n. of the T. dacatraianus group, but it is simply to identify by the widely different shape of the aedeagal median lobe, especially by the negligible internal sac sclerotisation. It differs from other species of the T. antonini group, with exception of T. yeti sp. n., by the more evenly rounded elytra, by the more slender legs and by the longer and more strongly curved terminal lamella of aedeagal median lobe. For differentiation from T. yeti sp. n. see the text for that species, below. Relationships: Due to the more strongly curved terminal lamella of aedeagal median lobe this new species together with T. claudiae Deuve, 1996 from East Tibet, and T. antonini Deuve, 1997 as well as T. yeti sp. n. from Nyainqentanglha Shan, seem to form a natural group within the T. antonini species group. Due to synapomorphies in both external and male genitalia morphology, such as the more slender head, the more evenly rounded elytra, and the peculiar form of the terminal lamella of the aedeagal median lobe, the newly described species T. budhaensis sp. n. and T. yeti sp. n. (see below) are doubtless sister species. Distribution: Fig. 100. Currently only known from the Budha Valley on south slope of central Nyainqentanglha Shan Massif north of Yangpachem. Habitat: Higher alpine zone; vertical distribution approximately 5000–5400 m. The three individuals of the type series were found under big stones on humid, gently inclined slopes, together with the much more frequent species T. astrophilus sp. n. and T. yak sp. n.

Trechus yeti sp. n. (Figs. 33, 61, 90)

Type material: Holotype male, with label data “TIBET South Centr. 3–4.VII.07, NE of Shogu La pass 5000–5350 m 29°54’48–29°57’20N 90°08’28–90°07’49E” (SMNS).

44 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Paratypes: 4 males, with same label data as holotype (CSCHM); three of these specimens where used for further studies in molecular genetics and bear the additional label “HS 411”, “HS 412” and “HS 413”, respectively. These last mentioned three specimens each lack three legs. Description: Body length: 3.9 mm. Colour: Head and elytra shiny dark brown, pronotum reddish brown. Antennae, palpi and legs yellowish brown; distal portion of antennal segment III as well as antennal segments IV–XI on the whole darkened. Microsculpture: As described in T. bhudaensis sp. n. Head: Frontal furrows hardly flattened at level of hind suborbital seta. In all other characters agreeing with T. budhaensis sp. n. Pronotum: Average sized, cordate, slightly transverse, strongly contracted towards base; proportions WP/ LP = 1.25–1.27, WP/WPB = 1.35–1.40, WP/WH = 1.18–1.19, WE/WP = 1.70–1.74. Surface strongly convex. Sides concave in posterior quarter. Hind angles relatively small, slightly obtuse. Marginal gutter narrow, not widened towards laterobasal depressions. Base very weakly convex in middle and more distinctly curved anteriorly at outer fifth; basal depressions smooth. Elytra: Slightly more slender, with proportion WE/LE = 1.54–1.56. In all other characters agreeing with T. budhaensis sp. n. Legs: Moderately slender. Male genitalia: Aedeagal median lobe slender, average in length (LE/LA = 2.38–2.45), strongly curved basally and more elongated towards apex, in lateral view distinctly widened dorsally before apex. Basal bulb small. Terminal lamella relatively long, in lateral view evenly curved upwards. Internal sac very poorly sclerotized: In lateral view a very fine and hardly visible longitudinal sheet somewhat below the ostium. Parameres slender. Etymology: The specific name refers to a famous but practically unexplored creature of the Himalayan- Tibetan fauna, the Yeti; noun in apposition. Identification: Both in external and male genitalia characters very similar to the above described T. budhaensis sp. n., but differs at follows: Head and elytra darker, pronotum proportionally larger, aedeagal median lobe larger, with basal bulb proportionally smaller, with dorsal surface distinctly widened in middle of median lobe, and with internal sac sclerotisation almost completely reduced. It differs from other species of the T. antonini group primarily by the more slender legs and by the longer and more strongly curved terminal lamella of the aedeagal median lobe. Relationships: Sister species of T. budhaensis sp. n., see chapter Relationships of the latter, above. Distribution: Fig. 100. Uppermost Shogu Tshu Valley of western Nyainqentanglha Shan Massif, east of Jomo Gangtse Peak. Habitat: Higher alpine zone. The individuals of the type series were found under big stones along the rocky bank of a glacier lake at 5170 m.

Trechus antonini Deuve, 1997 (Figs. 32, 77)

Catalogue: Trechus antonini Deuve, 1997: 149. Locus typicus: South Central Tibet, Damzhung County, Largeh La, 5200 m (= Largen La or Lhachen La Pass N Damzhung place).

Type material: Not studied. Species identification is based on original description compared to additional material from the locus typicus. T. antonini is characterized by apomorphic aedeagal character states which allow an unambiguous diagnosis. Additional material: CHINA: South Central Tibet: 16 males, 8 females, S Lhachen La, N Damzhung, 5150–5250 m, 30°38’20.2N 91°05’55.6E, 14.VII.07 (CSCHM); 5 males, S Namtso, Langma Valley, 5100–5150 m, 30°37’39,1N 90°51’56.5E, 13.VII.07 (CSCHM).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 45 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Identification: See key above. Relationships: See chapter Relationships of T. budhaensis sp. n., above. Distribution and geographical variation: Fig. 100. This species occurs on the central Nyainqentanglha Shan Massif, and up to now it is known from two localities: the type locality at Lhachen La pass approximately 12 km northeast of Damzhung, and the upper Langma valley on northern slope of the same mountain range just 20 km west of the type locality. No morphological variation could be found between individuals of these two populations. Probably more populations of the species exist at suitable localities in this relatively small section of the Nyainqentanglha Shan mountain range. Habitat: Higher alpine zone; vertical distribution approximately 5100–5250 m. The specimens of the additional material were found under stones on humid, gently inclined slopes as well on the top of an older moraine, partly together with T. hodeberti Deuve, 1997.

Trechus religiosus sp. n. (Figs. 70, 73, 94)

Type material: Holotype male, with label data “TIBET (South Central) 11.VII.07, SW slope Nyanchentangla 5100–5500 m, 30°18’24,0N 90°35’48,0E” (BMNH). Paratypes: 29 males, 9 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS); 2 males, South Central Tibet, Bhilam Tshu Vall. SW of Peak Nyanchentangla, 4800–4900 m, ca. 30°17’50N 90°36’05E, 11.VII.2007 (CSCHM). Description: Body length: 3.0–3.6 mm. Colour: Dorsal surface shiny yellowish brown, with head and elytra in some specimens slightly darker than pronotum. Antennae, palpi and legs yellowish brown; distal half of antennal segments III as well as antennal segments IV–XI on the whole darkened. Microsculpture: Supraorbital area, disc of pronotum and disc of elytra with very faintly engraved slightly transverse meshes, visible under high magnification only (x80–x100). More deeply engraved almost isodiametric meshes in frontal furrows of head and in pronotal basal depression. Head: Rather stout, with eyes small and slightly protruding. Temples approximately 3/4 of length of eyes and strongly wrinkled to the neck. Frontal furrows not flattened at level of hind suborbital seta. Antennae stout, 2.5–3 antennomeres extend beyond the pronotal base. Antennomere III as long as antennomere II but slightly longer than antennomere IV. Pronotum: Average sized, transverse, sub-cordate, strongly contracted towards base; proportions WP/LP = 1.25–1.33, WP/WPB = 1.36–1.45, WP/WH = 1.15–1.22, WE/WP = 1.56–1.60. Surface strongly convex. Sides concave anterad of hind angles; the latter relatively large, rectangular or slightly obtuse. Marginal gutter narrow, not or slightly widened anterad of laterobasal depressions. Base rectilinear in middle, slightly curved anteriorly at outer fifth; basal depressions in most specimens with distinct longitudinal wrinkles both sides of pronotal middle. Elytra: Oval, broadest at mid-length, with proportion WE/LE = 1.44–1.52. Surface strongly convex, not flattened on disc. Shoulders distinct but rounded. Striae punctate, three or four inner stria deeply impressed but usually flattened at base and extreme apex, outer striae shallower but always present. Stria VIII moderately impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus in most specimens connected with the end of the seventh stria. Intervals I–V strongly convex. Preapical seta is located at the end of second stria and at the beginning of the posterior elytral eighth or ninth. Legs: Moderately short. Male genitalia: Aedeagal median lobe short, with its length of approximately one quarter of elytral length (LE/LA = 3.9–4.0), in dorsal view relatively thin, in lateral view evenly curved towards apex. Basal bulb average. Terminal lamella short and simple. Internal sac very poorly sclerotized: In lateral view a short and

46 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. very fine longitudinal sheet somewhat below the ostium. Parameres stout. Etymology: The specific name is derived from the Latin word “religiosus, -a, -um”, meaning religious or devotional, and refers to the holy mountain Nyainqentanglha (Tibetan language: “Father of mountains”) on which the species occurs; adjective. Identification: In external characters very similar to T. antonini Deuve, 1997, but with shoulders broader, with elytral striae more deeply punctate, and with pronotal base not such as strongly bent anteriorly towards hind angles. In aedeagal characters the new species is easily distinguished by the short terminal lamella of the median lobe and by the negligible sclerotisation of the internal sac. Relationships: Unknown. Distribution: Fig. 100. Currently only known from the Bhilam Valley south west of Peak Nyainqentanglha. Habitat: Higher alpine zone. Most specimens were found under stones at the top of an older moraine and along slopes of this moraine in western exposition at an altitude of 5100–5500 m. Two specimens where also found close to the water in a snow water gorge at an altitude of only 4900 m.

Trechus yak sp. n. (Figs. 8, 69, 76)

Type material: Holotype male, with label data “TIBET South Centr. 17–20.VI.07, Budha Vall. N of Yangpachem, ca. 30°10’56N 90°29’21E, 5000–5200 m” (BMNH). Paratypes: 27 males, 8 females, with the same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS); 19 males, 6 females, South Central Tibet, Budha Vall. N of Yangpachem, 5300–5600 m, ca. 30°11’07N 90°28’42E, 19.VI.2007 (CSCHM). Description: Body length: 3.4–3.9 mm. Colour: Dorsal surface shiny yellowish or light reddish brown, with head and distal 2/3 of elytra in most specimens shadowed. Antennae, palpi and legs yellowish brown; distal half of antennal segment III as well as antennal segments IV–XI on the whole darkened. Microsculpture: Supraorbital area and disc of pronotum almost polished, with very faintly engraved meshes, only visible under high magnification (x100). More deeply engraved almost isodiametric meshes in frontal furrows of head and in pronotal basal depression. Slightly engraved slightly transverse meshes on disc of elytra (x60–x80). Head: Rather stout, with eyes small and slightly protruding. Temples approximately 3/4 of length of eyes and strongly wrinkled to the neck. Frontal furrows not or slightly flattened at level of hind suborbital seta. Antennae stout, 2.5–3 antennomeres extend beyond the pronotal base. Antennomere III slightly longer than antennomere II, the latter slightly longer than antennomere IV. Pronotum: Average sized, cordate, moderately transverse and strongly contracted towards base; proportions WP/LP = 1.22–1.26, WP/WPB = 1.28–1.32, WP/WH = 1.22–1.25, WE/WP = 1.60–1.64. Surface strongly convex. Sides concave anterad of hind angles; the latter moderately large, distinctly bent outwards, pointed. Marginal gutter narrow, not or slightly widened anterad of laterobasal depressions. Base rectilinear or slightly convex in middle, more strongly curved anteriorly at outer fifth; basal depressions usually smooth, in some specimens with fine wrinkles both sides of the middle of the pronotum. Elytra: More slender oval, broadest at mid-length, with proportion WE/LE = 1.57–1.61. Surface strongly convex, not flattened on disc. Shoulders distinct but rounded. Striae punctate, first stria fully deep impressed, second, third, and mostly also fourth stria deeply impressed on disc but flattened at base and extreme apex, outer striae shallower but always present. Stria VIII slightly impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus connected with the end of the fifth or seventh stria. Intervals I–IV (-V) strongly convex. Preapical seta is located at the end of second stria and at the beginning of the last tenth of the elytra.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 47 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Legs: Moderately short. Male genitalia: Aedeagal median lobe moderately short (LE/LA = 3.2–3.4), evenly curved towards apex. Basal bulb average. Terminal lamella short and slightly curved upwards. Sclerotized portion of internal sac consist of a prominent copulatory piece, which is more tube-like and evenly curved in lateral view, and more thorn-like in dorsal view. Parameres average. Etymology: The specific name refers to the Yak (Bos grunniens), the most important domestic of the Tibetans, which is frequently grazing in the whole distributional area of the new Trechus species. Noun in apposition. Identification: In external characters very similar to T. antonini Deuve, 1997, but with shoulders broader, with outer elytral striae more deeply impressed, and with pronotal hind angles sharper and more distinctly protruding. Also very similar to T. religiosus sp. n., but body on average larger, and the pronotal base more strongly bent anteriorly towards hind angles. Moreover, T. yak sp. n. is easily distinguished from both the latter species by the prominent copulatory piece of the aedeagal internal sac. Relationships: Unknown. Distribution and geographical variation: Fig. 100. This species was found along the upper Budha Valley of the south slope of the central Nyainqentanglha Shan Massif, north of Yangpachem. More populations where found approximately 40 km south west of Yangpachem along the uppermost Shogu Tshu Valley of western Nyainqentanglha Shan Massif. These populations differ in the pronotal shape and in the form of the male copulatory piece. Based on these morphological differences a distinct subspecies for the populations of the Shogu Tshu Valley is described below. Habitat: Higher alpine zone; vertical distribution approximately 5000–5400 m. The nominotypical form was frequently found under big stones on humid, gently inclined slopes in southern and western exposition.

Trechus yak shogulaensis ssp. n. (Figs. 9, 75)

Type material: Holotype male, with label data “TIBET South Centr. 3–4.VII.07, NE of Shogu La pass 5000–5350 m 29°54’48–29°57’20N 90°08’28–90°07’49E” (BMNH). Paratypes: 54 males, 17 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS). Description: Body length: 3.4–4.0 mm. Colour, microsculpture and head structure: As described in the nominotypical form. Pronotum: On an average more transverse and more strongly contracted towards base; proportions: WP/ LP = 1.25–1.34, WP/WPB = 1.31–1.35, WP/WH = 1.19–1.25, WE/WP = 1.55–1.66. Sides evenly rounded in anterior 3/4 and slightly concave just anterad of hind angles; the latter obtuse, not bent outwards. In all other pronotal characters agreeing with the nominotypical form. Elytra: Proportion WE/LE = 1.55–1.60. Stria VIII more deeply impressed from level of the fifth umbilicate pore backwards. In all other elytral characters agreeing with the nominotypical form. Male genitalia: LE/LA = 3.16–3.21. Copulatory piece, in dorsal view, more slender and more deeply constricted anterad of base. Etymology: The subspecific name is derived from the Shogu La pass which is a pass of local importance and which is close to the type locality (adjective). Identification: This subspecies differs from the nominotypical form by having more obtuse hind angles of pronotum which are not protruding laterally, and by the form of the copulatory piece as shown in Fig. 75 compared to Fig. 76. Remarks on taxonomy: The morphological differences between individuals from the nominotypical form and those from T. yak shogulaensis ssp. n. are indeed small but always distinct, and concerning the above mentioned pronotal and male genitalia characters no transitions could be found. These facts could also

48 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. indicate a distinct species, and hence the subspecific status is preliminary. More field work has to be done to search for further populations along the western Nyainqentanglha Shan. If such populations exist morphological and molecular genetic studies would be helpful to find out whether recently isolated populations are temporarily (e.g. during glacial periods) influenced by gene flow or not. Distribution and geographical variation: Fig. 100. Currently only known from the uppermost Shogu Tshu Valley of western Nyainqentanglha Shan Massif, east of Jomo Gangtse Peak. Habitat: Higher alpine zone; vertical distribution approximately 5000–5300 m. The specimens were found under stones on humid, gently inclined slopes in different expositions, often in snow water gorges.

Trechus folwarcznyi Deuve, 1997 (Fig. 78)

Catalogue: Trechus folwarcznyi Deuve, 1997: 150. Locus typicus: South Central Tibet, Yangpachem County, ascent to Sogu La, 5100 m approximately 40 km W of Yangpachem.

Type material: Holotype male, with label data “HOLOTYPE”, “Tibet 31.V.97 Col de Suge La 5100 m A. Wrzecionko”, “Trechus folwarcznyi n. sp. Holotype Th. Deuve det. 1997” (MNHN). Additional material: CHINA: South Central Tibet: 38 males, 13 females, NE of Shogu La pass, 5000–5350 m, 29°54’48–29°57’20N 90°08’28–90°07’49E, 3–4.VII.07 (CSCHM); 5 males, S Namtso, Langma Valley, 5100–5150 m, 30°37’39,1N 90°51’56.5E, 13.VII.07 (CSCHM); 8 males, 3 females, above Shogu La Pass, 5450 m, 29°53’55N 90°07’57, 5.VII.07 (CSCHM). Identification: See key above. Relationships: See chapter Relationships of T. tsampa sp. n., below. Distribution: Fig. 100. Currently only known from the mountain slopes around Shogu La pass of western Nyainqentanglha Shan Massif, east of Jomo Gangtse Peak. Habitat: An edaphic species of the higher alpine zone. The vertical distribution extends up to 5450 m. The specimens were found under stones on humid, gently inclined slopes as well on the top of an older moraine. In the lower parts of its vertical distribution (5100–5300 m) this species lives sympatrically with T. yak shogulaensis ssp. n.

Trechus tsampa sp. n. (Figs. 68, 92)

Type material: Holotype male, with label data “TIBET (South Central) 29.VI.07, Dulong, Kurum vall. NW Lhasa, 4900–5150 m, ca. 29°40’31N 90°46’16E”, “Namba side valley, ascent south west of Namba” (SMNS). Paratypes: 2 males, 3 females, with same label data as holotype (CSCHM, SMNS). Description: Body length: 3.2–3.4 mm. Colour: Surface moderately shiny, head and elytra dark brown, pronotum dark reddish brown. Basal segment and tip of the third segment of maxillary palpus, basal antennal segments and legs yellowish brown; second segment and base of the third segment of maxillary palpus, distal half of antennal segment III and four as well as antennal segments IV–XI on the whole darkened. Microsculpture: Supraorbital area and disc of pronotum almost smooth, with very faintly engraved almost isodiametric meshes (x100). More deeply engraved meshes on neck, in frontal furrows of head and in basal depression of pronotum. Faintly engraved slightly transverse meshes on disc of elytra (x80). Head: Rather stout, with eyes small and slightly protruding; temples approximately 2/3 of length of eyes and strongly wrinkled to the neck. Frontal furrows indistinctly flattened at level of hind suborbital seta. Antennae stout, 2 antennomeres extend beyond the pronotal base. Antennomere III as long as antennomere II and slightly longer than antennomere IV.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 49 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Pronotum: Sub-cordate, slightly transverse and strongly contracted towards base; proportions WP/LP = 1.26–1.31, WP/WPB = 1.35–1.37, WP/WH = 1.23–1.25, WE/WP = 1.53–1.55. Surface strongly convex. Sides slightly concave anterad of hind angles; the latter moderately large, slightly or moderately obtuse (100–120°). Marginal gutter narrow, slightly widened anterad of laterobasal depressions. Base straight or slightly convex in middle and more strongly curved anteriorly at outer fifth. Basal depressions smooth. Elytra: Oval, broadest almost at mid-length, with proportion WE/LE = 1.53–1.55. Surface strongly convex, not flattened on disc. Shoulders rounded but distinct. Striae finely punctate, first stria fully deep impressed, striae II–III deeply impressed on disc but reduced at base and extreme apex, outer striae much shallower, stria VII hardly visible in anterior half but slightly impressed towards apex. Stria VIII faintly impressed from level of the fifth umbilicate pore backwards but deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus connected with the end of the seventh stria. Intervals I–III strongly convex. Preapical seta is located close to the second stria and at the beginning of the posterior elytral eighth. Legs: Stout. Male genitalia: Aedeagal median lobe short (LE/LA = 4.1), in lateral view moderately curved, its terminal lamella short and slightly bent downwards at tip. Basal bulb average. Internal sac with the more strongly sclerotized portions indistinctly separated into two elongated, thin, longitudinal sheets situated close together below median lobe ostium. Etymology: The specific name refers to the Tsampa (Tibetan name for barley grain), which is the most important vegetarian food of the Tibetans at high altitudes. The most delicious Tsampa of Southern Central Tibet comes from the Kurum Valley below the locus typicus of the new Trechus species. Noun in apposition. Identification: This new species is very similar to T. folwarcznyi Deuve, 1997, but differs in external characters by having shallower impressed elytral striae IV–VII, and more markedly in aedeagal characters by having a smaller and less strongly curved median lobe with its terminal lamella not bent upwards. It differs from T. astrophilus sp. n. and T. lama sp. n. in the forehand by the less rounded elytra, the stouter appendages and the smaller aedeagal median lobe with different internal sac structure. For differentiation from the similar species T. rarus sp. n., T. singularis sp. n., and T. tseringi sp. n. see the text on the latter species, below. Relationships: Due to remarkable similarities in the structure of the internal sac sclerotisation with T. folwarcznyi Deuve, 1997, T. rarus sp. n., and T. singularis sp. n., which can be interpreted as synapomorphic, T. tsampa sp. n. and the other species mentioned above seem to form a group of closely related geographic vicariants within the T. antonini group. Distribution: Fig. 100. Transhimalaya: Currently only known from the source area of a snow water brook on south side of lower Namba Valley which is the western side valley of the Kurum Valley north west of Lhasa. Habitat: Higher alpine zone. The specimens were found under big stones on the bottom of a high valley close to a melt water brook at an altitude of 5150 m.

Trechus rarus sp. n. (Figs. 36, 79)

Type material: Holotype male, with label data “TIBET South Centr. 3–4.VII.07, NE of Shogu La pass 5000–5350 m 29°54’48–29°57’20N 90°08’28–90°07’49E” (CSCHM). Paratypes: 1 female, with same label data as holotype (CSCHM). Description: Body length: 3.3–3.4 mm. Colour: Surface reddish brown, moderately shiny, head and posterior 2/3 of elytra cloudy dark brown. Palpi, scapus, pedicellus, basal half of antennal segment III and legs yellowish brown; distal half of antennal segment III as well as antennal segments IV–XI on the whole darkened. Microsculpture: Surface of head with almost isodiametric meshes throughout, more deeply engraved in

50 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. frontal furrows and on neck, but also distinct on supraorbital area (x50). Disc of pronotum almost smooth, with very faintly engraved meshes (x100). Faintly engraved slightly transverse meshes on disc of elytra (x80). Head: Stout and broad, with eyes moderately small and moderately protruding; temples almost 1/2 of length of eyes and strongly wrinkled to the neck. Frontal furrows moderately deep in front and strongly flattened at level of hind suborbital seta. Antennae stout, 1.5–2 antennomeres extend beyond the pronotal base. Antennomere III somewhat longer than antennomere II and IV, both the latter are alike in length. Pronotum: Sub-cordate, transverse and moderately contracted towards base; proportions WP/LP = 1.31–1.33, WP/WPB = 1.25–1.31, WP/WH = 1.14–1.18, WE/WP = 1.47–1.56. Surface strongly convex. Sides evenly rounded in anterior 2/3 and straight towards base; hind angles slightly obtuse (100–105°). Marginal gutter narrow, almost not widened anterad of laterobasal depressions. Base slightly convex in middle and little more strongly curved anteriorly at outer fifth. Basal depressions smooth. Elytra: Oval, broadest a little behind mid-length, with proportion WE/LE = 1.49. Surface strongly convex, not flattened on disc. Shoulders rounded but distinct. Striae finely punctate, striae I–III deeply impressed but reduced at base, stria IV much shallower, stria V suggested as a row of finely engraved punctures, striae VI and VII hardly visible in anterior half but slightly impressed (incomplete, with interruptions) towards apex. Stria VIII moderately impressed from level of the fifth umbilicate pore backwards but with a +/- broad interruption of the stria in middle of distance between fifth and seventh pores. Recurrent elytral preapical sulcus connected with the interrupted and prolonged end of the fifth stria. Intervals I–IV moderately to strongly convex. Preapical seta is located close to the second stria and at the beginning of the posterior elytral eighth or ninth. Legs: Stout. Male genitalia: Aedeagal median lobe short (LE/LA = 3.23), in lateral view strongly but not evenly curved, with ventral side almost straight in middle of median lobe; terminal lamella short and slightly bent upwards. Basal bulb average. Internal sac with the more strongly sclerotized portions indistinctly separated in two elongated, thin and closed longitudinal sheets below median lobe ostium. Parameres rather stout. Etymology: The name is given due to the apparent rarity of the new species (Latin “rar-us, -a, -um”); adjective. Identification: In male genitalia characters, this new species is very similar to T. folwarcznyi Deuve, 1997, and the newly described species T. singularis sp. n., and T. tsampa sp. n., however, it is easily to distinguish by the broader head with larger and more protruded eyes, and by the more deeply engraved micromeshes on disc of head. In addition, it differs in the external form of the aedeagal median lobe, which is, in lateral view, not so evenly curved as in the species mentioned above. Relationships: See text on ‘Relationships’ under T. tsampa sp. n. Distribution: Fig. 100. Uppermost Shogu Tshu Valley of western Nyainqentanglha Shan Massif, east of Jomo Gangtse Peak. Habitat: Humid meadows of the higher alpine zone; vertical distribution approximately 5000–5200 m.

Trechus singularis sp. n. (Figs. 37, 67)

Type material: Holotype male, with label data “TIBET (South Central) 5.VII.07, W of Shogu La 4650–4850 m 29°15’18N 90°04’06E to 29°48’15N 90°02’21E” (CSCHM). Description: Body length: 3.5 mm. Colour: Surface yellowish brown, moderately shiny, head somewhat darker brown. Appendages yellowish brown, but second segment of maxillary palpus and antennal segments III–XI indistinctly darkened. Microsculpture: Surface of head with almost isodiametric meshes throughout, more deeply engraved in frontal furrows and on neck, but also distinct on supraorbital area (x50). Discs of pronotum and elytra with faintly engraved meshes (x80); mesh patterns more transverse on elytra.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 51 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Head: Stout and broad, with eyes small and slightly protruding; temples approximately 2/3 of length of eyes and strongly wrinkled to the neck. Frontal furrows somewhat flattened at level of hind suborbital seta. Antennae stout, 2 antennomeres extend beyond the pronotal base. Antennomere III distinctly longer than antennomere II and IV, both the latter are alike in length. Pronotum: Sub-cordate, transverse and more strongly contracted towards base; proportions WP/LP = 1.28, WP/WPB = 1.30, WP/WH = 1.28, WE/WP = 1.53. Surface strongly convex. Sides convexly rounded in anterior 7/8 and curtly concave anterior hind angles, the latter relatively small and slightly obtuse (100). Marginal gutter narrow, slightly widened anterad of laterobasal depressions. Base slightly convex in middle and little more strongly curved anteriorly at outer fifth. Basal depressions with fine longitudinal wrinkles beside middle of pronotum. Elytra: Sub-oval, with sides slightly contracted at the end of the anterior quarter and broadest a little behind mid-length; proportion WE/LE = 1.49. Surface strongly convex, slightly flattened on disc. Shoulders rounded but distinct. Striae finely punctate, first stria fully deep impressed, striae II–III deeply impressed on disc but flattened at base and extreme apex, outer striae shallower, stria VII hardly visible. Stria VIII slightly impressed from level of the fifth umbilicate pore backwards. Recurrent elytral preapical sulcus connected with the end of the seventh stria. Intervals I–IV strongly convex. Preapical seta is located in third interval and at the beginning of the posterior elytral seventh. Legs: Stout. Male genitalia: Aedeagal median lobe short (LE/LA = 3.09), in lateral view strongly curved, and with terminal lamella short and slightly bent upwards. Basal bulb average. Internal sac without distinct copulatory piece; the elongated folding structure below median lobe ostium is moderately sclerotized throughout. Parameres rather stout. Etymology: The name is derived from the Latin word “singular-is, -e” and given due to the apparent rarity of the new species; only a single specimen has been found to date; adjective. Identification: Larger than T. folwarcznyi Deuve, 1997 and T. tsampa sp. n., with pronotum more transverse and elytra broader on shoulders, and with aedeagal internal sac less sclerotized, without presence of a distinct copulatory piece. In male genitalia characters more similar to T. rarus sp. n., but easily to distinguish by slender head with smaller and less protruding eyes, and by the more strongly reduced micromeshes on supraorbital area. Relationships: See chapter Relationships of T. tsampa sp. n. Distribution: Fig. 100. Mountainous areas south of Jomo Gangtse Peak at western Nyainqentanglha Shan Massif. Habitat: The single specimen was found on yak meadows under a stone close to a brook.

Trechus tseringi sp. n. (Figs. 38, 80)

Type material: Holotype male, with label data “TIBET South Centr. 6.VII.07, 120 km W Lhasa, 2 km NE Dongu La pass, 4800–5000 m, ca. 29°45’01N 89°51’11E” (BMNH). Paratypes: 8 males, 3 females, with same label data as holotype (BMNH, CSCHM). Description: Body length: 3.2–3.4 mm. Colour: Surface shiny, head and elytra dark brown, pronotum dark reddish brown. Basal segment and tip of the third segment of maxillary palpus, basal antennal segments and legs yellowish brown; second segment and base of the third segment of maxillary palpus, distal half of antennal segment III and antennal segments IV–XI on the whole darkened. Microsculpture: Supraorbital area and disc of pronotum with faintly engraved almost isodiametric meshes (x80). More deeply engraved meshes on neck, in frontal furrows of head and in pronotal basal depression. Slightly engraved slightly transverse meshes on disc of elytra (x60).

52 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Head: Average, with eyes small and slightly protruding; temples approximately 3/4 of length of eyes and strongly wrinkled to the neck. Frontal furrows slightly flattened at level of hind suborbital seta. Antennae stout, 2 antennomeres extend beyond the pronotal base. Antennomere III as long as antennomere II and slightly longer than antennomere IV. Pronotum: Relatively small, transverse, moderately cordate and strongly contracted towards base; proportions WP/LP = 1.27–1.31, WP/WPB = 1.36–1.43, WP/WH = 1.24–1.28, WE/WP = 1.59–1.68. Surface strongly convex. Sides evenly rounded in anterior 2/3 and slightly concave anterad of hind angles; the latter relatively large, slightly obtuse (100–110°). Marginal gutter narrow, hardly widened anterad of laterobasal depressions. Base weakly convex in middle and more strongly curved anteriorly at outer fifth; basal depressions smooth or with 1–2 longitudinal wrinkles both sides of pronotal middle. Elytra: Oval, broadest almost at mid-length, with proportion WE/LE = 1.45–1.50. Surface strongly convex, not flattened on disc. Shoulders rounded but distinct. Striae finely or indistinctly punctate, first stria fully deep impressed, striae II–III deeply impressed on disc but flattened at base and extreme apex, outer striae shallower, stria VII very faintly impressed but present. Stria VIII slightly impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus connected with the end of the seventh stria. Intervals I–IV strongly convex. Preapical seta is located in the third intervall distinctly before the end of second stria and at the beginning of the posterior elytral seventh. Legs: Rather stout. Male genitalia: Aedeagal median lobe short (LE/LA = 3.30–3.54), in lateral view evenly curved throughout, with terminal lamella short and slightly bent upwards. Basal bulb average. Internal sac with slightly sclerotized longitudinal sheets below median lobe ostium, without distinct copulatory piece. Etymology: The specific name is dedicated to Tsering Dorge, Tibetan University, Lhasa, for his kind support of my studies on the Plateau. Formed as a noun (name) in the genitive case. Identification: This new species is very similar to T. folwarcznyi Deuve, 1997 and its close relatives, but differs in external characters by having more rounded sides of elytra, and (with exception of T. singularis sp. n.) in male genitalia characters by lacking more strongly sclerotized portions of aedeagal internal sac. In addition to the elytral and aedeagal characters mentioned above T. tseringi is easily to distinguish from the above newly described T. rarus sp. n. by the more slender head with less engraved micromeshes and with more distinctly reduced and less protruding eyes. In addition to the elytral characters mentioned above T. tseringi sp. n. is easily to distinguish from the above newly described T. singularis sp. n. by the smaller eyes, smaller and less transverse pronotum, thinner femora, and by the more evenly rounded ventral side of aedeagal median lobe. Relationships: Due to the relatively small pronotum and the more evenly rounded elytral sides T. tseringi sp. n. seems more closely related to both the below described species T. astrophilus sp. n. and T. lama sp. n. However, no evidence could be found using male genitalia characters. Therefore, the relationships of T. tseringi sp. n. within the T. antonini group are currently difficult to determine. Distribution: Fig. 100. Transhimalaya approximately 120 km west of Lhasa: Currently only known from the Dongu La pass area. Habitat: Lower alpine zone; vertical distribution approximately 4800–5000 m. The species was found under stones close to a melt water brook and on the top of a mountain which has an altitude of approximately 5000m.

Trechus astrophilus sp. n. (Figs. 65, 74, 91)

Type material: Holotype male, with label data “TIBET (South Central) 19.VI.07, Budha Vall. N of Yangpachem, ca. 30°11’07N 90°28’42E, 5300–5600 m” (BMNH).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 53 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Paratypes: 52 males, 12 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS); 1 male, 1 female, South Central Tibet, Budha Vall. N of Yangpachem, 5000–5200 m, ca. 30°10’56N 90°29’21E, 17–20.VI.07 (CSCHM). Description: Body length: 3.2–3.9 mm. Colour: Dorsal surface dark brown, shiny, with pronotum dark reddish brown. Scapus, basal segment of maxillary palpus and legs yellowish brown; distal half of antennal segment II, antennal segments IV–XI on the whole, second segment and basal portion of the third segment of maxillary palpus darkened. Microsculpture: Supraorbital area and disc of pronotum almost polished, with very faintly engraved meshes, visible under high magnification only (x100). More deeply engraved almost isodiametric meshes in frontal furrows of head and in pronotal basal depression. Slightly engraved slightly transverse meshes on disc of elytra (x60). Head: Average, with eyes small and slightly protruding; temples approximately 4/5 of length of eyes and strongly wrinkled to the neck. Frontal furrows slightly flattened at level of hind suborbital seta. Antennae average, 3 antennomeres extend beyond the pronotal base. Antennomere III slightly longer than antennomere II and IV, both the latter are alike in length. Pronotum: Relatively small, cordate, moderately transverse and strongly contracted towards base; proportions WP/LP = 1.25–1.31, WP/WPB = 1.35–1.39, WP/WH = 1.15–1.20, WE/WP = 1.72–1.81. Surface strongly convex. Sides concave anterad of hind angles; the latter moderately large, sometimes slightly bent outwards, rectangular or slightly obtuse. Marginal gutter narrow, slightly widened anterad of laterobasal depressions. Base rectilinear or weakly convex in middle, more strongly curved anteriorly at outer fifth; basal depressions smooth. Elytra: Oval, broadest almost at mid-length, with proportion WE/LE = 1.48–1.54. Surface strongly convex, not flattened on disc. Shoulders rounded, indistinct. Striae faintly or indistinctly punctate, first stria fully deep impressed, striae II–IV deeply impressed on disc but reduced at base and extreme apex, outer striae shallower, stria VII very faintly impressed but present. Stria VIII moderately impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus connected with the end of the fifth or seventh stria. Intervals I–IV (-V) strongly convex. Preapical seta is located in the third interval distinctly before the end of the second stria and at the beginning of the last seventh of the elytra. Legs: Relatively slender. Male genitalia: Aedeagal median lobe average in length (LE/LA = 2.55–2.78), more strongly curved in basal half, slightly elongate towards apex, but with terminal lamella short; the latter slightly curved upwards. Basal bulb average. The structure of the sclerotized internal sac portion is distinctly bipartite, in dorsal view with a long needle-like copulatory piece which is surrounded by a more sac like sheet. Parameres slender. Etymology: The specific name is derived from the Latinized Greek words “astrum” (starry sky) and “philum” (friend) and refers to the habitat of the new species which extends to exceptionally high altitudes, and which offer ideal condition to watch the stars; adjective. Identification: In external characters similar to T. folwarcznyi Deuve, 1997, but with body size on average larger, with head, antennae and legs somewhat slender, with temporae longer and with antennae darker. Moreover, T. astrophilus sp. n. is easily distinguished from all other species of the T. antonini group by the more extensively sclerotized aedeagal internal sac. Relationships: T. astrophilus sp. n. and the below described T. lama sp. n. together share some conspicuous similarities in the shape of body and aedeagus which are considered to be synapomorphies and therefore, which indicate a sister species relationship: Antennae and legs more slender, elytra more evenly rounded, aedeagal median lobe more elongated towards apex. The above newly described species T. budhaensis sp. n. and T. yeti sp. n. share a similar body shape, however, based on apomorphic charater states of male genitalia both the latter species seem to belong to another evolutionary line which includes T. antonini Deuve, 1997, a species with a shorter head and appendages and with less rounded elytra (see discussion above). Therefore, parallel evolution of similar external body shape characters are very likely in both the

54 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. sister species pairs T. budhaensis - T. yeti and T. astrophilus - T. lama without indicating close relationships. Distribution: Fig. 100. Currently only known from the source area of the glacier brook of the Budha Valley on south slope of central Nyainqentanglha Shan Massif north of Yangpachem. Habitat: Higher alpine zone. The species seems to be strictly limited to altitudes above 5200 m. Its vertical distribution extends to the upper limit of the alpine zone and adjoins the nival zone. Up to an altitude of 5600 m the species was frequently found under stones on gently inclined slopes in southern and western expositions as well on the top of an older moraine. At its highest occurrences, T. astrophilus sp. n. lives sympatrically with Amara altiphila Hieke, 1995, and with a hitherto undescribed species of the Bembidion baehri group.

Trechus lama sp. n. (Figs. 66, 93)

Type material: Holotype male, with label data “TIBET (South Central) 29.VI.07, Dulong, Kurum vall. NW Lhasa, 4900–5200 m, ca. 29°42’18N 90°35’16E”, “south ascent of Tsubu side valley, above Tsurphu Monastery” (BMNH). Paratypes: 21 males, 7 females, with same label data as holotype (BMNH, CKAB, CSCHM). Description: Body length: 3.5–4.0 mm.

FIGURE 96. Glacier formed landscape on central Nyainqentanglha Shan Massif with the highest occurrences of carabid beetles worldwide: Under big stones (foreground) in an altitude of 5600 m on the anticline of an older moraine three carabid beetle species were found frequently: Amara (Bradytulus) altiphila Hieke, 1995, a hitherto undescribed species of the Bembidion baehri group, and Trechus astrophilus sp. n. (Photo taken by the author, 19.VI.2007, above Budha Valley north of Yangpachem).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 55 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Colour: Dorsal surface dark brown, shiny, with pronotum in most specimens somewhat lightened reddish brown. Antennae, palpi and legs yellowish brown; in some specimens distal half of antennal segment III or IV and antennal segments IV–XI on the whole darkened. Microsculpture: As described in T. astrophilus sp. n. Head: Temples 4/5 – 5/6 of length of eyes, in some specimens almost as long as eyes. In all other characters agreeing with T. astrophilus sp. n. Pronotum: Proportions: WP/LP = 1.19–1.29, WP/WPB = 1.29–1.36, WP/WH = 1.19–1.23, WE/WP = 1.69–1.79. Sides more strongly concave anterad of hind angles, the latter large, sometimes slightly bent outwards, slightly obtuse or rectangular. Base slightly curved anteriorly at outer fifth. Basal depression rugose both sides of middle of pronotum due to the presence of several small longitudinal wrinkles in addition to the convex surfaces of sculpticells. In all other characters agreeing with T. astrophilus sp. n. Elytra: Broader oval, with proportion WE/LE = 1.50–1.55. Sides with shoulders almost evenly rounded. Striae more deeply punctate. Preapical seta is located close to the second stria and at the beginning of the posterior elytral seventh or eighth. In all other characters agreeing with T. astrophilus sp. n. Legs: Relatively slender. Male genitalia: Aedeagal median lobe average in length (LE/LA = 2.69–2.88), more strongly curved in basal half, slightly elongate towards apex, but with terminal lamella short; the latter distinctly curved upwards, its base slightly stepped from level of ventral margin of median lobe. Basal bulb average. Internal sac with slightly sclerotized longitudinal sheets below median lobe ostium, without distinct copulatory piece. Etymology: The specific name refers to the Buddhist monks of Tibet, and especially to the monks of the very old Tsurphu Monastery which is located near the type locality of the new species; noun in apposition. Identification: This new species is very similar to the above described T. astrophilus sp. n., but differs in having antennae paler, pronotal hind angles larger, basal depressions more distinctly rugose, elytra broader oval, and especially by having aedeagal internal sac only weakly sclerotized. It is also similar to T. folwarcznyi Deuve, 1997, but has larger body size, head, antennae and legs slender, temporae longer and elytra much broader. In male genitalia characters T. lama sp. n. can easily be distinguished from both T. budhaensis sp. n. and T. yeti sp. n., which also have more slender appendages, broader oval elytra and weak internal sac sclerotisation of aedeagal median lobe, by the much stouter aedeagal median lobe with a shorter terminal lamella which is slightly stepped from the level of the ventral margin of the median lobe. Relationships: This species is the presumed sister species of T. astrophilus sp. n., see the latter, above. Distribution: Fig. 100. Transhimalaya: Currently only known from the source area of a snow water brook on south western side of middle Tsubu Valley (or Tsurphu Valley) which is the north western side valley of the Kurum Valley north west of Lhasa. Habitat: Higher alpine zone. The specimens were found under stones on gently inclined slopes of eastern exposition and close to small melt water brooks at altitudes between 5100 and 5200 m.

The Trechus chaklaensis group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle. Frons and supraorbital areas strongly convex. Temples smooth. Mandibles normal. Pronotum cordate, with hind angles well produced. Pronotal base +/- rectilinear in middle and with outer fifth more strongly curved anteriorly. Basal transverse depression of pronotum diffuse, limited towards disc; laterobasal foveae broadly developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII slightly or moderately impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the fifth stria. Ventral surface smooth. Legs relatively short, with

56 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. thick femora and thin tibia and tarsi; protibiae slightly dilated towards apices, hardly bowed, without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe small, with basal bulb average and strongly bent downwards, and with basal velum well developed; in dorsal view more slender, in lateral view with terminal lamella straight and moderately short, not hooked at tip. Internal sac with a strongly sclerotized and sharply limited transverse fold (copulatory piece) in middle of third quarter of median lobe. Parameres rather stout, with left paramere slightly longer than right one, both with four setae at tip. Species included: Monotypic: T. chaklaensis sp. n. (South Central Tibet).

Trechus chaklaensis sp. n. (Figs. 71, 72, 95)

Type material: Holotype male, with label data “TIBET South Centr. 17.VII.07, Lhundup area, above Chak La 5000–5200 m, ca. 30°07’05N 91°16’31E” (BMNH). Paratypes: 35 males, 11 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS). Description: Body length: 2.9–3.3 mm. Colour: Dorsal surface brown or light brown, shiny, with head and posterior 2/3 of elytra often cloudy darkened. Palpi, antennal base and legs yellowish brown, antennal segments III–XI often darkened. Microsculpture: Supraorbital area and discs of pronotum and elytra with very faintly engraved meshes, almost isodiametric on head and more transverse on pronotum and elytra (x100). More deeply engraved meshes in frontal furrows of head and in pronotal basal depression. Head: Average, with eyes small and slightly protruding; temples approximately 3/4 of length of eyes and strongly wrinkled to the neck. Frontal furrows not or very slightly flattened at level of hind suborbital seta. Antennae moderately short, 2.5 antennomeres extend beyond the pronotal base. Antennomere III slightly longer than antennomeres II and IV, both the latter are alike in length. Pronotum: Relatively variable in form and proportions: Cordate or subcordate, moderately or more strongly transverse and +/- strongly contracted towards base; WP/LP = 1.25–1.38, WP/WPB = 1.28–1.38, WP/WH = 1.23–1.28, WE/WP = 1.52–1.71. Surface strongly convex. Sides evenly rounded in anterior 2/3 and straight or +/- curtly concave anterad of hind angles; the latter relatively small, +/- obtuse, in some specimens pointed, in some specimens almost rounded. Marginal gutter narrow, slightly widened anterad of laterobasal depressions. Base almost rectilinear, distinctly curved anteriorly at outer fifth; basal depressions smooth or with fine longitudinal wrinkles both sides of pronotal middle. Elytra: Oval, broadest at mid-length or little behind, with proportion WE/LE = 1.48–1.53. Surface strongly convex, not or slightly flattened on disc. Shoulders rounded, indistinct. Striae faintly punctate, first stria fully deep impressed, second and third striae deeply impressed on disc but reduced at base and extreme apex, fourth stria much shallower, striae V and VI hardly visible and stria VII completely reduced. Stria VIII moderately or slightly impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores. Second and third interval strongly convex. Preapical seta is located in the third interval often close to the second stria and at the beginning of the posterior elytral seventh or eighth. Male genitalia: Aedeagal median lobe short (LE/LA = 3.40–3.47), more strongly curved in basal half, elongate towards apex, with terminal lamella moderately short; the latter almost straight, very slightly bent downwards at tip. Basal bulb average. Internal sac in lateral view with a strongly bent leaf-like copulatory piece in middle of third quarter of median lobe. Etymology: The specific name is derived from the type locality, the Chak La pass (adjective). Identification: Within the Tibetan fauna this new species is easily to distinguish by the extraordinary form of the copulatory piece of the male genitalia. Due to the pale body and the more strongly reduced lateral

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 57 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. elytral striae in external characters T. chaklaensis sp. n. is similar to T. korae sp. n. of the T. wrzecionkoi group and to T. mieheorum sp. n. of the T. dacatraianus group, but beside the very different form of aedeagal median lobe it differs from both species in having a smaller body size, temples longer and micromeshes on elytral disc more weakly engraved. The new species is also similar to the species of the T. antonini group, especially due to the form and the small size of the aedeagal median lobe but it is easily distinguished by the transverse direction of the internal sac sclerotized portion. Relationships: Similarities in general habitus and in external shape of the aedeagal median lobe of the new species suggest closer relationships with species of the T. antonini group, however, the latter species group is characterized by having completely different aedeagal internal sac structures: The sclerotized portions always lie in a longitudinal direction, whereas in T. chaklaensis sp. n. the sclerotized portion is transversely folded. Thus, the taxonomic position of T. chaklaensis sp. n. at present remains unclear. Distribution: Fig. 99. Transhimalaya approximately 60 km north east of Lhasa: Currently only known from the mountain slopes south east and above the Chak La pass. Habitat: Higher alpine zone. The specimens were found under stones along a melt water brook at altitudes of 5000–5100 m, and on the top of a mountain crest at altitudes of 5100–5200 m.

The Trechus stratiotes group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle, not flattened at level of hind suborbital pore. Frons and supraorbital areas strongly convex. Temples smooth. Mandibles normal. Pronotum cordate, with hind angles large; base straight or inner 3/5 slightly shifted posteriorly. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae large and deeply developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII deeply impressed from level of the fifth umbilicate pore backwards. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the seventh stria. Ventral surface smooth. Legs short, with thick femora and thin tibia and tarsi; protibiae slightly dilated towards apices, hardly bowed, with a fine, sometimes indistinct groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe moderately stout, with basal bulb average and with basal velum completely reduced; terminal lamella short, not hooked at tip. Internal sac with a large copulatory piece. Parameres moderately stout, with left paramere slightly longer than right one, both with four relatively short setae at tip. Species included: Monotypic: T. stratiotes sp. n. (Far Western Nepal).

Trechus stratiotes sp. n. (Figs. 51, 84)

Type material: Holotype male, with label data “NEPAL Prov. Karnali Distr. Humla, 16 km W Simikot, 3 km NW Sankha La, 4300–4800 m, 29°57’18’’N 81°39’30’’E, HF 29.–30.06.2001, leg. A. Kopetz, stone-debris & alpine mats” (NME). Paratypes: 46 males, 33 females, with same label data as holotype (CKOP, CSCHM, NME); 5 males, 1 female, with same label data, but: 4000–4300 m (CKOP); 53 males, 26 females, with same label data, but: 4250–4600 m, leg. M. Hartmann (CSCHM, NME); 5 males, 2 females, with same label data, but: 4100–4500 m, leg. A. Weigel (CSCHM, CWG); 9 males, 7 females, with same label data, but: 4700–4800 m, snow fields, 29°56N 81°39E, 30.VI.2001, leg. E. Grill & A. Weigel (CGR, CWG); 1 male, 1 female, ditto, but: 3–4 km NW Sankha La, 4250 m, alpine meadows, pasture, 29°57’18N 81°39’30E, 29.VI.2001, leg. M. Hartmann (NME); 8 males, 4 females, ditto, but: 2 km NW Sankha La, 4250–4950 m, snow fields and alpine mats,

58 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

29°56’39N 81°39’02E, 29.VI.2001, leg. E. Grill (CGR); 7 males, 5 females, Nepal, Prov. Seti, Distr. Bajura, 10 km SE Chala, vor [before] Sankha La, 4200–4400 m, 29°57’1N 81°39’3E, 30.VI.2001, leg. J. Weipert (CWP); 16 males, 6 females, ditto, but: Umg. [environment] Sankha La, 4400–4800 m, 29°56’4N 81°40E, 1.VII.2001, leg. J. Weipert (CWP); 16 males, 3 females, ditto, but: Umg. Lager [environment camp] S Sankha La, 4600–4900 m, 29°56’2N 81°40’1E, 2.VII.2001, leg. J. Weipert (CWP); 1 male, 1 female, Nepal, Prov. Seti, Distr. Bajura, 15 km W Simikot, Dudh Lekh/Dudh Tal, 4650–4800 m, 29°56’09N 81°40’32E, stone- debris, glacier lakeside, 1.VII.2001, leg. A. Kopetz (CKOP); 5 males, 3 females, ditto, but: 4700 m, snow fields and glacier lakeside, 1.VII.2001, leg. E. Grill (CGR, CSCHM); 3 males, 1 female, ditto, but: 4650 m, glacier lakeside, 2.VII.2001, leg. A. Kopetz (CKOP); 6 males, 2 females, ditto, but: 4600–4900 m, stone- debris and glacier lakeside, 2.VII.2001, leg. M. Hartmann (CSCHM, NME); 1 male, Nepal, Prov. Seti, Distr. Bajura, 18 km W Simikot, Sankha La – Kuwadi Khola, 4600–4000 m, mountain meadows and pastures, 29°54’40N 81°38’49E, 3.VII.2007, leg. A. Kopetz (CKOP); 1 male, 1 female, ditto, but: 19 km WSW Simikot, Kuwadi Khola valley, 3500–3700 m, mountain meadows and riverside, 29°53’10N 81°38’40E, 4.VII.2001, leg. M. Hartmann (NME); 5 males, 3 females, ditto, but: 19 km W Simikot, Kuwadi Khola, 3500 m, river side, 29°53’14N 81°38’40E, 4.VII.2001, leg. A. Weigel (CSCHM, CWG); 5 males, 3 females, ditto, but: riverbank, coniferous-birch-forest, 4–5.VII.2001, leg. A. Kopetz (CKOP). Description: Body length: 3.2–3.7 mm. Colour: Dorsal surface dark brown, shiny; pronotum in some specimens reddish brown lightened, palpi, legs and antennae yellowish brown, antennal segments IV–XI or V–XI somewhat darkened in most specimens. Microsculpture: Surface of head with moderately engraved isodiametric meshes throughout (x40–x50). Pronotum with more faintly engraved slightly transverse meshes on disc (x80) but more deeply impressed almost isodiametric meshes in basal depressions. Elytral disc with faintly engraved narrow and more strongly transverse meshes (x100). Head: Broad, with eyes small and slightly protruding; temples approximately ¾–4/5 of length of eyes and strongly wrinkled to the neck. Antennae relatively short, 2–2.5 antennomeres extend beyond the pronotal base. Antennomere II nearly as long as antennomere III, the latter is distinctly (approximately 4/5) longer than antennomere IV. Pronotum: Moderately large, transverse, strongly contracted towards base; proportions: WP/LP = 1.34–1.40, WP/WPB = 1.40–1.43, WP/WH = 1.24–1.29, WE/WP = 1.45–1.50. Surface strongly convex. Sides convexly rounded in anterior 2/3 and straight towards hind angles, the latter pointed. Marginal gutter moderately narrow, slightly widened anterad of laterobasal depressions. Base rectilinear in middle, slightly shifted posteriorly towards sides. Basal depressions with fine longitudinal wrinkles both sides of pronotal middle. Elytra: Sub-oval, relatively broad at shoulders, hardly convex at the end of the anterior elytral third, broadest little behind mid-length; proportion WE/LE = 1.45–1.53. Surface strongly convex, not flattened on disc. Shoulders rounded, but slightly distinct. Striae punctate, first stria fully deep impressed, second and third striae also deeply impressed but reduced at base, fourth and fifth stria distinctly shallower, sixth stria hardly visible, stria VII completely reduced in anterior 2/3 and faintly impressed in posterior third. Intervals I–III (- IV) strongly convex. Location of preapical seta somewhat variable, usually marking the fusion point of the second and third striae, which in most specimens is located at the beginning of the last seventh or eighth of the elyton, but in some specimens located little more posteriorly (up to the beginning of the last ninth). Male genitalia: Aedeagal median lobe moderately short (LE/LA = 2.92–3.03), in lateral view strongly curved in basal 3/4, but straight towards apex; terminal lamella moderately short, simply narrowed seen dorsally. Copulatory piece of internal sac elongated, approximately 2/3 of length of median lobe, lance-like in anterior half, slightly curved throughout. Etymology: The specific name is derived from the Latinized ancient Greek word “stratiotes” [strat-ee-o’- tace, a (common) soldier] and refers to the lance-like form of the sclerotized internal sac portion that give the new species an armed appearance; noun in apposition.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 59 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Identification: Within the Trechus fauna of Tibet and Himalaya this new species is easily to recognize by its unique male genitalia characters, especially by the external shape of the aedeagal median lobe, and by the lance-like form of the large copulatory piece. It differs strikingly from all other Trechus species of the Western Nepal Himalaya and adjacent mountainous regions by lacking the veliform appendix of the median lobe basal bulb. Relationships: From a taxonomic point of view T. stratiotes sp. n. seems widely isolated within the Trechus fauna of Western Nepal and the ancient Western Himalaya as well. Within this region two diverse species groups occur: The T. franzianus group as described in this paper (see above), of which one species (T. sculptipennis sp. n.) is sympatric with T. stratiotes sp. n., and the T. quadristriatus group sensu lato (see remarks on the T. thibetanus group, above). Both these groups represent quite different evolutionary lines within the genus Trechus. Moreover, no relatives of T. stratiotes sp. n. could hitherto be identified within the fauna of the Himalaya or the fauna of the Tibetan plateau. The male genitalia characters of the new species are so striking in several respects (external form of aedeagus with complete reduction of basal bulb appendix, structures of internal sac sclerotized portion), that a separate evolution after split off from a more basal Trechus line is likely. Although several similarities in external shape and in microsculpture of body surface could suggest closer relationships of T. stratiotes sp. n. to the Central Himalayan species group of T. tosioi Uéno, 1972 (see also discussion in chapter Relationships of T. rolwalingense sp. n., below), however, at the actual state of knowledge, none of these characters are reliable synapomorphies. Distribution and geographical variation: Fig. 98. The nominotypical form is distributed in the vicinity of pass Sankha La and on slopes north of the pass down to the Kuwadi Khola valley on north eastern macro slope of Saipal Himal, Far Western Nepal. A form somewhat differing in external morphology was found southeast of the Sankha La pass and will be described as a separate subspecies below. Habitat: Presumably a species of the subalpine and lower alpine zones, with its highest occurrences on alpine meadows at about 4700–4800 m, and the lowest findings at an altitude of 3500 m on riverbanks in the higher montane zone.

Trechus stratiotes malikasthana ssp. n.

Type material: Holotype male, with label data “NEPAL Prov. Seti Distr. Bajura, 15 km S Simikot, N slope W Malikasthan 4100–4200 m, 29°50’42’’N 81°47’25’’E, 07.07.2001 leg. A. Kopetz, stone-debris HF” (NME). Paratypes: 20 males, 13 females, with same label data as holotype (CKOP, CSCHM, NME); 16 males, 11 females, with same label data, but: leg. E. Grill & A. Weigel (CGR, CSCHM, CWG); 1 male, Nepal, Prov. Karnali, Distr. Humla, 13 km S Simikot, NE Malikasthan, 3800–3400 m, coniferous-oak-forest, 8.VII.2001, leg. A. Kopetz (CKOP). Description: Body length: 3.0–3.6 mm. Colour and microsculpture: As described in the nominotypical form. Head: As described in the nominotypical form. Pronotum: Proportions relatively variable: WP/LP = 1.30–1.42, WP/WPB = 1.35–1.47, WP/WH = 1.26–1.28, WE/WP = 1.44–1.54. Hind angles slightly obtuse or rectangular. In all other characters agreeing with the nominotypical form. Elytra: Oval, with sides convexly rounded throughout, and with shoulders more indistinct; proportion WE/LE = 1.47–1.53. Outer striae more strongly reduced, with fifth stria hardly visible, and with striae VI and VII completely reduced. In all other characters agreeing with the nominotypical form. Male genitalia: As described in the nominotypical form. Etymology: The specific epithet is referring to a village near the type locality (Malikasthan); adjective. Identification: This subspecies differs from the nominotypical form mainly by the more strongly reduced outer elytral striae, whereas the sixth stria is absent but present although faintly impressed in T. stratiotes s. str. Moreover, the latter subspecies has the pronotal hind angles little more pointed and the elytral sides less

60 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. convex rounded at the end of the basal elytral third as in T. stratiotes malikasthana ssp. n. Distribution: Fig. 98. Higher parts of the mountain range between rivers Humla Karnali in the East and Kuwadi Khola in the west on south eastern macro slope of Saipal Himal, Far Western Nepal: Up to now only known from slopes above Malikasthan. Habitat: Presumably as in the nominotypical form, see above.

The Trechus rolwalingensis group

Diagnosis: Head with frontal furrows deep, +/- strongly curved at middle, not flattened at level of hind suborbital pore. Frons and supraorbital areas strongly convex. Temples smooth. Mandibles relatively long. Pronotum with hind angles well produced, and with outer fifth of base more strongly curved anteriorly. Pronotal basal transverse depression diffuse limited towards disc; laterobasal foveae deeply developed. Pronotal median line distinct, deeper near base. Hind wings reduced to small stubs. Humerus broadly rounded. Each elytron with parascutellar seta, preapical seta and two discal setae on third interval, with anterior discal seta located on stria III at the end of the anterior elytral quarter, and with middle dorsal seta located on stria III somewhat behind elytral middle. Stria VIII slightly or moderately impressed from level of the fifth umbilicate pore backwards and more deeply impressed at levels of seventh and eighth pores, but often interrupted in middle between sixth and seventh pore. Recurrent elytral preapical sulcus deeply impressed and directed to the end of the seventh stria. Ventral surface smooth. Legs short, with thick femora and thin tibia and tarsi; protibiae slightly dilated towards apices, hardly bowed, without a longitudinal groove on external surface. Two basal protarsi of male dilated, dentoid at the inner apical border. Aedeagal median lobe remarkably stout, with basal bulb average and slightly bent downwards, with basal velum well developed and with terminal lamella short, not hooked at tip. Internal sac with a strongly sclerotized portion below median lobe ostium (copulatory piece); ostium densely covered with strongly sclerotized longitudinal bands. Parameres moderately short, broad at tip, with left paramere slightly longer than right one, both with four relatively short setae at tip. Species included: Monotypic: T. rolwalingensis sp. n. (Central Nepal).

Trechus rolwalingensis sp. n. (Figs. 10, 63, 64, 83)

Type material: Holotype male, with label data “NEPAL Rolwaling Vall., Yarlung Ri base camp 4600–4800 m, 16.–18.9.1999 lg. Schmidt” (SMNS). Paratypes: 18 males, 11 females, with same label data as holotype (BMNH, CKAB, CSCHM, CWR, MNHN, SMNS); 1 male, Nepal, Rolwaling Valley, Na vill. [village] 4000–4100 m, 16.IX.1999, leg. J. Schmidt (CSCHM); 13 males, 16 females, ditto, but: Na to Yarlung Ri base camp 4200–4900 m, 23.V.2000, leg. J. Schmidt (CSCHM); 1 female, ditto, but: Na to Tso Rolpa lake, 4200–4400 m, 21.V.2000, leg. J. Schmidt (CSCHM); 2 males, 1 female, ditto, but: Tsho Rolpa, 4400 m, 21.V.2000, leg. J. Schmidt (CSCHM). Description: Body length: 3.2–3.7 mm. Colour: Dorsal surface dark brown, shiny; palpi, scapus, pedicellus, anterior half of antennal segment III and legs light brown. Microsculpture: Head with moderately engraved isodiametric meshes on supraorbital area, neck and in frontal furrows (x40–50). Pronotum with more faintly engraved slightly transverse meshes on disc (x80) but more deeply impressed almost isodiametric meshes in basal depressions. Elytral disc with faintly engraved narrow and more strongly transverse meshes (x100). Head: Broad, with eyes small and slightly protruding; temples 2/3–3/4 of length of eyes and strongly wrinkled to the neck. Antennae short, 1.5–2 antennomeres extend beyond the pronotal base. Antennomere III

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 61 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. is as long as or slightly longer than antennomere II, antennomere IV is slightly shorter (5/6–6/7) as antennomere III. Pronotum: Large and transverse, subcordate, strongly contracted towards base; proportions: WP/LP = 1.31–1.39, WP/WPB = 1.36–1.42, WP/WH = 1.31–1.38, WE/WP = 1.53–1.59. Surface strongly convex. Sides convexly rounded in anterior 3/4 and curtly concave anterad of hind angles; the latter small but rectangular, seldom slightly obtuse. Marginal gutter moderately narrow, slightly widened anterad of laterobasal depressions. Base rectilinear or weakly convex, slightly curved anteriorly at outer fifth; basal depressions with fine longitudinal wrinkles both sides of pronotal middle. Elytra: Broad oval, broadest little behind mid-length, with proportion WE/LE = 1.36–1.41. Surface strongly convex, not flattened on disc. Shoulders rounded, indistinct. Striae impunctate, first and second striae fully deep impressed, third striae somewhat shallower and reduced at base and extreme apex, fourth stria indistinct and striae V–VII completely reduced. Second and third interval strongly convex. Preapical seta is located in the third interval often close to the second stria and, in most specimens, at the beginning of the posterior elytral seventh, but in some specimens located slightly anteriorly (up to the beginning of the posterior fifth). Male genitalia: Aedeagal median lobe moderately short (LE/LA = 2.87–3.00), with ventral side almost straight in middle, and with terminal lamella slightly bent downwards; the latter shortly bill-like in lateral and in dorsal view. Copulatory piece of internal sac relatively complex as shown in Fig. 63. Etymology: The specific name is derived from the type locality, the Rolwaling Valley (adjective). Identification: Within the Trechus fauna of Tibet and Himalaya this new species is easily to recognize by its unique male genitalia characters, especially by the external shape of the aedeagal median lobe, by the strongly sclerotized median lobe ostium, and the extraordinary form of the copulatory piece. Relationships: Due to the large and more strongly transverse pronotum with deep laterobasal foveae, the broader oval elytra with more strongly reduced lateral striae, and due to the general shape of the copulatory piece with broader basal portion and thorn-like or needle-like distal portion, T. rolwalingensis sp. n. seems to be member of the species diverse Central Himalayan group of T. tosioi Uéno, 1972 (which, after a preliminary study, includes T. breuningi Morvan, 1972, T. gorkhai Schmidt, 1998, T. gurungi Schmidt, 1998, T. lamjunensis Schmidt, 1994, T. namunlaensis Schmidt, 1998, and T. tamangi Schmidt, 1998). However, the male genitalia characters of the new species are so striking that a more detailed character study of the Himalayan Trechus fauna is needed before further conclusions can be drawn. Distribution and geographical variation: Fig. 98. High Himalaya of Central Nepal: The nominotypical form is distributed in the upper Rolwaling Valley between Solu Khumbu Massif in the South and Rolwaling Himal in the North. A form somewhat differing in external morphology was found in the western Rolwaling Valley and will be described as a separate subspecies below. Habitat: Vertical distribution approximately 3600–4600 m, from the cloud forests of the higher parts of the high montane zone (“Obere Nebelwaldstufe” sensu Miehe, 1991) up to the meadows of the lower alpine zone. In the cloud forests the specimens were sifted from leaf litter, and in the subalpine and alpine zones they were found under stones on humid slopes.

Trechus rolwalingensis daldunglana ssp. n. (Fig. 11)

Type material: Holotype male, with label data “NEPAL Rolwaling Himal, N Daldung La 38–4000 m, 27.5.00 leg. J.Schmidt” (SMNS). Paratypes: 158 specimens (males, females), with same label data as holotype (BMNH, CKAB, CSCHM, CWR, NMBE, SMNS); 1 male, Nepal, Rolwaling Himal, Daldung La N-slope, 3500–3600 m, 25.V.2000, leg. J. Schmidt (CSCHM). Description: Body length: 3.2–3.8 mm.

62 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Colour and microsculpture: As described in the nominotypical form. Head: As described in the nominotypical form. Pronotum: Proportions: WP/LP = 1.30–1.36, WP/WPB = 1.35–1.39, WP/WH = 1.30–1.40, WE/WP = 1.53–1.57. Hind angles pointed, distinctly bent outwards. In all other characters agreeing with the nominotypical form. Elytra: Proportion WE/LE = 1.38–1.41. In all other characters agreeing with the nominotypical form. Male genitalia: As described in the nominotypical form. Etymology: The specific epithet is referring to the type locality (Daldung La); adjective. Identification: This subspecies differs from the nominotypical form by having the pronotal hind angles more acute and distinctly bent outwards. Distribution: Fig. 98. Up to now only known from the north slope of the pass Daldung La, western Rolwaling Valley, Central Nepal Himalaya. Habitat: The specimens were found under stones on subalpine meadows and were sifted from leaf litter in the cloud forests of the high montane zone at altitudes between 3600–4000 m.

Remarks on type locality of Trechus numatai Uéno, 1967

This species was described from an altitude of 3600 m on the southern slope of Mt. Numbur. The paper which includes the original description, however, had the somewhat misleading title: “The Trechus from the Rolwaling Himal” (Uéno 1967). Actually, the type locality lies on the south slope of Solu Khumbu Massif southeast of the Rolwaling Himal. The above described T. rolwalingensis sp. n. is in fact the only Trechus species so far known from the Rolwaling valley on the southern slope of Rolwaling Himal.

A preliminary assessment on the biogeography of Trechus of the Tibetan Himalaya and the Southern Central Plateau

Critical analysis of the data set

The exact representation of the distribution of the Trechus species and species groups of Tibet and adjacent mountains is currently hindered by the limited knowledge of the fauna within this region. This is especially true for the central and western parts of the plateau for which the Trechus fauna is mostly unknown. In contrast, our knowledge of the southern areas of the Tibetan Himalaya, i.e., the northern slope of the Greater Himalaya in Central and Western Nepal, is relatively good due to the field studies by Jochen Martens, Mainz (see also Martens 1987), researchers of the Naturkundemuseum Erfurt associated with Matthias Hartmann (see also Hartmann, Weipert & Weigel 1998, Baumbach 2003), and several expeditions conducted by the present author. The rich material from this area provides an opportunity for a detailed study of the carabid beetle fauna, which is exemplified by several publications on different non-trechini species groups (e.g., Deuve & Schmidt 2003, 2005, Schmidt 1999, 2006, Schmidt & Hartmann 2001, 2008). These studies, however, deal only with a small portion of the currently studied area. Few data are also only available for the northern slopes of the Tibetan Himalaya for which only three studies (Jeannel 1928, Deuve 1996, 1997) deal with Trechus species. These publications examined few specimens from north of Western Bhutan and Eastern Nepal as well as a few additional specimens from the same areas recently collected by the coleopterists Walter Heinz (Schwanfeld), Olaf Jäger (Dresden), and Antonin Wrzecionko (Havtrov-Podlest). Slightly better is the situation for the south-central parts of the Plateau. In June and July 2007 the carabid beetle fauna between the Yarlung Zhangbo Valley and the Namtso Lake was investigated more intensively by the author. As a result, data on the distribution and vertical zonation of carabid beetles are available for 20 localities, which each

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 63 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. include a stream or river valley with the neighbouring slopes and peaks. In 14 of these localities, at least one Trechus species was found. A comparison with the species-rich Trechus fauna of eastern Tibet is possible through an evaluation of the publications by Belousov & Kabak (2000, 2001) and Deuve (1992, 1996, 1997). With this data set at hand, one can now postulate the delimitation of species areas and their geographical position in respect to each other. Interesting conclusions can then be made in respect to orogenesis and climatic history of High Asia.

FIGURE 97. Map of study area showing the formation of different parts of the Himalayan-Tibetan Orogen. The arrows indicate the location of the Rongshar Valley (a), a Himalayan transverse valley, and the Rolwaling Valley (b), a Himalayan longitudinal valley.

64 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Trechus species range extensions and range evolution

The distribution maps indicate the limited distribution of all wingless Trechus species (Figs. 98–99). It is apparent that only a few species of the T. thibetanus group have ranges larger than 100 km in extent that span several extensive high valleys (Fig. 98, numbers 1–7 in white circles). The ranges of all other Trechus species seem to be restricted to the slopes and upper valleys of their respective rivers. In several instances the ranges are extremely restricted, i.e., the closely related species T. eremita sp. n., T. franzianus Mateu & Deuve, 1979, and T. muguensis sp. n. of the T. franzianus group occur in the Western Nepal Himalaya allopatrically in three adjacent high valleys on the north-western slope of the Kanjiroba Massif (Fig. 98, numbers 10–12 in white squares). That these ranges are actually this small and not an artifact of collecting bias can be ascertained by the extensive field work focused on the beetle fauna of Western Nepal. None of the species have been found sympatrically. Events of in situ speciation following the geographical separation of the range of the ancestral species can therefore be postulated. This is most probably true for all species of the T. franzianus group since the members exhibit a strong geographical vicariance (Fig. 98, white squares). With the exception of the T. thibetanus group the same can be said for the Southern Central Plateau. All Trechus species occurring between the Yarlung Zhangbo Valley and the main mountain chain of the Nyainqentanglha Shan were only found in a single study area (Figs. 99, 100). Whether the ranges of these species are actually restricted to a single side valley along one of the main rivers on the plateau or occur also in adjacent side valleys should be investigated with additional field work close to sites already sampled. What can be said with certainty is that none of the ranges of any species investigated extend beyond the slope of the massif. If this had been the case field work would likely have discovered them in at least one other field site, which has not happened once south of the main chain of the Nyainqentanglha Shan. This degree of narrow endemicity is apparently not expressed by species on the central parts of the plateau, which can be exemplified by the position of the collecting sites of T. antonini Deuve, 1997. This species is the north-easternmost species of the T. antonini group in the Nyainqentanglha Shan, which occurs on the northern slope of the massif as well as at the nearby Lhachen La pass (Fig. 100, number 1 in white circles). In this part of the mountain chain the ridge of the Nyainqentanglha Shan reaches lower elevation so that the passes over it are situated in the alpine zone. The present range of T. antonini might therefore be the result of a Holocene range expansion from the southern slopes of the Nyainqentanglha Shan to its northern slope. Effective barriers for an expansion of strictly edaphic Trechus species might have occurred along the southern slope of the western parts of the Nyainqentanglha Shan for quite some time. Strong vicariance of the allopatric ranges is exhibited for the proposed sister species pairs T. budhaensis sp. n. - T. yeti sp. n. and T. astrophilus sp. n. - T. lama sp. n., the two geographical subspecies of T. yak sp. n. as well as the terminal species group of the T. antonini group: T. folwarcznyi Deuve, 1997 - T. rarus sp. n. - T. singularis sp. n. - T. tsampa sp. n. This can be explained by in situ speciation caused by geographical separation and lack of subsequent range expansion. With the exception of the T. thibetanus group a distinct local endemism can be found in the Tibetan Himalaya as well as on the southern Tibetan Plateau. Since it has been shown during the carabid beetle surveys between the Yarlung Zhangbo Valley and the main mountain chain of the Nyainqentanglha Shan that each of the relatively randomly selected collecting sites harboured a single or several distinct Trechus species, one may conclude that there are likely many more of these locally endemic species on the southern Tibetan Plateau. Whether this is also true for the western and central parts of the plateau is questionable. That species of the T. thibetanus group show a larger distribution in general when compared to other Himalo-Tibetan Trechus species groups can be explained by different habitat preferences. Trechus species with the exception of the T. thibetanus group are more directly associated with wetter conditions in small snow-covered valleys, damp and shady slopes, and at the edge of springs or snow-melt channels. In the higher alpine zone these species occur on the summits because the dampness is still high due to temporary snow cover during the summer months. In the lower alpine zone these species live deep in the soil where they can

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 65 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. be found in damp crevices of the rubble under large stones. More extensive eye reduction and depigmentisation of several species would support this hypothesis. The data indicate that the ranges of these Trechus species are much more fragmented, at least on the plateau, as this is known for species of the T. thibetanus group. The latter species are more tolerant of drier conditions because they have been found on lower alpine mats at a considerable distance away from water where they were found locally abundant under smaller stones together with phytophagous species of the Amara subgenus Bradytulus Tschitschérine, 1894.

FIGURE 98. Map of central parts of Tibet and the Himalaya showing distribution of species of the Trechus thibetanus group (white circles), of the Trechus pumoensis group (white squares), of the Trechus rolwalingense group (black circles), and of the Trechus stratiotes group (black squares). 1, T. namtsoensis sp. n. 2, T. dongulaensis sp. n. 3, T. thibetanus Jeannel, 1928. 4, T. glabratus sp. n. 5, T. thorongiensis Schmidt, 1994. 6, T. eutrechoides eutrechoides Deuve, 1992. 7, T. eutrechoides mondaensis Deuve, 1997. 8, T. pumoensis Deuve, 1997. 9, T. tilitshoensis Schmidt, 1994. 10, T. franzianus Mateu & Deuve, 1979. 11, T. muguensis sp. n. 12, T. eremita sp. n. 13, T. aedeagalis sp. n. 14, T. sculptipennis sp. n. 15, T. rolwalingense rolwalingense ssp. n. 16, T. rolwalingense daldunglana ssp. n. 17, T. stratiotes stratiotes ssp. n. 18, T. stratiotes malikasthana ssp. n.

66 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURE 99. Map of Southern Central Tibet showing distribution of species of the Trechus wrzecionkoi group (white circles), of the Trechus dacatraianus group (white squares), of the Trechus solhoeyi group (black circle), and of the Trechus chaklaensis group (black square). 1, T. wrzecionkoi Deuve, 1996. 2, T. martinae sp. n. 3, T. korae sp. n. 4, T. damchungensis Deuve, 1997. 5, T. hodeberti Deuve, 1997. 6, T. bastropi sp. n. 7, T. mieheorum sp. n. 8, T. solhoeyi sp. n. 9, T. chaklaensis sp. n.

The potential habitats are larger and less isolated along the mountain slopes. In addition, one could speculate that, like the Amara species the imago spends a considerable time nocturnally on the surface. Species of the T. thibetanus group could therefore have a stronger dispersal potential than species of other Himalo-Tibetan Trechus species groups.

Biogeographical borders within the Himalayan-Tibetan Orogen

The Greater Himalaya, the Tibetan Himalaya, the Transhimalaya, and the central Tibetan Plateau together form a connected high mountain landscape for which no biogeographically significant boundaries can be detected (Fig. 97). Although there are considerable differences between the southern slope of the Greater Himalaya, which is more strongly affected by the monsoon, and its drier northern slope, the climatic differences are much less developed between the northern adjacent parts of the orogen. A direct geographical and climatic connection between the Greater Himalaya and the Tibetan Himalaya is being facilitated through the transverse valleys. The changeover to the extremely dry high elevation steppes of the central and western parts of the plateau is only gradual (see Miehe et al. 2001). The Yarlung Zhangbo Valley, which marks the geological boundary between the Tibetan Himalaya and the Transhimalaya, is therefore not a phytogeographical border at least when based on the ranges of plant species (see Miehe 1990, 1991).

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 67 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURE 100. Map of Southern Central Tibet showing distribution of species of the Trechus antonini group (white circles). 1, T. antonini Deuve, 1997. 2, T. religiosus sp. n. 3, T. astrophilus sp. n. 4, T. budhaensis sp. n. 5, T. rarus sp. n. 6, T. yeti sp. n. 7, T. folwarcznyi Deuve, 1997. 8, T. yak yak ssp. n. 9, T. yak shogulaensis ssp. n. 10, T. tseringi sp. n. 11, T. singularis sp. n. 12, T. tsampa sp. n. 13, T. lama sp. n.

The distributional data provided for the carabid beetles show a different pattern. There are no Trechus species that occur on both sides of the Yarlung Zhangbo Valley. The same is true for species of the Amara subgenus Bradytulus Tschitschérine, 1894 (Hieke 2003). Based on collections made by the author in southern Tibet, Carabus wagae wagae Fairmaire, 1882 is the only primarily wingless carabid beetle species that occurs in both the Tibetan Himalaya and the Tibetan Plateau (unpublished data). This large and mobile carabid beetle was most probably able to expand across the plateau during the Holocene. Analogously, significant Holocene range expansion is known from a number of flightless European Carabus species (overview in Penev, Casale & Turin 2003) whereas smaller primarily wingless carabids are apparently absent from late-Pleistocene habitats of northern Central- and Northern Europe. The strong geographic separation of wingless carabid beetles from those that inhabit the Tibetan Himalaya and those that live in the Transhimalaya indicates that the Yarlung Zhangbo is probably faunal barrier for weak dispersalists. Furthermore, it indicates that this border may have existed before the Holocene. If one looks at the position of the entire ranges of the different Trechus species groups in the Himalayan- Tibetan Orogen (Figs. 98–99) the old age of the Yarlung Zhangbo faunal border becomes apparent. Only the range of the T. thibetanus species group spans across the Tibetan Himalaya into parts of the Tibetan Plateau. As suggested above, species of this group have a stronger dispersal ability than other Trechus species because of the more differential habitat preferences. The latter species do not only exhibit a stronger local endemism, but the individual species groups are also endemic to several geological parts of the Himalayan-Tibetan Orogen. The T. antonini, T. chaklaensis, T. dacatraianus, T. solhoeyi, and T. wrzecionkoi species groups are all

68 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. restricted to the Tibetan Plateau whereas the T. franzianus, and the T. stratiotes species groups are restricted to the Tibetan Himalaya. However, a few of the latter species groups occur close to the main chain of the Himalaya. The several species groups of the southern slope of the Greater Himalaya are absent not only from the plateau, but also from the Tibetan Himalaya. A possible conclusion could be that the evolution of these Trechus species groups is directly linked to the separate geological formation of the respective parts of the Himalayan-Tibetan Orogen. Additionally, the range borders of the Trechus species groups indicate old biogeographical borders, which are now indistinct because of the final uplift of the orogen and the climatic changes that followed. These former borders could be overcome by good dispersalists that lived in appropriate habitats in either parts of the mountains. Based on the present study, this dispersal opportunity did not exist for strictly edaphic Trechus species at any time. The above mentioned Trechus species groups can therefore be regarded as relicts of the appropriate mountains. Based on geological knowledge the evolution of the species groups endemic to the Tibetan Himalaya and the Transhimalaya started already in the Miocene after these mountains were lifted up to the high montane elevations (see Fort 1996, Spicer et al. 2003).

Localisation of glacial refugia

The presence of locally endemic species in the Tibetan Himalaya and the Transhimalaya with an hypothesis that the evolution of Trechus species groups in these mountains occurred since the Miocene is especially interesting as none of these patterns can be supported by geological evidence proposed by Kuhle (2001, 2004) who postulates that the entire plateau was covered by an ice shield 2.4 Million km² in area and up to 2.5 km thick during the last glacial maximum (LGM). Supposedly, both the inner longitudinal valleys and the transverse valleys in the Himalaya were filled with over 1000 m thick glaciers (Kuhle 1982, 1983, König 2004). Ice free mountain faces that reached above the glaciers in the Inner Himalaya must have been cold deserts. Under these circumstances north of the main Himalaya chain neither Trechus species nor other carabid beetles could have been able to survive the glacial periods. Glacial refugia in the area of the Tibetan Plateau might have been limited to the lower Yarlung Zhangbo Valley and to the river gorges of Yangtse, Salween, Mekong, and Brahmaputra of the south-eastern border of the plateau and to the southern declivity of the Himalaya itself. The biogeographical data discussed above, however, clearly refute such an extensive ice cover. One cannot make quantitative proposals as to the true glacial cover, but certain areas of the southern central plateau and the Tibetan Himalaya, which were not covered during the last LGM or were not cold deserts, can be postulated. For the following three areas the data seem to be conclusive: 1. Upper Tolung Chu Valley and upper Kyi Chu Valley, southern central Tibetan Plateau (Fig. 99, 100): Along the southern slope of the western Nyainqentanglha Shan exists a high diversity of strictly edaphic Trechus species. The apparent local endemism and the small geographical vicariance indicate that a primarily vertical expansion of these species occurred, but neither a horizontal expansion nor a significant horizontal movement of the ranges. Several glacial refugia of the alpine fauna existed therefore along the southern slope of the western Nyainqentanglha Shan. In order for these refugia to exist, the valley ground of the upper rivers west and east of the current settlements of Yangpachen and Damxung must have been considerably ice free. In addition, the lower- and mid river valleys and at least some side valleys could have been glacial refugia as well. The presence of endemic Trechus species in the Dulong, Gyama, and Rutok valleys indicates such a distribution of refugia. On the other hand, several other endemic species in the Transhimalaya are probable, but only more intensive field work in these areas might reveal these. 2. Humla Karnali Valley and Mugu Karnali Valley, Western Nepal (Fig. 98): On the western slope of the Kanjiroba Massif and on the eastern slope of the Saipal Massif, the very small ranges of closely related, strictly edaphic, and extremely locally endemic species of the T. franzianus group are situated parapatrically in the respective high valleys. Again, one can infer that at the last glacial cooling only a downward movement of the species ranges occurred without any horizontal movement along the main valleys towards the southern slope of the Himalaya. On the other hand, these species must have occurred sympatrically in these refugia and

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 69 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. should still exhibit these patterns, at least in part, today. This is not the case. The refugia of the Trechus species groups during the last glacial period were situated in lower elevations of the same side valleys or in the valley ground of the main valleys beneath their current position. The Humla Karnali and the Mugu Karnali river valleys were therefore at least partially not glaciated north of the Himalaya main mountain chain. The same inference in respect to the history of ranges can be drawn from a study of the species of the polytypic T. stratiotes sp. n. The existence of two subspecies (T. stratiotes stratiotes ssp. n. on the north eastern slope of Saipal Himal, T. stratiotes malikasthana ssp. n. on the eastern slope) being in close geographical proximity can only be explained if one assumes that the nominotypical subspecies had its refugium in the Humla Karnali Valley during the last glacial period, which is not much further south-east than the current village of Simikot. Otherwise gene flow would have occurred with populations on the eastern slope of the Saipal Himal in a continuous refugium. The apparent morphological differentiation of geographically disjunct populations rejects this scenario of exchange of genetic material. In conclusion, one can postulate that the Humla Karnali valley near Simikot and/or further north-east were not glaciated. 3. Upper Kali Gandaki Valley, and upper Marsyangdi Khola Valley, western Central Nepal (Fig. 98): The importance of Himalayan transverse valleys as refugia during the last glacial period has been documented for alpine and subalpine carabid beetle species (Schmidt 2007). There is evidence for the existence of such refugia north of the Himalaya main chain for large carabid beetles like species of Carabus, Cychropsis, and Pterostichus, for which a much larger occupied area to harbour a minimum viable population needs to be assumed than for Trechus. It is not surprising that the strictly edaphic T. tilitshoensis of the T. franzianus species group is currently widely distributed north of the Dhaulagiri and Annapurna Himal because this species might have had several refugia in the mentioned valleys. This conclusion seems probable as this species inhabits isolated places on the northern slope of Tukuche Peak, along the Muktinath Himal, and on the northern slope of Pisang Peak. This interpretation is in contrast to the hypotheses by Kuhle (1982, 1983) who postulated a more than 1000 m thick glacier for both of these valleys that reached the southern slopes of the Himalaya. Overall, these new hypotheses on the last glacial and Holocene range dynamics of the Trechus species of the Himalayan-Tibetan Orogen support the geological findings of authors who postulated a less extensive LGM glacier extension in the Himalaya (Fort 1995, Owen & Benn 2005) as well as in southern Tibet (Derbyshire et al. 1991, Shi, Zheng & Li 1992, Klinge & Lehmkuhl 2004, Zhou’Li Jijun et al. 2004, Owen & Benn 2005). These authors indicate a LGM depression of the equilibrium line altitude on the southern edge of the plateau much lower than 1000 m (600–800 m after Lehmkuhl, Klinge & Lang 2002, Klinge & Lehmkuhl 2004, Owen & Benn 2005). The existence of glacial refugia for alpine species in southern Tibet are therefore highly probable.

Acknowledgments

I am very grateful to Matthias Hartmann, NME, Jochen Martens, University of Mainz, Georg Miehe, University of Marburg, and Torstein Solhoy, University of Bergen, for the inspiration and for the comprehensive support of my studies in High Asia. Torstein Solhoy, Tsering Dorge, PuBu, Sonam Tso, Martina Wegener and Koralie Volkmann gave basic support during my fieldwork in Tibet. I thank Martin Baehr, ZSM, Max Barclay, BMNH, Torsten Dikow, Field Museum of Natural History, Chicago, and Paul J. Johnson, South Dakota State University, Brookings, for helpful comments and linguistic revision of the text. Johannes Reibnitz (SMNS) was producing the photographs of the new species (Figs. 81–95). The base map for Figs. 97–100 was kindly provided by Christiane Enderle, University of Marburg. Furthermore, I thank all co-operating curators and private collectors, listed in chapter ‘Taxonomic material’, who provided specimens for the study presented in this paper. The study was supported by the German Research Council (DFG grant MI 271/20-1).

70 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

References

Andrewes, H.E. (1930) The Carabidae of the third Mount Everest Expedition, 1924. Transactions of the Entomological Society of London, 78, 1–44 + 1 map. Barr, T.C. (1979) Revision of Appalachian Trechus (Coleoptera: Carabidae). Brimleyana, 2, 29–75. Baumbach, H. (2003) Vegetation und Landnutzung in der Karnali-Region (West-Nepal) unter besonderer Berücksichtigung der Distrikte Jumla, Mugu und Humla. In: Hartmann, M. & Baumbach, H. (Eds.), Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und Förderer des Naturkundemuseums Erfurt, Erfurt, pp. 23–35. Belousov, I.A. (1990) New carabids of the tribe Trechini (Coleoptera, Carabidae) from the Caucasus. III. 18 new species and a new subspecies of the genus Trechus Clairv. Revue d’Entomologie de l’URSS, 69, 609–632 [in Russian]. Belousov, I.A. & Kabak, I.I. (1996) To the knowledge of the Asiatic species of the genus Trechus Clairville (Insecta: Coleoptera: Carabidae). Annalen des Naturhistorischen Museums in Wien, 98B, 361–398. Belousov, I.A. & Kabak, I.I. (2000) Contribution to the knowledge of species of the genus Trechus Clairv. (Coleoptera, Carabidae) from China. Entomological Review, 80, 12–37. Belousov, I.A. & Kabak, I.I. (2001) New Duvalius and Trechus species from China (Coleoptera: Carabidae: Trechini). Folia Heyrovskyana, 9, 1–33. Casale, A. (1979) Trechinae nouveaux du Népal (Col. Carabidae). Entomologica Basiliensia, 4, 187–192. Derbyshire, E., Shi, Y., Li, J., Zheng, B., Li, S. & Wang, J. (1991) Quaternary glaciation of Tibet: The geological evidence. Quaternary Science Reviews, 10, 485–510. Deuve, T. (1992) Contribution à la connaissance des Trechidae asiatiques (Coleoptera). Bulletin de la Société entomologique de France, 97 (2), 171–184. Deuve, T. (1996) Nouveaux Trechus du Tibet et des régions limitrophes (Coleoptera, Trechidae). Bulletin de la Société entomologique de France, 101 (1), 65–70. Deuve, T. (1997) Nouveaux Trechini du Tibet et des régions limitrophes (Coleoptera, Trechidae). Revue Francaise d’Entomologie (Nouvelle série), 19 (3–4), 139–154. Deuve, T. & Schmidt, J. (2003) Sur la variation géographique de Carabus (Meganebrius) epsteini Heinertz, 1978, dans les massifs du Dhaulagiri et des Annapurna (Insecta: Coleoptera: Carabidae). In: Hartmann, M. & Baumbach, H. (Eds.), Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und Förderer des Naturkundemuseums Erfurt, Erfurt, pp. 63–66. Deuve, T. & Schmidt, J. (2005) Le genre Cychropsis Boileau, 1901, dans l’ouest du Népal Central (Coleoptera, Carabidae). L’Entomologiste, Paris, 61 (1), 3–15. Fort, M. (1995) The himalayan glaciation: Myth and reality. Journal of Nepal Geological Society, 11, 257–272. Fort, M. (1996) Late cenozooic environmental changes and uplift of the northern side of the central Himalaya: a reappraisal from field data. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 123–145. Hartmann, M., Weipert, J. & Weigel, A. (1998): Die zoologischen Nepal-Expeditionen des Naturkundemuseum Erfurt 1992 bis 1997. Veröffentlichungen Naturkundemuseum Erfurt, 17, 15–30. Hieke, F. (2003) Die Amara-Arten des Subgenus Bradytulus Tschitscherin, 1894 (Insecta: Coleoptera: Carabidae). In: Hartmann, M. & Baumbach, H. (Eds.), Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und Förderer des Naturkundemuseums Erfurt, Erfurt, pp. 107–194. Jeannel, R. (1926) Monographie des Trechinae. Morphologie comparée et distribution géographique d’un groupe de Coléoptères (Première livrasion). Abeille, Paris, 32, 221–550. Jeannel, R. (1927) Monographie des Trechinae. Morphologie comparée et distribution géographique d’un groupe de Coléoptères (Deuxième livrasion). Abeille, Paris, 33, 1–592. Jeannel, R. (1928) Les Trechus (Coleoptera, Carabidae) de l’Everest expedition, 1924, et remarques sur quelques espèces de l’Himalaya. The Annals and Magazine of Natural History, tenth series, 1, 283–291. Jeannel, R. (1936) Mission scientifique de l'Omo, Coleoptera, I. Carabidae: Trechinae et Perigoninae. Mission scientifique de l'Omo, Paris, 2 [1935], 23–75. Jeannel, R. (1954) Les Trechus du Mont Elgon (Coleoptera, Trechidae). Mémoires du Muséum National d’Histoire Naturelle, Paris, 7, 147–177. Jeannel, R. (1960) Révision des “Trechini” du Caucase (Coleoptera, Trechidae). Mémoires du Muséum National d’Histoire Naturelle, Paris, 17, 155–216. Klinge, M. & Lehmkuhl, F. (2004) Pleistocene glaciations in southern and eastern Tibet. In: Ehlers, J. & Gibbart, P.L. (Eds.), Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp. 243–254. König, O. (2004) The glaciation of the Rolwaling Himal and the Kangchenjunga Himal during the Last Glacial Maximum (Nepal, E-Himalaya). In: Ehlers, J. & Gibbart, P.L. (Eds.), Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp. 279–284. Kuhle, M. (1982) Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Textteil. Zeitschrift für Geomorphologie, Supplementband, 41, 1–229. Kuhle, M. (1983) Der Dhaulagiri- und Annapurna-Himalaya. Ein Beitrag zur Geomorphologie extremer Hochgebirge. Empirische Grundlage. Gebrüder Borntraeger, Berlin, Stuttgart, 383 pp.

Trechus from southern central Tibet Zootaxa 2178 © 2009 Magnolia Press · 71 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Kuhle, M. (2001) The Glaciation of High Asia and its Causal Relation to the Onset of Ice Age. Die Erde, 132, 339–359. Kuhle, M. (2004) The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. In: Ehlers, J. & Gibbart, P.L. (Eds.), Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp. 175–199. Lehmkuhl, F., Klinge, M. & Lang, A. (2002) Late Quaternary glacier advances, lake level fluctuations and aeolian sedimentation in Southern Tibet. Zeitschrift für Geomorphologie, Supplementband, 126, 183–218. Lorenz, W. (2005) A systematic list of extant ground beetles of the world (Coleoptera “Geadephaga”: Trachypachidae and Carabidae incl. Paussinae, Cicindelinae, Rhysodinae), Second edition. Published by the author, Tutzing, 530 pp. Martens, J. (1987) Remarks on my Himalayan expeditions. Courier Forschungsinstitut Senckenberg, 93, 7–31. Mateu, J. & Deuve, T. (1979) Nouveaux Trechus Clairville des montagnes d’Asie. Nouvelle Revue d’Entomologie, 9 (2), 97–105. Miehe, G. (1990) Langtang Himal. Flora und Vegetation als Klimazeiger und -zeugen im Himalaya. A Prodromus of the Vegetation Ecology of the Himalayas. Dissertationes Botanicae, 158, 1–529 + 3 maps. Miehe, G. (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter, H. & Breckle, S.-W. (Eds.), Ökologie der Erde, Band 4. Spezielle Ökologie der Gemäßigten und Arktischen Zonen außerhalb Euro-Nordasiens. Gustav Fischer Verlag, Stuttgart, pp. 181–230. Miehe, G. & Miehe, S. (2000) Environtal changes in the pastures of Xizang. Marburger Geographische Schriften, 135, 282–311. Miehe, G., Winiger, M., Böhner, J. & Yili, Z. (2001) Climatic Diagram Map of High Asia 1 : 4 000 000. Erdkunde, 55, 94–97 + 1 map. Owen, L.A. & Benn, D.I. (2005) Equilibrium-line altitudes of the Last Glacial Maximum for the Himalaya and Tibet: an assessment and evaluation of results. Quaternary International, 138–139, 55–78. Pawlowski, J. (1973) Espéces bulgares du genre Trechus Clair. (Coleoptera, Carabidae). Acta Zoologica Cracoviensia, 18, 217–270. Pawlowski, J. (1979) Révision du genre Trechus Clairv. (Coleoptera, Carabidae) du Proche Orient. Acta Zoologica Cracoviensia, 23, 247–476. Penev, L., Casale, A. & Turin, H. (2003) Biogeography. In: Turin, H., Penev, L., & Casale, A. (Eds.), The genus Carabus in Europe. A Synthesis. Pensoft Publishers, Sofia, Moscow, pp. 327–425. Royden, L.H., Burchfiel, B.C. & van der Hilst, R.D. (2008) The Geological Evolution of the Tibetan Plateau. Science, 321, 1054–1058. Schmidt, J. (1994) Beschreibungen neuer Arten der Carabidae aus Nepal (1): Gattungen Trechus, Deltomerodes, Pterostichus (Insecta: Coleoptera). Reichenbachia, 30 (21), 129–135. Schmidt, J. (1999) Revision of the genus Calathus from Nepal (Descriptions of new species of Carabidae from Nepal Himalayas, part 6) (Coleoptera Carabidae Sphodrini). In: Zamotajlov, A. & Sciaky, R. (Eds.), Advances in Carabidology. Papers dedicated to the memory of Prof. Dr. Oleg L. Kryzhanovskij. MUISO Publishers, Krasnodar, pp. 299–318. Schmidt, J. (2006) Die Pterostichus-Arten des Subgenus Pseudethira Sciaky, 1996, in Zentral- und West-Nepal (Coleoptera, Carabidae): Taxonomie, Phylogenie, Biogeographie. In: Hartmann, M. & Weipert, J. (Eds.), Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und Förderer des Naturkundemuseums Erfurt, Erfurt, pp. 179–243. Schmidt, J. (2007) Neue Pseudethira-Funde im Annapurna-Massiv im westlichen Zentral-Nepal-Himalaya mit Hinweisen zur Lage von Glazialrefugien im oberen Kali Gandaki- und Marsyangdi Khola-Tal (Coleoptera, Carabidae, Pterostichus). Veröffentlichungen Naturkundemuseum Erfurt, 26, 13–25. Schmidt, J. & Hartmann, M. (2001) Revision der Notiophilus-Arten Nepals (Coleoptera, Carabidae). Veröffentlichungen Naturkundemuseum Erfurt, 20, 151–164. Schmidt, J. & Hartmann, M. (2009) Pristosia Motschulsky, 1865 from the Nepal Himalaya: Taxonomy and Biogeography (Coleoptera: Carabidae: Sphodrini). Zootaxa, 2009, 1–26. Shi, Y., Zheng, B. & Li, S. (1992) Last glaciation and maximum glaciation in the Qinghai-Xizang (Tibet) Plateau: A controversy to M. Kuhle’s ice sheet hypothesis. Zeitschrift für Geomorphologie, N.F., Supplement, 84, 19–35. Shilenkov, V.G. (1992) The high altitude fauna of South Siberian Mountains and its Origin (Coleoptera: Carabidae). In: Noonan, G.R., Ball, G.E. & Stork, N.E. (Eds.), The Biogeography of Ground Beetles of Mountains and Islands. Intercept, Andover-Hampshire, pp. 53–65. Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A., Kelley, S.P. (2003) Constant elevation of southern Tibet over the past 15 million years. Nature, 421, 622–623. Uéno, S.-I. (1967) The Trechus (Coleoptera, Trechinae) from the Rolwaling Himal. Bulletin of the National Science Museum Tokyo, 10, 241–246. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth Planetary Sciences, 28, 211–280. Zhou’Li, J., Zhang, S.Q., Zhao, J.D., Cui, J.X. (2004) Quaternary glaciations in China. In: Ehlers, J. & Gibbart, P.L. (Eds.), Quaternary glaciations – extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Elsevier, Amsterdam, pp. 105–113.

72 · Zootaxa 2178 © 2009 Magnolia Press SCHMIDT

Publikation II

Schmidt, J., Opgenoorth, L., Martens, J. & Miehe, G.

Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate LGM summer temperature depression of 3 to 4K for the southern Tibetan Plateau.

Quaternary Science Reviews (in review).

1 Neoendemic ground beetles and private tree haplotypes: two independent 2 proxies attest a moderate LGM summer temperature depression of 3 to 4K for 3 the southern Tibetan Plateau 4 5 Joachim Schmidta§, Lars Opgenoorthb§, Jochen Martensc, Georg Miehea 6 7 §corresponding authors, both authors contributed equally to this work 8 9 Fax: 0049 (0) 6421 2823387 10 E-mail: [email protected], [email protected], [email protected], [email protected] 11 12 Faculty of Geography, University of Marburg, Deutschhausstrasse 10, 35039 Marburg, Germany 13 bDepartment of Ecology, University of Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany 14 cDepartment of Zoology, University of Mainz, Saarstrasse 21, 55099 Mainz, Germany 15 16 Abstract 17 Previous findings regarding the Last Glacial Maximum LGM summer temperature 18 depression (maxΔT in July) on the Tibetan Plateau varied over a large range 19 (between 0 and 9K). Geologic proxies usually provided higher values than 20 palynological data. Because of this wide temperature range, it was hitherto 21 impossible to reconstruct the glacial environment of the Tibetan Plateau. Here, we 22 present for the first time data indicating that local neoendemics of modern species 23 groups are promising proxies for assessing the LGM temperature depression in 24 Tibet. We used biogeographical and phylogenetic data from small, wingless 25 edaphous ground beetles of the genus Trechus, and from private juniper tree 26 haplotypes. The derived values of the maxΔT in July ranged between 3 and 4K. Our 27 data support previous findings that were based on palynological data. At the same 28 time, our data are spatially more specific as they are not bound to specific archives. 29 Our study shows that the use of modern endemics enables a detailed mapping of 30 local LGM conditions in High Asia. A prerequisite for this is an extensive 31 biogeographical and phylogenetic exploration of the area and the inclusion of 32 additional endemic taxa and evolutionary lines.

1 33 1.1 Introduction 34 The influence of the Himalayan-Tibetan orogen on the earth„s net radiation budget and 35 atmospheric circulation is unquestioned (Manabe and Terpstra, 1974; Kutzbach et al., 1989; 36 Raymo and Ruddiman, 1992; Harris, 2006; An Zhisheng et al., 2006; Zhang et al., 2007; 37 Molnar et al., 2010). However, large uncertainties exist concerning the paleoclimate of 38 most parts of High Asia during the Pleistocene. Calculations of paleotemperatures for 39 the Tibetan Plateau conducted to date range in their indicated overall temperature 40 declines between 0 and 9K (Table 1). Only a few of these studies try to differentiate 41 between January and July temperatures, although summer temperatures are 42 naturally of greater value for understanding how previous biotic changes are related 43 to temperature declines. Böhner & Lehmkuhl (2005) take indications from 44 geomorphological data and maxΔELA to derive a regional model for late Quaternary 45 climate reconstructions in High Asia. On this basis, an average LGM-temperature 46 depression (maxΔT) of approximately 6K was calculated with relatively low spatial 47 variability, but with a more distinct spatial differentiation in the summer. The span of 48 the estimated maxΔT in July varies from less than 5K in the semi-tropical regions 49 south of the Himalayan mountain arc up to 10K in the intramontane basins and the 50 adjacent mountains of central Asia (Böhner and Lehmkuhl, 2005). Prior to Böhner‟s 51 and Lehmkuhl‟s study another climate model had been used by Liu et al. (2002) to 52 simulate LGM climatic conditions of East Asia and presents specific summer and 53 winter temperatures. This model is mainly based on a comprehensive palynological 54 dataset and the paleovegetation of China that was deduced from this dataset (Yu et 55 al., 2000). This model produces larger amplitudes of temperature decreases in 56 summer than in winter, with maxΔT values of between 2 and 13K. However, in 57 contrast to the model of Böhner & Lehmkuhl (2005), it produces the lowest summer- 58 maxΔT values of 2 to 4K for extensive parts of southern, eastern and central Tibet. 59 Likewise, Shi (2002), who does not present specific evidence, assumed a summer 60 temperature depression of less than 5K for High Asia based on the general maxΔT of 61 6 to 9K that the author took from the literature. 62 Besides these models and general deductions the study of Tang et al. (1999) is the 63 only study we know of that presented genuine specific regional summer and winter 64 LGM temperature depressions so far. Based on analyses of pollen assemblages 65 from the Hidden Lake in southeastern Tibet the authors ascertained values of 0 to 66 1.5 and 7 to 10K, respectively.

2 67 In summary, until now, distinct differences in previous reconstructions of LGM 68 paleoenvironmental conditions have persisted for regional values of maxΔT of the 69 different parts of the Himalayan-Tibetan mountain system. Climate models, which are 70 based on geological proxy data, and those that are based on palynological proxy 71 data, generated temperature scenarios that resulted in contradicting scenarios 72 concerning the potential location of glacial refugia on the Plateau. Accordingly, the 73 models of Liu et al. (2002) and Zheng et al. (2004) suggest that central Tibet has 74 been widely inhabited by alpine animal and plant species during LGM, but also partly 75 by sub-alpine and high montane species. Conversely, the results of Böhner & 76 Lehmkuhl (2005) show LGM-cold deserts for most parts of the Plateau. If the latter 77 estimates were true, almost all of the species that are distributed on the Plateau 78 today would have to be considered Holocene invaders from the eastern and south- 79 eastern borders of the Plateau. 80 However, new biological data strongly confirm that large areas of the Plateau were 81 not cold deserts during the LGM. Schmidt (2009) found evidence for glacial refugia of 82 highly endemic ground beetles along the southern slope of the Nyainqentanggulha 83 Shan mountain range, which are situated more than 4000 m a.s.l., indicating the 84 persistence of a species-rich alpine fauna and flora in southern central Tibet during 85 the LGM. Opgenoorth et al. (2010) even report the existence of LGM tree 86 microrefugia throughout the southern Tibetan Plateau forming the world‟s highest 87 known tree lines of the LGM. In this paper, the persistence of endemic ground beetle 88 species and juniper woodlands in the south Tibetan LGM is used as proxy to derive 89 LGM maximum temperature depressions (maxΔT) for the study area by a transfer 90 function that includes the respective climate envelopes of the indicator species, the 91 orographic potential of their distribution area, and suitable lapse rates for the region. 92 93 1.2 Regional setting 94 The study area (Figures 1, 2 and 4) is defined by the ranges of beetle taxa and 95 juniper taxa within the central plateau. The area belongs to the upper Yarlung 96 Zhangbo catchment, including the Kychu catchment and its tributaries of Southern 97 Tibet (Xizang, Autonomous Region, China) in the rain shadow of the Himalaya. The 98 area is characterized by valley bottoms ranging between 3500 and 4200 m a.s.l. and 99 adjacent slopes reaching up to more than 6000 m a.s.l. The predominant rock in the 100 study area is granite and is accompanied by Carboniferous to Tertiary metamorphics

3 101 and sediments, which are covered outside the valleys and basins by a thin veneer of 102 Quaternary aeolian and colluvial sediments (Anonymous, 1990). 103 The climate in Southern Tibet is a pronounced highland climate of the subtropics. 104 Domrös and Peng (1988) assign the Lhasa area to a semiarid subtype in the 105 “Temperate Plateau Zone” of the climate zones of China. The rainy season starts in 106 mid-June and lasts until mid-September. The recent snowline occurs between 5500 107 and 6000 m a.s.l. (Shi, 1992; Lehmkuhl et al., 2002). Mean annual air temperatures 108 at the valley floors range between 2.4 and 8.5 °C and mean annual precipitation in 109 this region ranges between 361 and 549 mm per year (derived from c. 10- to 40-year 110 series of measurements Domrös and Peng, 1988; Miehe et al., 2001). 111 112 1.3 Neoendemic ground beetles and native juniper haplotypes as tools for 113 reconstructing the local LGM temperature depression 114 The two most important aspects that determine the effectiveness of endemic species 115 and private haplotypes as paleoclimatic proxies in a given mountain relief are i) their 116 local persistence during the time span under consideration and ii) the specificity of 117 their metabolic temperature tolerance. 118 119 Beetles are frequently used as proxies in Quaternary sciences. Coleopteran remains 120 in organic depositions of northern and central Europe have been the subject of 121 intensive studies for almost a half century. The use of Coleoptera in the 122 reconstruction of regional paleoclimates and paleoenvironments has become well 123 established, as reviewed by Elias (2007). Morphological analyses on fossils and 124 subfossil remains have shown that beetle species generally have a high longevity 125 and that most modern species already existed at the beginning of the Pleistocene 126 (see overviews in Hieke, 1983; Elias, 1994; Coope, 2004). Ashworth (1996) 127 concluded from a combined morphological and molecular genetic dataset that the 128 separation of ground beetle populations caused by Quaternary climatic oscillations 129 has not increased rates of speciation. A former hypothesis suggesting post-glacial 130 speciation events in mountain and island Carabidae species groups (Kavanaugh, 131 1979) has not been supported by molecular data (Reiss et al., 1999; Clarke et al., 132 2001). Based on comprehensive morphological and molecular genetic studies, Sota 133 and Nagata (2008) pointed to high speciation rates (up to 2.37 Ma-1) in Ohomopterus 134 ground beetles of the Japanese Islands. However, this study found no evidence for

4 135 specific or subspecific differentiation since the last glaciation period. Therefore, we 136 can assume that each ground beetle species that is distributed on the Tibetan 137 Plateau today existed before the Holocene. 138 Furthermore, climatic factors are considered to be decisive in determining the limits 139 of the distribution of beetle species (Lindroth, 1949; Coope, 1986; Atkinson et al., 140 1987). The effective climatic factors, which represent the true environment of a 141 ground beetle species, are, however, always microclimatic factors (Lindroth, 1949). 142 Soil moisture is identified as a key climatic factor and, if habitats with sufficient 143 humidity are available, the activity of ground beetles is determined by soil 144 temperature (Lindroth, 1949; Thiele, 1974). Consequently, in high mountains, spatial 145 distribution patterns of populations within the range of a ground beetle species are 146 mainly dependent on the availability of habitats characterized by sufficient soil 147 humidity, and vertical limits of distribution are mainly dependent on soil temperature. 148 In alpine environments, the summer temperature of upper soil layers is more directly 149 linked to macroclimatic conditions because compensatory effects of vegetation are 150 almost irrelevant due to the sparse plant cover. Therefore, changes in macroclimatic 151 temperature should result in analogous changes of species-specific limits of vertical 152 distribution of alpine ground beetle species. Due to the insulating effect of snow 153 cover during the winter and to strong temperature variations during spring and 154 autumn, average temperatures in the northern hemisphere correspond most closely 155 to the biologically effective thermal component of the climate during July (Lindroth, 156 1949). Finally, because fossil accumulations of beetle species from the Quaternary 157 have been discovered in the same associations in the past as they occur today, there 158 is strong evidence that the ecological requirements of beetle species have not 159 changed (Coope, 1986; Elias, 1994; Elias, 2007; Elias, 2010). 160 161 Unfortunately, Quaternary deposits with comprehensive fossil or sub-fossil beetle 162 remains have not been found in the Tibetan Plateau or in adjacent mountains. 163 Nevertheless, information about paleoenvironmental conditions is retained within the 164 rich recent beetle fauna of the plateau. By focusing on locally neoendemic species 165 with extremely restricted dispersal ability, it is possible to deduce local 166 paleoenvironmental information as these species must have evolved in situ and are 167 thus tied to the local environmental history. The local nature of speciation is also 168 evident from the fact that each species or subspecies used in this study is endemic to

5 169 separate mountain ridges or valley systems, whereas closely related taxa inhabit 170 adjacent ridges or valleys (Schmidt, 2009). 171 The restricted dispersal ability is indicated by primary winglessness (winglessness by 172 descent). This is indicated not only by the absence of hind wings but also by 173 irreversible morphological changes of the exoskeleton (such as the shortening of 174 metathoracal plates) among all closely related species. 175 In our study, we concentrate on ground beetles (Carabidae) because this family is 176 especially diverse at high altitudes and because the knowledge of the systematics, 177 phylogeny, ecology and biogeography of the High Asian species and species groups 178 is relatively high compared to that of other beetle families. A ground beetle genus 179 that is especially well suited for our analysis is Trechus. In High Asia, this genus 180 contains several hundred species that are all characterized by a very small body 181 size. Most of the alpine Trechus species groups are highly adapted to a strictly 182 edaphic mode of life. Aside from primary winglessness, de-pigmentation and a 183 reduction in eye size have also evolved in these species groups. Imagines and larva 184 live in the cavity systems of rock debris and gravel, and are usually not active in the 185 soil surface. Thus, it is not surprising that these species have extremely small 186 distributional areas that are often restricted to a single side valley of a mountain slope 187 (Fig. 2). Due to their very limited distributional ability during the Quaternary climatic 188 changes, these species primarily underwent vertical range shifts, but did not undergo 189 horizontal expansion or a significant horizontal shift in range (Schmidt, 2009). This 190 indicates that during LGM, each of the species must have found suitable 191 environmental conditions at lower altitudes of the same mountain slope or within the 192 same valley that were close to the locations where they occur today. 193 194 Tibetan juniper tree species do not have such limited distribution ranges that would 195 allow their use as paleoclimatic proxies. However, genetic studies on the Juniperus 196 tibetica hybrid complex revealed a strong phylogeographic structure, with 40 private 197 haplotypes that are limited to respective modern populations distributed along the 198 southern Tibetan Plateau. Based on known mutation rates in the chloroplast region 199 under investigation, phylogeographic structure, as well as the native haplotypes, are 200 considered to be of pre-Holocene origin and their distribution is thought to have been 201 geographically stable (Opgenoorth et al., 2010). Six of these haplotypes were from 202 the Yarlung Zhangpo catchment and were thus from populations that are relevant for

6 203 this study. As the junipers in this region are the only tree species in their habitat, 204 there is no indication that their occurrence would be affected by competition. Instead, 205 juniper trees decline in size towards their upper range limits and the stands open up 206 (Miehe et al., 2007). We are therefore confident that the modern upper range limits 207 used in this paper are climatically driven, as generally accepted for undisturbed sites 208 in high mountain ecology (Korner, 2001). We suggest that the juniper private 209 haplotypes can be used as paleoclimatic proxies in the same manner as endemic 210 beetle species. 211 212 2. Materials and Methods 213 Paleoclimatic reconstructions followed a simple technique introduced 1987 by 214 Atkinson et al. The basic assumption of this technique is that the upper range limit of 215 a species or species assemblage is temperature driven and that the minimum 216 summer temperature at the upper range has been stable. Thus past changes in the 217 upper range limits are correlated with temperature changes. Then, given that both 218 the paleo-orographic range and the modern orographic range of a taxon are known, 219 one can deduce the decline in temperature with the simple function ΔT = ΔA*lr, 220 where ΔT is the maximum temperature difference, ΔA is the maximum difference in 221 altitudinal range, and lr is the lapse rate. As we only examine modern specimens, we 222 do not have paleo-orographic ranges. Nevertheless, on the plateau, we know that the 223 minimum lower range of a species is determined by the elevations of main valley 224 bottoms since the species could not retreat any further downhill. This clearly means 225 that the respective local endemics and private haplotypes must have survived the 226 last glaciation period above these altitudes, thus providing measures of maximum 227 LGM range depression. To derive ΔA, we simply subtracted the elevation of the main 228 valley bottom from today‟s upper range limit. The resulting ΔA should be too large 229 given that the species or populations must have been distributed over a vertical 230 range in order to survive. 231 232 In the case of the ground beetles additional information can be derived from the 233 plateau situation. When a species occupies the lower limit of its vertical range at the 234 bottom of a main valley paralleling a mountain range, at least temporarily, this 235 species should be able to disperse across the valley to adjacent mountain slopes or 236 along the main valley into further side valleys. This should be especially true when,

7 237 glacial cooling causes the theoretical lower distributional limit of a species to be lower 238 than the elevation of the bottom of the valley. In this case, horizontal shifts of the 239 distributional area along the bottom of the main valley are expected. Therefore, such 240 species should be found along different mountain slopes and in different valley 241 systems today. Evidence for this pattern has been found for several wingless ground 242 beetle species of the genera Amara, Carabus, Cymindis, Harpalus, Loricera, and 243 Zabrus (unpublished data), as well as for species of the Trechus thibetanus group 244 (Schmidt, 2009) for which distinct glacially driven horizontal distribution shifts are 245 assumed. Thus, for those species that exist on only one slope, and/or sidevalley, we 246 can assume that their vertical distribution range never reached the valley bottom. 247 This means that, calculating the ΔA value for the present lower range limit of the 248 species would provide a better reference point for calculating the difference in 249 altitudinal range. 250 Because investigations on the ground beetle fauna of the Himalayan Tibetan orogen 251 have been rather limited up to now, we concentrate on a relatively small area along 252 western parts of the Nyainqentanggulha Shan mountain range where the Trechus 253 fauna is especially diverse and has been much more intensively studied than 254 elsewhere on the Plateau (Figs 2 and 3). Due to the small geographical extension of 255 the area we can assume that paleotemperature was largely identical which allows for 256 lumping of the species specific results of the calculated ΔT values. The private 257 Juniperus tibetica haplotypes used in this study are located at maximum distances of 258 about 300 km (Fig. 4) and thus, the considered area is much larger than that of the 259 Trechus studies. Although we have no knowledge about the true climatic LGM 260 circulation in the area we hypothesize that lumping of the Juniperus data of the 261 calculated ΔT values is possible as well, as modern climatic conditions in that area 262 are largely homogenous (Domrös and Peng, 1988; Miehe et al., 2001). 263 264 July lapse rates proposed for the Tibetan Plateau range from 0.55K/100 m at a 265 latitude of 30° north between 4000 and 6000 m (Giddings, 1980), 0.57K/100 m based 266 on the mean temperature in July over a thirty-year period (1950 to 1980) at 85 267 stations, to 0.69K/100 m based on field measurements close to Damxung (see 268 Figure 2) at altitudes ranging from 4300 to 5350 m (Du et al., 2007). As all of these 269 lapse rates have strengths and weaknesses (for a discussion of lapse rates see the 270 respective papers; for a general discussion of lapse rates see Meyer, 1992; Meyer,

8 271 2007) and can only be considered to be approximations, we consider the whole lapse 272 rate span of 0.55 to 0.69K/100 m in our analysis. 273 274 The position of the distributional areas, as well as the recent distributional limits of 275 the vertical range of each of the species, were taken from the most recent taxonomic 276 and biogeographical reviews by Schmidt (2009) and Schmidt (in prep) for Trechus 277 and from Opgenoorth et al. (2010) for Juniperus. The geographical coordinates of all 278 locations are given in the supplementary table 1. 279 280 3. Results 281 The current vertical ranges of the Trechus endemics on western Nyainqentanggulha 282 Shan ranged from 4800-5100 (lower bound) to 5100-5600 (upper bound) m a.s.l. The 283 elevations of the respective valley bottoms ranged from 4300 to 4500 m a.s.l. Thus, 284 maximum LGM range shifts were between 450 m to 800 m. However, of the 19 285 species, only three showed such high lower range limits today that LGM range shifts 286 could have reached values between 700-800 m. Such high ΔA values should have 287 led to a horizontal range shift among the 16 other species as their ranges would well 288 have included the valley bottom. However, as horizontal range expansions could not 289 be found in any of the 19 species we must assume that the ranges of the three 290 mentioned species were far above the respective valley bottoms. For this reason 291 they have been omitted from the LGM-ΔT calculations. For the remaining 16 species 292 the resulting maxΔT in July was calculated to be between 2.5 and 3.6K if we consider 293 a lapse rate of 0.55K/100 m according to Giddings (1980), and between 3.1 and 4.5K 294 if we consider a lapse rate of 0.69K/100 m according to Du et al. (2007); Table 2. 295 296 The current upper tree lines of the junipers investigated in this study ranged from 297 4650 to 4850 m a.s.l. The elevations of the respective valley floors were between 298 3400 and 4440 m. The range shifts based on the upper limit of today‟s ranges 299 spanned from 410 to 1100 m. Thus, the resulting maxΔT in July was calculated to be 300 between 2.3 and 6.1K if we consider a lapse rate of 0.55K/100 m according to 301 Giddings (1980), and 2.8 to 7.6K if we consider a lapse rate of 0.69K/100 m 302 according to Du et al. (2007); Table 3. 303 304

9 305 4. Discussion 306 The ranges of the derived maximum temperature depressions of both groups of 307 proxies showed similar dimensions (mean range of 2.9K (lr 0.55) and 3.6K (lr 0.69) 308 and 3.4 (lr 0.55) and 4.3K (lr 0.69) for beetles and junipers, respectively. Moreover, 309 when only the Juniperus samples were considered that are from the same area as 310 the beetles their values matched the range of the beetle proxies (H30 with 2.6K/3.2K 311 (lr 0,55/0,69) and H9 with 3.3K/4.1K (lr 0,55/0,69) thus supporting one another. 312 313 Thus, even with the higher proposed lapse rate (0.69K/100 m), almost all values 314 were well below 5K. Given that our method defines the maximum temperature 315 depressions and given we consider a lapse rate in the range between the two 316 extremes, an actual value between 3 and 4K seems to be realistic for the southern 317 Tibetan Plateau. 318 319 This is the more evident when the outliers of both proxy data sets are considered in 320 detail. For example, the highest values of maxΔT in July among beetles of 4.5 to 321 5.7K were derived from Trechus astrophilus based on its maximum range shift of 800 322 m (Table 2). The lower distributional limit of 5100 m a.s.l. of this species corresponds 323 to the upper distributional limits of T. solhoyi on the same mountain slope and to its 324 phylogenetic sister species Trechus spec. nov. 8 which occurs on adjacent slopes 325 west of the Geda Chu glacier river valley (Fig. 3). Effective maxΔT summer values of 326 between 4.4 and 5.5K would have eradicated both latter species because it would 327 have been too cold. Thus, we can be certain that the true maximum local LGM 328 temperature depression was below these values. 329 Discussing the three juniper values that are not in the same area as the beetles is 330 more complex. While the westernmost haplotypes (H12, H60) fit the derived 331 temperature values seen among beetles and the junipers in the Kyi Chu catchment, 332 haplotypes 14 and 40 produce values that are decidedly higher than all others. This 333 could either be explained by a true LGM temperature gradient along the Yarlung 334 Tsangpo, where maxΔT increased eastwards, effectively meaning that local LGM 335 summer temperatures dropped stronger towards the east. Given that no such 336 gradient exists today we see no probable reason for that. A second explanation is 337 more straightforward and is simply a matter of the limitations of using extant 338 endemics as proxy for maxΔT: As this method produces approximations for the

10 339 maxΔT it has by its very own nature a bias towards deriving too large values. Thus, 340 the smaller the possible altitudinal range of an endemic taxon, the more sensitive 341 maxΔT will reflect the true local LGM temperature depression. In other words, the 342 longer the slope, the more likely the derived maxΔT will be an exaggeration as the 343 respective taxon could simply have endured the LGM somewhere up the slope and 344 must not even have reached the valley bottom. This is an important reason why 345 ground beetles promise to be such an effective proxy as they tend to have very 346 limited altitudinal ranges and since the number of neoendemics is very high such that 347 each altitude will probably harbor a sufficient set of species for these analyses. 348 Unfortunately, the carabid beetle fauna of the mountains surrounding the population 349 at Yam Tso Lake as well as the easternmost population in the Yarlung Tsangpo 350 Valley are not sufficiently known yet. Consequently, this argument cannot be verified 351 by a second proxy at this moment. 352 353 Our data could only be compared with a small number of previously published 354 datasets as only few studies focus on summer temperatures. However, compared to 355 those studies that do, our data appeared to best fit results that are based on 356 biological proxies (pollen analyses) as values derived from geomorphological 357 features and delta18O values were considerably higher. This is especially evident with 358 the atmospheric models put forward by Liu et al. (2002); based on pollen analyses) 359 and Böhner & Lehmkuhl (2005); based on geomorphological features). The latter 360 proposed values that effectively excluded the possibility that alpine beetles and 361 junipers survived the LGM on the Tibetan Plateau. As our findings exclude maxΔT 362 values above 5K for southern central Tibet they are in stark contrast to ΔELA-derived 363 paleotemperatures. This is not surprising as ELA is not only determined by mean 364 temperature but also by snowfall and to a lesser degree cloudiness. Furthermore it 365 has been shown, that in mountains of lower latitudes ELA reacts generally less 366 sensitive in comparison with mid latitude glaciers (Kaser and Osmaston, 2002)and 367 thus should not be used to derive paleotemperatures (Heine, 2004). Our data do 368 correspond, however, with the range of values proposed by Liu et al. (2002), who 369 present values of 2 to 4K maxΔT for the southern and central Plateau. Thus, our data 370 support and specify the paleoclimatic conclusions deduced from palynological data, 371 which were derived in other parts of the Plateau (Yu et al., 2000).

11 372 To our knowledge, this study was the first to have used modern organisms as 373 biological proxies for paleoclimate reconstructions in High Asia. This approach has a 374 number of advantages. First, the derived data are necessarily related to the 375 maximum temperature minimum, which is defined as the local LGM. Thus, unlike with 376 stratigraphical or geological proxies, problems related to dating are non-existent. On 377 the other hand the timing of these local LGMs need to be achieved by other methods. 378 Second, collecting data points is possible throughout the study area independent of 379 specific archives resulting in a much better spatial resolution. With growing 380 knowledge on endemic (specific or intraspecific) elements of the flora and fauna, it 381 should be possible to derive a regionally, and even locally, differentiated LGM 382 temperature regime. 383 Like most preceding studies, our analyses are potentially thwarted by two potential 384 pitfalls that may lead to an underestimation of the real maxΔT. We assumed in our 385 transfer function that no significant uplift of the Tibetan Plateau had occurred since 386 the LGM. However, a few authors have suggested substantial uplift rates throughout 387 the Holocene (e.g. Zhang et al., 2000). Instead, we adopted the position, which is 388 generally accepted by scientific mainstream, that the Tibetan Plateau reached its 389 current height at the beginning of the Quaternary at the latest (Garzione et al., 2000; 390 Tapponnier et al., 2001; Spicer et al., 2003; Currie et al., 2005; Rowley and Currie, 391 2006a; Rowley and Currie, 2006b; Royden et al., 2008; Wang et al., 2008). We 392 furthermore assumed that the altitudes of the valley bottoms of our research area 393 were not significantly altered by means of late glacial or late Holocene deposits from 394 moraines or hill scree. No conflicting evidence was observed during our field work. 395 396 5. Conclusion 397 Depending on the respective methods implemented, very different values of maxΔT 398 for July have been proposed in existing studies on the paleoclimate of Tibet. One 399 consequence of this variation in the results is that the reconstruction of environmental 400 conditions during the LGM was mostly impossible. Our approach of deriving maxΔT 401 for July based on analysis of biogeographical and phylogenetic data of modern 402 endemic ground beetle species and private Juniperus haplotypes allows a significant 403 decrease in the range of possible maxΔT values for July for the southern central 404 parts of the Tibetan Plateau. Deductions from both of these proxy groups produce 405 values that are primarily within a range of 3 to 4K and do not leave a lot of margin for

12 406 error, and we therefore conclude that local endemics of modern species groups 407 provide promising proxies for reconstructing paleoclimatic conditions. The data 408 presented here are so far unmatched in their regional differentiation of LGM 409 temperature depressions on the Tibetan Plateau. The high number of endemic 410 ground beetle species, as well as the increasing number of molecular genetic studies 411 for different species groups that reveal private haplotypes from LGM endurance on 412 the Tibetan plateau (e.g., ground beetle genera Carabus and Amara and Tibetan sea 413 buckthorn Hippophae tibetana (forthcoming), plateau pika (Ci et al., 2009); 414 monkshood Aconitum gymnandrum (Wang et al., 2009), will significantly increase our 415 understanding of LGM temperature regimes on the Tibetan Plateau if this species 416 groups are used as temperature proxies. 417 418 Acknowledgments 419 Christiane Enderle provided cartographical assistance for Figures 1 to 4. Prof. Dr. 420 Torstein Solhøy, University of Bergen, gave basic support during the fieldwork of 421 Joachim Schmidt in Tibet. We thank Prof. Dr. Alan Gillespie and Prof. Dr. Elias for 422 significant input to a former manuscript version. The studies of Joachim Schmidt and 423 Lars Opgenoorth were supported by the German Research Council (DFG grant MI 424 271/18, 20). 425

13 426 427 Fig. 1: The location of the study area within the High Asian region. 428

429 430 Fig. 2: Map of southern central Tibet showing main geomorphologic features and the 431 distribution of 35 local endemics of the genus Trechus (numbers in white circles 432 represent the occurrence of one distinct species or subspecies). Note the generally 433 high elevation of the valleys all over this area (three examples are pointed south of 434 the Nyainqentanggulha Shan mountain range and in the Yarlung Zhangbo Valley) 435 and the extremely restricted distribution of almost all of the Trechus species. Only 436 four species (nos. 3, 9, 15, 21) were found at two separate places close to each 437 other. The area in the middle framed by dotted lines refers to the study area shown in 438 Fig. 3. 439

14 440 441 Fig. 3: Relief map of the western Nyainqentanggulha Shan mountain range showing 442 the modern distribution areas of 19 local endemics of the ground beetle genus 443 Trechus (for location of the area see Fig. 2). To calculate species-specific LGM range 444 shift ΔA values, the distances of species-specific lower distributional limits to the 445 altitudes at main valley bottom below each of the distributional areas were used (see 446 Table 2). 447

15 448 449 Fig. 4: Map of southern central Tibet showing the main geomorphologic features and 450 the distribution of six local private juniper haplotypes (numbers in white circles 451 represent the haplotype number from Opgenoorth et al. (2010); each circle 452 represents the modern occurrence of one distinct private haplotype). 453 454 Table 1: Last glaciation temperature depression estimations for the Tibetan Plateau 455 Location Method maxΔT [K] Time [ka BP] Reference Guliya Ice cap, West Kunlun δ18O value in ice core 9.0 (annual) 23 (Yao et al., 1997) Dunde Ice cap, Qilian δ18O value in ice core 6.0 (annual) 30 (Thompson, 1989) Mountain Qarhan Salt Lake, Quaidam δ18O and δD of 8.0 (annual) 16-19.5 (Zhang et al., 1993) Basin intercrystalline brine Eastern Qilian Mountain Paleo-peat in frost heave 7.0 (annual) 31 +/- 1.5 (Xu et al., 1984)a Gonghe Basin, Qinghai Paleo-sand wedge 7.0 (annual) 17 +/- 0.25 (Xu et al., 1984)§ Province Zoige Basin, East Tibet Pollen analysis 6.0 (annual) 18 (Shen et al., 1996)a Zhabuye lake, southwest Pollen analysis 6.0 (annual) 18 (Xiao et al., 1996)a Tibet Hidden Lake & Ren Co, Pollen analysis 7-10 (January)/0-1.5 (July) 18-14 (Tang et al., 2000)a Southeast Tibet South and central Tibet Atmospheric model 3-5 (winter)/2-4 (summer) 21 (Liu et al., 2002) High Asia Estimate < 5 (mean summer) LGM (Shi, 2002) Tibetan Plateau Atmospheric model 0.8-1.9 (annual) 21 (Zheng et al., 2004) High Asia Atmospheric model 6.3-6.4 (annual)/5.6-6.1 21 (Böhner and Lehmkuhl, (July) 2005)b 456 a References as quoted in Shi (2002). 457 b The data here presented were kindly calculated by J. Böhner in September 2010 458 based on the model of Böhner and Lehmkuhl (2005). 459

16 460 Table 2: Calculation of the maximum LGM range shift ΔA of local endemic Trechus 461 species of the western Nyainqentanggulha Shan mountain range and the derived 462 maximum July LGM temperature depression ΔT considering two lapse rate (lr) 463 scenarios. 464 Local endemic Trechus Modern vertical Valley floor ΔA [m] ΔT [K] ΔT [K] a taxa distribution limits [m a.s.l.] (lr = 0.55K) (lr = 0.69K) [m a.s.l.]b T. astrophilus 5100-5600 4300 800 (4,4) (5,5) T. bastropi 5000-5350 4500 500 2,8 3,4 T. budhaensis 5000-5400 4300 700 (3,8) (4,8) T. folwarcznyi 5000-5450 4500 500 2,8 3,4 T. rarus 5000-5200 4500 500 2,8 3,4 T. religious 5100-5500 4600 500 2,8 3,4 T. solhoeyi 4800-5100 4300 500 2,8 3,4 T. yak shogulaensis 5000-5400 4500 500 2,8 3,4 T. yak subspec. nov. 5000-5300 4500 500 2,8 3,4 T. yak yak 5000-5300 4300 700 (3,8) (4,8) T. yeti 5100-5300 4500 600 3,3 4,1 Trechus spec. nov. 1 4900-5350 4450 450 2,5 3,1 Trechus spec. nov. 2 5000-5350 4450 550 3,0 3,8 Trechus spec. nov. 3 4950-5350 4300 650 3,6 4,5 Trechus spec. nov. 4 4950-5400 4350 600 3,3 4,1 Trechus spec. nov. 5 5000-5500 4500 500 2,8 3,4 Trechus spec. nov. 6 4950-5400 4500 450 2,5 3,1 Trechus spec. nov. 7 5000-5300 4500 500 2,8 3,4 Trechus spec. nov. 8 4950-5100 4300 650 3,6 4,5 465 a Grey shaded taxa produced outlier values that are discussed in the text. 466 b According to the accuracy attainable during field work the values of the upper and 467 lower range limits were rounded up and down respectively, to 50 m steps. 468

17 469 Table 3: Calculation of LGM shift ΔA of the juniper tree line on the southern Tibetan 470 Plateau and derived maximum LGM temperature depression ΔT values considering 471 two lapse rate (lr) scenarios. 472

Local endemic Juniperus Present upper Valley floor ΔA [m] ΔT [K] ΔT [K] a haplotype treeline [m a.s.l.] (lr: 0.55K) (lr: 0.69K) [m a.s.l.]

Chugdö Gompa (H12, H60) 4650 4100 550 3.0 3.8

Halung (H14) 4680 3400b 1100 (6.1) (7.6)

Reting (H30) 4620 4150 470 2.6 3.2

Upper Drigung (H9) 4650 4050 600 3.3 4.1

Yam Tso (H40) 4850 3750 1100 (6.1) (7.6)

473 474 a = haplotype numbers from Opgenoorth et al. (2010). Grey shaded taxa are 475 discussed as outliers in the text. 476 477

18 478 479 Reference List 480

481 An Zhisheng, Ai Li, Song Yougui, and Colman, S.M., 2006. Lake Qinghai Scientific Drilling Project. 482 Scientific Drilling 2, 20-22.

483 Anonymous, 1990. Atlas of TibetInstitute of Geography, Chinese Academy of Sciences, Beijing.

484 Ashworth, A.C., 1996. The response of arctic Carabidae (Coleoptera) to climate change based on the 485 fossil record of the Quaternary Period. Annales Zoologici Fennici 33, 125-131.

486 Atkinson, T.C., Briffa, K.R., and Coope, G.R., 1987. Seasonal Temperatures in Britain During the Past 487 22,000 Years, Reconstructed Using Beetle Remains. Nature 325, 587-592.

488 Böhner, J. and Lehmkuhl, F., 2005. Environmental change modelling for Central and High Asia: 489 Pleistocene, present and future scenarios. Boreas 34, 220-231.

490 Ci, H.X., Lin, G.H., Cai, Z.Y., Tang, L.Z., Su, J.P., and Liu, J.Q., 2009. Population history of the 491 plateau pika endemic to the Qinghai-Tibetan Plateau based on mtDNA sequence data. Journal of 492 Zoology 279, 396-403.

493 Clarke, T.E., Levin, D.B., Kavanaugh, D.H., and Reimchen, T.E., 2001. Rapid evolution in the Nebria 494 gregaria group (Coleoptera : Carabidae) and the paleogeography of the Queen Charlotte Islands. 495 Evolution 55, 1408-1418.

496 Coope, G.R., 1986. Coleoptera analysis. in: Berglund, B.E. (Ed.), Handbook of Holocene 497 Palaeoecology and Palaeohydrology John Wiley & Sons Ltd., Chichester, New York, Brisbane, 498 Toronto, pp. 703-713.

499 Coope, G.R., 2004. Several million years of stability among insect species because of, or in spite of, 500 Ice Age climatic instability? Philosophical Transactions of the Royal Society of London Series B- 501 Biological Sciences 359, 209-214.

502 Currie, B.S., Rowley, D.B., and Tabor, N.J., 2005. Middle Miocene paleoaltimetry of southern Tibet: 503 Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology 33, 504 181-184.

505 Domrös, M. and Peng, G., 1988. The climate of ChinaSpringer-Verlag, Berlin.

506 Du, M., Kawashima, S., Yonemura, S., Yamada, T., Zhang, Z., Liu, J., Li, Y., Gu, S., and Tang, Y., 507 2007. Temperature distribution in the high mountain regions on the Tibetan Plateau - Measurement 508 and simulation. in: Oxley, L. and Kulasiri, D. (Eds.), MODSIM 2007 International Congress on 509 Modelling and Simulation. Modelling and Simulation, Society of Australia and New Zealand, pp. 2146- 510 2152.

511 Elias, S.A., 1994. Quaternary insects and their environmentsSmithonian Institution Press, Washington, 512 London.

513 Elias, S.A., 2010. Advances in Quaternary entomology. Elsevier, Amsterdam, pp. 1-288.

514 Elias, S.A., 2007. Beetle Records. in: Elias, S.A. (Ed.), Encyclopedia of Quaternary Sciences Elsevier, 515 Amsterdam, pp. 153-163.

516 Garzione, C.N., Dettman, D.L., Quade, J., DeCelles, P.G., and Butler, R.F., 2000. High times on the 517 Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology 28, 339-342.

518 Giddings, L.E., 1980. The physical environment of the highlands. in: Mani, M.S. and Giddings, L.E. 519 (Eds.), Ecology of highlands Dr. W. Junk Publishers, The Hague, Boston, London, pp. 1-249.

19 520 Harris, N., 2006. The elevation history of the Tibetan Plateau and its implications for the Asian 521 monsoon. Palaeogeography Palaeoclimatology Palaeoecology 241, 4-15.

522 Heine, K., 2004. Late Quaternary glaciations of Bolivia. in: Ehlers, J. and Gibbard, P.L. (Eds.), 523 Quaternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australasia, 524 Antarctica Elsevier, Cambridge, pp. 83-88.

525 Hieke, f., 1983. Die historische Entwicklung der Käfer (Coleoptera). Entomologische Nachrichten und 526 Berichte 27, 105-158.

527 Kaser, G. and Osmaston, H., 2002. Tropical GlaciersCambridge University Press, Cambridge.

528 Kavanaugh, D.H., 1979. Rates of taxonomically significant differentiation in relation to geographical 529 isolation and habitat: Examples from a study of the Nearctic Nebria fauna. in: Erwin, T.L., Ball, G.E., 530 and Whitehead, D.R. (Eds.), Carabid beetles and their evolution, natural history, and classification Dr. 531 W. Junk Publishers, The Hague, Boston, London, pp. 33-57.

532 Korner, C., 2001. Experimental plant ecology: some lessons from global change research. Ecology: 533 Achievement and Challenge 227-247.

534 Kutzbach, J.E., Guetter, P.J., Ruddiman, W.F., and Prell, W.L., 1989. Sensitivity of Climate to Late 535 Cenozoic Uplift in Southern Asia and the American West - Numerical Experiments. Journal of 536 Geophysical Research-Atmospheres 94, 18393-18407.

537 Lehmkuhl, F., Klinge, M., and Lang, A., 2002. Late Quaternary glacier advances, lake level 538 fluctuations and aeolian sedimentation in Central and Eastern Tibet. Zeitschrift für Geomorphologie 539 126, 183-218.

540 Lindroth, C.H., 1949. Die fennoskandischen Carabidae. Eine tiergeographische Studie. III Allgemeiner 541 Teil. Göteborgs Kungl.Vetenskaps- och Vitterheds-Samhälles Handlinger 4, 1-911.

542 Liu, J., Yu, G., and Chen, X., 2002. Palaeoclimate simulation of 21 ka for the Tibetan Plateau and 543 Eastern Asia. Climate Dynamics 19, 575-583.

544 Manabe, S. and Terpstra, T.B., 1974. Effects of Mountains on General Circulation of Atmosphere As 545 Identified by Numerical Experiments. Journal of the Atmospheric Sciences 31, 3-42.

546 Meyer, H.W., 1992. Lapse Rates and Other Variables Applied to Estimating Paleoaltitudes from Fossil 547 Floras. Palaeogeography Palaeoclimatology Palaeoecology 99, 71-99.

548 Meyer, H.W., 2007. A review of paleotemperature - Lapse rate methods for estimating paleoelevation 549 from fossil floras. Paleoaltimetry: Geochemical and Thermodynamic Approaches 66, 155-171.

550 Miehe, G., Miehe, S., Vogel, J., Co, S., and Duo, L., 2007. Highest treeline in the northern hemisphere 551 found in southern Tibet. Mountain Research and Development 27, 169-173.

552 Miehe, G., Winiger, M., Böhner, J., and Zhang Yili, 2001. The climatic diagram map of High Asia. 553 Purpose and concepts. Erdkunde 55, 94-97.

554 Molnar, P., Boos, W.R., and Battasti, D.S., 2010. Orographic Controls on Climate and Paleoclimate of 555 Asia: Thermal and Mechanical Roles for the Tibetan Plateau. Annual Review of Earth and Planetary 556 Sciences 38, 77-102.

557 Opgenoorth, L., Vendramin, G.G., Mao, K.S., Miehe, G., Miehe, S., Liepelt, S., Liu, J.Q., and 558 Ziegenhagen, B., 2010. Tree endurance on the Tibetan Plateau marks the world's highest known tree 559 line of the Last Glacial Maximum. New Phytologist 185, 332-342.

560 Raymo, M.E. and Ruddiman, W.F., 1992. Tectonic forcing of late Cenozoic climate. Nature 359, 117- 561 122.

20 562 Reiss, R.A., Ashworth, A.C., and Schwert, D.P., 1999. Molecular genetic evidence for the post- 563 Pleistocene divergence of populations of the arctic-alpine ground beetle Amara alpina (Paykull) 564 (Coleoptera: Carabidae). J Biogeography 26, 785-794.

565 Rowley, D.B. and Currie, B.S., 2006b. Earth science - Palaeo-altimetry of Tibet - Reply. Nature 444, 566 E4-E5.

567 Rowley, D.B. and Currie, B.S., 2006a. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, 568 central Tibet. Nature 439, 677-681.

569 Royden, L.H., Burchfiel, B.C., and van der Hilst, R.D., 2008. The geological evolution of the Tibetan 570 plateau. Science 321, 1054-1058.

571 Schmidt, J., 2009. Taxonomic and biogeographical review of the genus Trechus Clairville, 1806, from 572 the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera: Carabidae: Trechini). 573 Zootaxa 1-72.

574 Shi, Y., 1992. Glaciers and glacial geomorphology in China. Z.Geomorph.N.F.Suppl.Bd. 86, 19-35.

575 Shi, Y., 2002. Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in 576 East Asia. Quaternary International 97-8, 79-91.

577 Sota, T. and Nagata, N., 2008. Diversification in a fluctuating island setting: rapid radiation of 578 Ohomopterus ground beetles in the Japanese Islands. Philosophical Transactions of the Royal 579 Society B-Biological Sciences 363, 3377-3390.

580 Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S.X., Valdes, P.J., Wolfe, J.A., and 581 Kelley, S.P., 2003. Constant elevation of southern Tibet over the past 15 million years. Nature 421, 582 622-624.

583 Tang, L.Y., Shen, C.M., Liu, K.B., and Overpeck, J.T., 1999. New high-resolution pollen records from 584 two lakes in Xizang (Tibet). Acta Botanica Sinica 41, 896-902.

585 Tapponnier, P., Zhiqin, X., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Jingsui, Y., 2001. 586 Oblique stepwise rise and growth of the tibet plateau 587 1955. Science 294, 1671-1677.

588 Thiele, H.U., 1974. Physiologisch-ökologische Studien an Laufkäfern zur Kausalanalyse ihrer 589 Habitatbindung. Verhandlungen der Gesellschaft für Ökologie 1973, 39-54.

590 Wang, C.S., Zhao, X.X., Liu, Z.F., Lippert, P.C., Graham, S.A., Coe, R.S., Yi, H.S., Zhu, L.D., Liu, S., 591 and Li, Y.L., 2008. Constraints on the early uplift history of the Tibetan Plateau. 592 Proc.Natl.Acad.Sci.U.S.A. 105, 4987-4992.

593 Wang, L.Y., Abbott, R.J., Zheng, W., Chen, P., Wang, Y.J., and Liu, J.Q., 2009. History and evolution 594 of alpine plants endemic to the Qinghai-Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). 595 Molecular Ecology 18, 709-721.

596 Yu, G., Chen, X., Ni, J., Cheddadi, R., Guiot, J., Han, H., Harrison, S.P., Huang, C., Ke, M., Kong, Z., 597 Li, S., Li, W., Liew, P., Liu, G., Liu, J., Liu, Q., Liu, K.-B., Prentice, I.C., Qui, W., Ren, G., Song, C., 598 Sugita, S., Sun, X., Tang, L., van Campo, E., Xia, Y., Xu, G., Yan, S., Yang, X., Zhao, J., and Zheng, 599 Z., 2000. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last 600 glacial maximum. J Biogeography 27, 635-664.

601 Zhang, D.F., Fengquan, L., and Jianmin, B., 2000. Eco-environmental effects of the Qinghai-Tibet 602 Plateau uplift during the Quaternary in China. Environmental Geology 39, 1352-1358.

603 Zhang, Z.S., Wang, H.J., Guo, Z.T., and Jiang, D.B., 2007. What triggers the transition of 604 palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? 605 Palaeogeography Palaeoclimatology Palaeoecology 245, 317-331.

21 606 Zheng, Y.Q., Yu, G., Wang, S.M., Xue, B., Zhuo, D.Q., Zeng, X.M., and Liu, H.Q., 2004. Simulation of 607 paleoclimate over East Asia at 6 ka BP and 21 ka BP by a regional climate model. Climate Dynamics 608 23, 513-529. 609 610 611 612 Supplementary table 1: Selected sampling sites for local endemic Trechus ground 613 beetles and private Juniperus haplotypes used for paleootemperature calculations in 614 southern central Tibet. 615 Location Latitude Longitude Relevant Trechus species/ (selected sites) (selected sites) Juniperus haplotype Eastern slopes of Pijin Mountain 29°45‟ 90°17‟ T. spec. nov. 5, T. spec. nov. 6 29°46‟ 90°18‟ Upper Shogu Chu valley 29°53‟ 90°07‟ T. bastropi, T. folwarcznyi, T. 29°54‟ 90°08‟ rarus, T. yak shogulaensis, T. 29°55‟ 90°08‟ yeti 29°57‟ 90°07‟ Linchung Chu valley 30°05‟ 90°21‟ T. spec. nov. 7, T. yak subspec. 30°06‟ 90°20‟ nov. Western slopes of Geda Chu valley 30°06‟ 90°27‟ T. budhaensis, T. spec. nov. 8, 30°07‟ 90°26‟ T. yak yak Eastern slopes of Geda Chu valley 30°10‟ 90°30‟ T. astrophilus, T. budhaensis, T. 30°10‟ 90°29‟ solhoeyi, T. yak yak 30°11‟ 90°28‟ 30°11‟ 90°29‟ Eastern slopes of Bilam Chu valley 30°17‟ 90°36‟ T. religious 30°18‟ 90°35‟ Eastern slopes of Lha Chu valley 30°22‟ 90°43‟ T. spec. nov. 1, T. spec. nov. 2 Northern slopes of Shemalung Mountain 30°07‟ 90°36‟ T. spec. nov. 3 Western slopes of Birze Peak 29°57‟ 90°31‟ T. spec. nov. 4 Chugdö Gompa 29°09' 87°09' J. tibetica H12, H60 Halung 29°17' 92°07' J. tibetica H14 Reting 30°17' 91°31' J. tibetica H30 Upper Drigung 30°06' 92°19' J. tibetica H9 Yam Tso 28°58' 90°27' J. tibetica H40 616

22

Publikation III

Schmidt, J. & Hartmann, M.

Pristosia Motschulsky, 1865 from the Nepal Himalaya: Taxonomy and Biogeography (Coleoptera: Carabidae: Sphodrini).

Zootaxa (2009) 2009: 1-26.

TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Zootaxa 2009: 1–26 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition)

Pristosia Motschulsky, 1865 from the Nepal Himalaya: Taxonomy and Biogeography (Coleoptera: Carabidae: Sphodrini)

JOACHIM SCHMIDT1 & MATTHIAS HARTMANN2 1Faculty of Geography, University of Marburg, Deutschhausstrasse 10, 35037 Marburg, Germany. E-mail: [email protected] 2Naturkundemuseum Erfurt, Grosse Arche 14, 99084 Erfurt, Germany. E-mail: [email protected]

Abstract

The genus Pristosia Motschulsky, 1865 was so far only known to be highly diverse in the North-Western Himalaya and present in the Eastern Himalaya. Only a single female specimen has been documented in the literature from the Nepal Himalaya and was described as P. dahud Morvan, 1994. During a study of comprehensive carabid beetle material collected throughout Nepal, which has been deposited at several museums and private collections, a large number of Pristosia specimens from six species have been identified. The only fully winged species P. c re n a t a (Putzeys, 1873), which is widely distributed in South East Asia, was found near Dailekh and is herewith reported for the Nepalese fauna for the first time. The Eastern Himalayan species P. amaroides (Putzeys, 1877) is reported for the first time in Nepal as well and occurs in Eastern Nepal at several localities east of the Arun river. At least four species occur in the Western and Far Western Nepal Himalaya, of which three are described as new to science: P. glabella sp. n. and P. nepalensis sp. n. from the Api Himal, and P. similata sp. n. from the Saipal Himal. An presumably additional new species is known from the north-western slope of the Dhaulagiri Himal, but is represented by a single immature female specimen only, which does not allow for a sufficient species diagnosis. The male external and genital characters of P. dahud Morvan, 1994 are now described for the first time. This species is considered to be polytypic and the geographic subspecies P. dahud polita ssp. n. is described from the south slope of the Kanjiroba Himal. The species P. at re m a (Andrewes, 1926) and P. championi (Andrewes, 1934), which occur in the Kumaon Himalaya close to the Nepalese border, are redescribed based on the examination of the type material. Diagnostic features, especially for the male genitalia of all taxa mentioned above, are figured and a key to the species from Nepal is presented. Instead of a phylogenetic analysis, which is needed for Pristosia but not achievable at present, preliminary species groups for species dealt with are proposed: The Eastern Himalayan P. amaroides species group (monotypic), the P. a tre m a species group with six species from the Kumaon and Western Nepal Himalaya, the P. championi species group with two species from the Kumaon and Western Nepal Himalaya, and the South East Asian P. crenata species group (monotypic). Based on the distributional and ecological data presented in this study, species of the genus Pristosia with reduced hind wings seem to be absent from the entire Central Nepal Himalaya, and the only Eastern Nepalese species, P. amaroides, prefers largely different habitat conditions compared to the species from Western Nepal. Based on biogeographical hypotheses of other Himalayan carabid beetle genera presented in previous studies by the senior author, the observed species groups of Pristosia are considered to be further examples for Tertiary Tibetan faunal components of the Himalaya. Following a diversification of the genus within the Tertiary of Southern Tibet, speciation occurred and these species groups originated from founder populations that moved into the Nepal Himalaya. The colonization of the geologically younger High Himalaya has taken place independently for each of the terminal groups via different dispersal routes and during different periods of mountain uplift.

Key words. Species groups, new species, redescription, India, Tertiary Tibetan faunal component

Accepted by W. Moore: 1 Dec. 2008; published: 11 Feb. 2009 1 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Introduction

Ground beetles of the tribe Sphodrini are widely distributed in the Himalaya. The most species-rich genera are Calathus Bonelli, 1810, Pristosia Motschulsky, 1865, Synuchus Gyllenhal, 1810, as well as the subtribe Sphodrina. This subtribe has been dealt with in an extensive monograph by Casale (1988), and the genus Calathus was revised by Schmidt (1999). In addition, a monograph of Synuchus was published by Lindroth (1956), but is now out of date as several species descriptions from High Asia have been published since. However, Lindroth (1956) did examine the systematic position of many Sphodrini from the Himalaya, which had originally been described by Andrewes (1924, 1926, 1934), Bates (1889) and Putzeys (1873, 1877) in the genera Calathus Bonelli, 1810 and Pristodactyla Dejean, 1828 and now belong to Pristosia. Later, additional Pristosia species from the north western Himalaya were described by Battoni (1982, 1984, 1987) and Deuve et al. (1985). The Pristosia species known today occur in the Himalayan range and the Western Chinese mountains toward Manjurian Region and in Japan. Currently, approximately 60 species are known (Hovorka & Sciaky 2003, Lorenz 2005, Sasakawa et al. 2006). Therefore, the genus Pristosia is particularly diverse in western China and in the Western Himalaya, but only a limited number of species occur in the Eastern Himalaya. Only a single species has been described from Nepal, which is based on a single female specimen from Western Nepal (Morvan 1994). The Central Himalaya seems, therefore, to exhibit a distributional gap. The question arises if this absence is real or reflects different states concerning knowledge of regional faunas or mountain ranges. The authors now have access to extensive collections of ground beetles from all regions of Nepal that have been accumulated through their own collecting efforts or through expeditions conducted by Dirk Ahrens (NHML), Jochen Martens (University of Mainz) and Wolfgang Schawaller (SMNS). This material is presented here and examined taxonomically in order to investigate the distribution of Pristosia in the Central Himalaya. From a phylogenetic point of view, Pristosia has been amply defined by Lindroth (1956). In all species the aedeagus lies in inverse position, which is associated with the transformation of the parameres: “the left one has become reduced, being much narrower, usually also shorter, than the right. At least one of them (though usually both) is prolonged into a soft, flat and narrow filament. The conformity of these genital characters are so striking within the whole genus that it must be regarded as a phylogenetic unit.” (Lindroth 1956: 537). However, except for a handful of species from Far East Asia (Sasakawa et al. 2006) the species-rich genus Pristosia lacks further phylogenetic analyses, and therefore the relationships among species are only poorly understood. Within the Pristosia fauna of northern India, Lindroth (1956) preliminarily erected two species groups: the “Agonid type” from Assam and Burma, which should be more closely related to the fauna of China, and the “Calathoid type” from the Himalaya. In fact, at least the latter group, with the exception of P. amaroides from the Eastern Himalaya, could represent a phylogenetic unit, taking into account the supposedly synapomorphic pronotal features that give the individuals a remarkable Calathus-like body shape, i.e., the pronotal sides are only slightly restricted toward the base and the pronotal posterior angles are usually distinct. A preliminary study of aedeagal internal sac features of Pristosia also supports the monophyly of the species from the Western Himalaya (Schmidt, unpublished data). For more detailed hypotheses, however, additional character complexes need to be examined in detail. Without a doubt, an extensive revision of Pristosia based on phylogenetic methods is needed. Because the authors focus on only a limited geographic sample of the fauna, in this treatment focus will be given to erecting preliminary narrow species groups for the Pristosia species from Nepal.

Material and methods

Taxonomic material. This study was based on approximately 600 specimens of the genus Pristosia from the

2 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Himalaya. Institutional codens used in the taxonomic treatment, co-operating curators, as well as private collectors are listed below.

CGR Eckehard Grill, Gröna, Germany. CKOP Andreas Kopetz, Kerspleben, Germany. CMORV Dremm mab Morvan, Karentoire, France. CSCHM Joachim Schmidt, Marburg and Admannshagen, Germany. CWG Andreas Weigel, Wernburg, Germany. CWP Jörg Weipert, Plaue, Germany. CWR David W. Wrase, Berlin, Germany. NHMB Naturhistorisches Museum, Basel; Dr. Eva Sprecher, Dr. Michel Brancucci. NHML The Natural History Museum, London; Dr. Max Barclay, Conrad Gillett. NME Naturkundemuseum, Erfurt; Matthias Hartmann. SMNS Staatliches Museum für Naturkunde, Stuttgart; Dr. Wolfgang Schawaller.

Methods. Specimens were examined by stereomicroscope Olympus SZ 40 from 10 to 160 x. Drawings were made using an ocular grid (10 x 10 squares). Body size was quantified by using the standardized body length, i.e., the sum of: (1) the distance from apex of right mandible in closed position to cervical collar, (2) the median length of pronotum, (3) the distance from base of scutellum along suture to apex of left elytron. The width of the head was measured across the widest portion including compound eyes. The width of pronotum and the width of elytra were measured at their widest points. The measurements were combined in ratios as follows:

EL/EW length/width of elytra EW/PW elytral width/pronotal width PW/HW width of pronotum/width of head PW/PL width/length of pronotum

Genitalia were prepared after soaking specimens in water with vinegar and mild detergent for one day, followed by dissection. Aedeagi were cleared in lactic acid for two to four days. After examination, the prepared genitalia were dried again and glued on cards, or were stored in Euparal on cards, and pinned beneath the specimen from which they had been removed. The photographs were taken by Johannes Reibnitz (SMNS) with a Leica DFC320 digital camera on a Leica MZ16 APO microscope, and were then processed by him with Auto-Montage (Syncroscopy) software.

Taxonomic treatment

Key to species of genus Pristosia from the Nepal Himalaya with regard to species of adjacent mountains

1 Species with hind wings fully developed, and with metathoracic episterna distinctly longer than wide; elytral striae punctate. Habitus see Fig. 1. Widely distributed species along southern slopes of Himalaya to Burma and China...... Pristosia crenata (Putzeys, 1873) - Species with hind wings reduced to small scales, and with metathoracic episterna approximately as long as wide. Elytral striae impunctate ...... 2 2 Amara-like species, with pronotal sides not or only slightly constricted toward base, and with pronotal base as broad as elytral base (Figs. 2, 12). Surface of elytra with a slightly greenish or bluish metallic tinge. Species from Eastern Himalaya (Eastern Nepal to Bhutan) ...... Pristosia amaroides (Putzeys, 1877) - Body form not Amara-like, with pronotal sides distinctly constricted toward base (Figs. 3, 4). Body surface +/- shiny black or dark brown, without metallic tinge ...... 3 3 Third elytral interval usually with two (seldom one) setigerous pore punctures behind middle of elytra ...... 4

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 3 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

- Third elytral interval without setigerous pore punctures...... 5 4 Meshes of female elytral microsculpture as long as wide and scale-like in anterior 2/3, but slightly transverse with surface of sculpticells flat in posterior 1/3. Aedeagal median lobe, in dorsal view, more slender, with sides parallel in middle and with apical lamella shorter (Figs. 16, 17). Species from eastern Kumaon Himalaya close to the Nepalese border ...... Pristosia championi (Andrewes, 1934) - Mesh pattern of female elytral microsculpture isodiametric throughout, with surface of sculpticells flat, not scale- like. Aedeagal median lobe, in dorsal view, somewhat broader, with sides only subparallel but with apical lamella longer (Figs. 18–19). Species from Api Himal, Far Western Nepal...... Pristosia nepalensis sp. n. 5 Pronotal hind angles almost rectangular (Fig. 13). Species from eastern Kumaon Himalaya close to the Nepalese border ...... Pristosia atrema (Andrewes, 1926) - Pronotal hind angles completely rounded. Species from Western and Far Western Nepal...... 6 6 Eyes somewhat larger, as long as antennal scapus, and with temporae about 2/3 of eye diameter. Aedeagal internal sac, in dorsal view, with longitudinal folding on right side of ostium not connected with the transverse folding of median lobe middle (Fig. 24). Species from Saipal Himal, Far Western Nepal...... Pristosia similata sp. n. - Eyes smaller, distinctly shorter than antennal scapus, and with temporae about 3/4 of eye diameter. Aedeagal inter- nal sac, in dorsal view, with longitudinal folds connected with the transverse folding of middle of aedeagal median lobe on both sides of ostium (Figs. 30–40)...... 7 7 Aedeagal median lobe more slender with apical lamella longer; internal sac with sclerotized folding in distal portion shorter (Fig. 40). Species from south slope of Api Himal, Far Western Nepal ...... Pristosia glabella sp. n. - Aedeagal median lobe broader with apical lamella shorter, internal sac more extensively sclerotized (Figs. 30–38). Species from southern and western slopes of Kanjiroba massif and Sisne Himal, Western Nepal. Pristosia dahud Morvan, 1994...... 8 8 Female elytra dull in anterior half due to scale-like micro meshes. Pronotum usually more slender, almost as long as wide, with lateral gutter very narrow and only slightly expanded toward base (Figs. 6, 7, 9, but see also transition to ssp. polita in a population of Khari Lagna range, Fig. 8). Aedeagal median lobe usually distinctly smaller, in lateral view with ventral side almost straight toward apex (Figs. 34–38, but see also transition to ssp. polita in a population of Khari Lagna range, Figs. 32, 33) ...... Pristosia dahud dahud Morvan, 1994 - Female elytra similar to male, shiny throughout due to weakly engraved meshes of microsculpture; mesh pattern slightly transverse or isodiametric. Pronotum broader, somewhat wider as long, with lateral gutter more strongly expanded toward base (Fig. 5). Aedeagal median lobe larger, in lateral view with ventral side convexly rounded before apex (Figs. 30, 31) ...... Pristosia dahud polita ssp. n.

The Pristosia championi species group

Diagnosis: Medium sized dark brown species from Western Himalaya. Pronotal shape Calathus-like (Figs. 4, 14, 15; synapomorphy with remaining Western Himalayan species?). Aedeagal median lobe in lateral view remarkable elongate, strongly curved just behind basal bulb, but straight over about 2/3 of length toward apex (Figs. 17, 19), and in dorsal view with sides parallel or subparallel (Figs. 16, 18). Aedeagal internal sac with a sail-shaped fold near median lobe apex, and with an elongated fold on right side of median lobe besides other complicated folding on median lobe middle (Figs. 16, 18). These male genital characters are derived and unique within Pristosia. Description: Body length: 10–11 mm. Head: Averaged in general form, convex on disc, and with eyes moderately protruded laterally. Mandible normal. Collar constriction distinctly developed. Eyes moderately small, temporae distinctly developed, about half of eye diameter, seen dorsally. Antennae averaged in length, with antennomere IX extending beyond the basal border of pronotum; antennomeres I–III almost smooth apart from primary apical setation. Pronotum: Slightly transverse, distinctly wider than head across eyes, widest somewhat anterad to middle, width of base slightly larger than anterior margin, disc convex. Front angles shortly rounded, slightly protruding, hind angles rectangular or slightly obtuse. Base almost straight in middle, slightly bent anteriorly toward hind angles. Anterior marginal bead broadly interrupted in middle, posterior marginal bead completely reduced. Lateral gutter flat and narrow, somewhat extended behind middle of pronotum. Laterobasal impressions relatively long, moderately deep, smooth. Both lateral and basolateral setae present, with lateral setae located slightly anterior to maximum pronotal width and beside the internal border of the lateral gutter,

4 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. and with basolateral seta located directly at lateral edge. Elytra: Oval or elongate oval, with maximum width near the middle, distinctly broader than pronotum, humerus rounded, disc convex. Basal groove concave, forward bent toward scutellum and humerus as well. Striae deep, impunctate, intervals more strongly convex in male than in female. Parascutellar pore present, third interval with two setigerous pore punctures behind middle, umbelicate series with 15–16 pore punctures. Hind wings: Reduced to small scales. Ventral side: Prosternal process with lateral bead reduced to very short and shallow furrows. Metepisterna short, nearly as wide as long. Abdominal sternum VII in male and female with one pair of setae near apical margin. Legs: Relatively stout. Metafemur with two setae on ventral surface, one near base and one beyond middle of femoral length. Tarsi smooth or almost smooth dorsally and laterally, tarsomere V with four or five pairs of setae underneath, claws pectinate. Male genitalia: Aedeagal median lobe in lateral view strongly curved just behind basal bulb, but straight over about 2/3 of length toward apex; apical lamella with a longer terminal hook curved upwards and a smaller tooth curved downwards (Figs. 17, 19). Form of median lobe in dorsal view slender, with sides parallel or subparallel (Figs.16, 18). Internal sac in dorsal view with three rather conspicuous folds: 1) a sail- shaped fold on right side of median lobe ostium which is more strongly sclerotized at its inner corner, 2) an elongated fold on right side of median lobe middle, and 3) a more complicated folding structure on left side of median lobe middle, that is more strongly sclerotized throughout (Figs.16, 18). Species included: P. championi (Andrewes, 1934) from Kumaon Himalaya, and P. nepalensis sp. n. from Western Nepal.

Pristosia championi (Andrewes, 1934) Figs. 15–17.

Catalogue: Calathus championi Andrewes, 1934: 214. Type locality: N India, Kumaon Himalaya, Uttaranchal district, Gori Valley, ca. 1500–3000 mNN. Pristosia championi (Andrewes): Lindroth, 1956: 549. Pristosia championi (Andrewes): Hovorka & Sciaky, 2003: 530. Pristosia championi (Andrewes): Lorenz, 2005: 400.

Type material: Holotype male, with label data „Type“ (round and red bordered printed label), „Gori R. Gorge, N Kumaon, India. 5–9000 ft. H.G.C.“, „IG 34-300“, “Calathus championi Type Andr. H.E. Andrewes det.” (the latter handwritten by H.E. Andrewes) (NHML). Paratypes: 1 female with same label data as holotype, but „Paratype“ (round and yellow bordered printed label), and “Calathus championi Cotype Andr. H.E. Andrewes det.” (the latter handwritten by H.E. Andrewes) (NHML). Redescription: Two specimens studied. Body length 10.5–10.8 mm. Colour: Dorsal and ventral surface of body and basal 2/3 of femora dark brown, distal portion of femora, tibiae, tarsi, antennae and palpi yellowish brown. Male dorsal surface shiny throughout; female shiny on head and pronotum but with elytra dull. Microsculpture: Meshes on head and pronotum very weakly engraved, visible under high magnification (100x), head with mesh pattern isodiametric, pronotum with mesh pattern transverse. Meshes of microsculpture on elytra in male weakly engraved, slightly transverse; in female isodiametric, much more deeply engraved and scale-like in anterior 2/3, but weakly engraved and slightly transverse in posterior 1/3. Head: Antennomeres I–III with very fine and sparsely arranged hairs in apical 1/5 in addition to apical primary setation.

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 5 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 1–4. Pristosia spp., habitus. Fig. 1, P. crenata (Putzeys, 1873), non-type, male, Nepal, Dailekh. Fig. 2, P. amaroides (Putzeys, 1877), non-type, female, India, Darjeeling. Fig. 3, P. glabella sp. n., Paratype, female. Fig. 4, P. nepalensis sp. n., Paratype, male. Scale bar = 5 mm.

6 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURES 5–15. Pristosia spp., pronotum. Fig. 5, P. dahud polita ssp. n., Paratype, male. Fig. 6, P. dahud Morvan, 1994, non-type, male, Rara Lake. Fig. 7, P. dahud Morvan, 1994, non-type, male, Maharigaon. Fig. 8, P. dahud Morvan, 1994, non-type, male, Khari Lagna (transitional form). Fig. 9, P. dahud Morvan, 1994, non-type, male, Khari Lagna (typical form). Fig. 10, P. similata sp. n., Paratype, male. Fig. 11, P. glabella sp. n., Paratype, male. Fig. 12, P. amaroides (Putzeys, 1877), non-type, female, India, Darjeeling. Fig. 13, P. a tre m a (Andrewes, 1926), Holotype. Fig. 14, P. nepalensis sp. n., Paratype, male. Fig. 15, P. championi (Andrewes, 1934), Holotype. Scale bar = 2 mm.

Pronotum: Ratio PW/PL 1.09–1.13, PW/HW 1.43–1.44. Sides straight or very slightly concave in posterior quarter, hind angles somewhat obtuse (110°) (Fig. 15).

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 7 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Elytra: Oval, ratio EL/EW 1.56–1.58, EW/PW 1.49–1.51. Basal groove moderately concave, forming an almost right angle with scutellar stria and an obtuse angle with lateral groove. Legs: Tarsi completely smooth dorsally and laterally. Male genitalia: Form of median lobe in dorsal view remarkable slender, with sides parallel and apex short, and with apical lamella almost triangular (Fig. 16). Identification: P. championi is easily distinguished from other Pristosia species of eastern Kumaon and western Nepal Himalaya, with the exception of P. nepalensis sp. n., by the presence of two setigerous pore punctures behind middle of elytra, and by the remarkably elongated aedeagal median lobe (Figs. 16–17). For additional differential characters concerning the sympatric species P. a t re m a Andrewes, 1926, see diagnosis of the latter below. P. nepalensis sp. n. from western Nepal Himalaya is a similar species, but has a different form of pronotal hind angles, a slightly different form of aedeagal median lobe, and a different elytral microsculpture in the female; for more details see diagnosis of the latter, below. P. l ep t od e s Andrewes, 1934, of western Kumaon Himalaya also has two setigerous pore punctures behind middle of elytra, but is smaller (body length 6.5–7 mm), and has a shorter aedeagal median lobe (see Lindroth 1956: p. 550, Fig. 31H). Distribution: Fig. 42. The species is hitherto known only from the type locality, the Gori Valley on south eastern slope of Nanda Devi massif near the Indian-Nepalese border. Habitat: In his original description Andrewes (1934) did not give any note about species habitat and the species was not found afterwards or rather, no subsequent findings where documented in literature. However, a closely related species was recently found in adjacent Nepal Himalaya, with probably similar if not identical habitat preferences (see P. nepalensis, below).

Pristosia nepalensis sp. n. Figs. 4, 14, 18, 19.

Type material: Holotype male, with labels “NEPAL, P: Mahakali D: Darchula, 13 km N Ghusa, Hochtal SSW Api, 3600–3900 mNN”, “alpine mats, snowfields, 29°56’22’’N 80°54’20’’E, 08.VI.2005, leg. A. Weigel” (NME). Paratypes: 16 males, 20 females with same label data as holotype (CSCHM, CWG, NME); 11 males, 7 females from same area, but: 12 km NNE Ghusa, 3200 m, W-slope, deciduous forest, 29°54’51’’N 80°57’11’’E, 7.VI.2005, leg. A. Weigel & M. Hartmann (CSCHM, CWG, NME); 2 males from same area, but: Shinae bis Hochebene vor Api bei Sare Duru, 2800–3400 m, 7.VI.2005, leg. J. Weipert (CWP); 1 male, 1 female, 13 km N Ghusa, high valley SSW Api, 4100 m, stone debris, 29°56’28N 80°54’24E, 8.VI.2005, leg. A. Weigel (CWG); 6 males, 5 females, Api Base Camp, 4100 m, alpine mats, 29°56N 80°54E, 8/9.VI.2005, leg. U. Bössneck (CSCHM, NME). Etymology: The specific epithet refers to the terra typica. Description: 70 specimens studied. Body length: 10.2–11.0 mm. Colour: Dorsal and ventral surface of body and femora dark brown, apex of femora, tibiae, tarsi, antennae and palpi yellowish brown. Male and female dorsal surface moderately shiny throughout. Microsculpture: Meshes on head and pronotum very weakly engraved, visible under high magnification (100x), head with mesh pattern isodiametric, pronotum with mesh pattern transverse. Meshes of microsculpture on elytra in male moderately engraved, slightly transverse to isodiametric; in female isodiametric, much more deeply engraved. Head: Antennomeres I+II in distal 1/5, and antennomere III in distal 1/3 with very fine and sparsely arranged hairs in addition to primary apical setation. Pronotum: Ratio PW/PL 1.08–1.15, PW/HW 1.42–1.44. Sides moderately concave in posterior quarter, hind angles rectangular or slightly obtuse (90–100°) (Fig. 14). Elytra: Elongate oval, ratio EL/EW 1.59–1.66, EW/PW 1.45–1.50. Basal groove slightly or moderately

8 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. concave, forming an obtuse angle with scutellar stria and an obtuse or almost right angle with lateral groove. Legs: Hind tarsomeres I–II sometimes with a vague longitudinal furrow on outer lateral surface. Male genitalia: Form of median lobe in dorsal view relatively slender, with sides subparallel and apex moderately short (Fig. 18).

FIGURES 16–23. Pristosia spp., aedeagal median lobe, dorsal view (Figs. 16, 18, 20, 22) and left lateral view (Figs. 17, 19, 21, 23, with exception of P. crenata, the internal sac is figured only in dorsal view). Figs. 16, 17, P. championi (Andrewes, 1934), Holotype. Figs. 18, 19, P. nepalensis sp. n., Paratype. Figs. 20, 21, P. crenata (Putzeys, 1873), non- type, Nepal, Dailekh. Figs. 22, 23, P. amaroides (Putzeys, 1877), non-type, Nepal, Deorali to Sheldoti. Scale bar = 1 mm.

Identification: P. nepalensis sp. n. is very similar to P. championi Andrewes, 1926, redescribed above, but differs in the following characters: Sides of pronotum more strongly convex, the pronotal hind angles sharper. Elytral microsculpture in male less transverse and more deeply engraved, in female without distinct differences of mesh pattern between basal and distal portions of elytra. Aedeagal median lobe somewhat broader with sides very slightly rounded, but with apical lamella longer and more slender. P. nepalensis sp. n. is easily distinguished from all other Pristosia species from western Nepal Himalaya by its pronotal hind angles which are not rounded, and by having two setigerous pore punctures behind middle of elytra. Distribution: Fig. 42, 43. The species occurs on the south slope of the Api Himal which is a striking massif of the Himalayan mountain range of Far Western Nepal, rising up to an altitude of over 7000 m. P. nepalensis seems to be a geographic vicariant of P. championi which occurs on the south slopes of Nanda Devi. This mountain is, in western direction, the next more striking massif of the Himalayan mountain range. Habitat: This species was collected in deciduous forests of the high montane zone, more frequently in open ground, also near torrents and on riversides, as well as on subalpine meadows at altitudes from 3000 to 4100 m. All specimens were found in the first decade of June.

The Pristosia atrema species group

Diagnosis: Medium sized dark brown or blackish species from Western Himalaya. Pronotal shape Calathus- like with sides only slightly restricted toward base and with hind angles acute (Fig. 13; symplesiomorphy of P.

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 9 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. atrema Andrewes, 1926 with Western Himalayan species), with hind angles obtuse (P. bra ncuc ci Deuve, Lassalle & Queinnec, 1985, from Uttar Pradesh), or pronotal hind angles completely rounded (Figs. 5–11; synapomorphy of a terminal group of Nepalese species). Elytral interval III with setigerous pore punctures completely reduced (apomorphy). Aedeagal internal sac, in dorsal view, with a transverse folding in middle of median lobe, and with two or more elongated longitudinal folds extending to apex of median lobe; the latter folds with a small part of their inner border below ostium more strongly sclerotized (Figs. 24–40). These male genital characters are derived and unique within Pristosia. Description: Body length: 9.8–12.5 mm. Head: Averaged in general form, convex on disc, and with eyes moderately protruding laterally. Mandible normal. Collar constriction weakly developed. Eyes moderately small, temporae long and distinctly developed. Antennae slender, with antennomere VIII extending beyond the basal border of pronotum; antennomeres I–III usually smooth except for the primary apical setation, but seldom with a very fine additional apical seta on antennomeres I and/or II. Pronotum: Slightly transverse or as long as wide, distinctly wider than head across eyes, widest somewhat anterad to middle; disc convex. Front angles narrowly rounded, often slightly protruding. Anterior marginal bead faintly developed laterally, absent in middle, posterior marginal bead reduced to a fine and short line at basal depressions or completely reduced. Lateral gutter shallow, narrow in anterior half, +/- expanded toward base. Laterobasal impressions moderately deep, smooth. Both lateral and basolateral setae present, with lateral seta located slightly anterior to maximum pronotal width and distinctly beside the lateral gutter. Elytra: Oval, with maximum width about middle, distinctly broader than pronotum, disc convex. Humerus broadly rounded. Basal groove moderately or strongly concave, forward bent toward scutellum and humerus as well. Striae deep, impunctate, intervals convex. Parascutellar pore present, third interval without setigerous pore punctures, umbelicate series with 15–17 pore punctures. Hind wings: Reduced to small scales. Ventral side: Posternal process with lateral bead reduced to very short and shallow furrows or completely unbordered. Metepisterna short, nearly as wide as long. Abdominal sternum VII in male and female with one pair of setae near apical margin. Legs: Relatively stout or slender. Metafemur with two setae on ventral surface, one near base and one beyond middle of femoral length. Tarsi smooth on dorsal and inner lateral surface, hind tarsomeres I–II with a thin but distinct longitudinal furrow on outer lateral surface, tarsomere V with four to five pairs of setae underneath, claws pectinate. Male genitalia: Aedeagal median lobe, in lateral view, more strongly curved in basal half, and straight or slightly curved on ventral side toward apex. In dorsal view, median lobe more slender oval with apical lamella relatively small to broad. Internal sac, in dorsal view, with a transverse pack of folds in middle of median lobe, and with two or more longitudinal folds on each side of ostium extending toward apex of median lobe; the latter folds each having a part of its inner border below ostium more strongly sclerotized (Figs. 24–40). Species included: P. a tre m a (Andrewes, 1926) from Kumaon Himalaya, P. brancucci Deuve, Lassalle & Queinnec, 1985, from Uttar Pradesh, P. dahud Morvan, 1994, P. glabella sp. n., P. similata sp. n., from western Nepal Himalaya.

Pristosia atrema (Andrewes, 1926) Figs. 13, 26–29.

Catalogue: Calathus atrema Andrewes, 1926: 77. Type locality: N India, Kumaon Himalaya, Uttaranchal district, Gori Valley, Burphu, ca. 3500 mNN. Pristosia atrema (Andrewes): Lindroth, 1956: 551. Pristosia atrema (Andrewes): Hovorka & Sciaky, 2003: 530. Pristosia atrema (Andrewes): Lorenz, 2005: 400.

10 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Type material: Holotype male, with label data ”Type” (round and red bordered printed label), “Burphu Gori- V., 11500 ft. India. H.G.C.”, “G.C. Champion Brit. Mus. 1925-42”,“Calathus atrema Type Andr. H.E. Andrewes det.” (the latter handwritten by H.E. Andrewes) (NHML). Paratypes: 2 females with same label data as holotype, but “Paratype” (round and yellow bordered printed label), and one specimen “Calathus atrema Cotype Andr. H.E. Andrewes det.” (the latter handwritten by H.E. Andrewes) (NHML). Additional material: INDIA: UTTARANCHAL DISTRICT: 1 male, with label data “Pindar Valley, 8–11,000 ft. Kumaon. H.G.C.”, “H.E. Andrewes Coll. B.M. 1945-97.” (NHML).

FIGURES 24–29. Pristosia spp., aedeagal median lobe, dorsal view (Figs. 24, 26, 28) and left lateral view (Figs. 25, 27, 29, the internal sac is figured only in dorsal view). Figs. 24, 25, P. s im il a ta sp. n., Paratype. Figs. 26, 27, P. atrema (Andrewes, 1926), Holotype. Figs. 28, 29, P. a tre m a (Andrewes, 1926), non-type, India, Pindar Valley. Scale bar = 1 mm.

Redescription: Four specimens studied. Body length: 10.1–10.5 mm. Colour: Dorsal and ventral surface of body and most parts of femora dark brown, upper anterior side of femora, tibiae, tarsi, antennae and palpi yellowish brown. Male dorsal surface shiny throughout; female shiny on head and pronotum but with elytra dull. Microsculpture: Head with mesh pattern isodiametric, moderately engraved, and pronotum with very weakly engraved transverse meshes, visible under high magnification (100x). Meshes of microsculpture on elytra in male weakly engraved, slightly transverse; in female isodiametric and much more deeply engraved, and scale-like in anterior 2/3. Head: Temporae about half of eye diameter. Antennomeres I–III completely smooth except for primary apical setation. Pronotum: Slightly transverse (ratio PW/PL 1.08–1.12, PW/HW 1.51–1.57). Base distinctly wider than

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 11 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. anterior margin. Sides evenly rounded in anterior 3/4 but concave in posterior quarter, hind angles almost rectangular (95–100°) (Fig. 13). Base almost straight in middle, slightly bent anteriorly toward hind angles. Lateral gutter slightly expanded toward base. Basolateral seta located somewhat distant (1–2 times pore diameter) from lateral edge. Elytra: Oval, with relatively wide shoulders, ratio EL/EW 1.47–1.53, EW/PW 1.41–1.47. Basal groove strongly concave, forming an almost right angle with scutellar stria and a slightly obtuse angle with lateral groove. Legs: Relatively stout. Male genitalia: Aedeagal median lobe relatively small, in lateral view almost straight toward apex, but with apical lamella slightly bent down, and with terminal bead not angular (Figs. 27, 29). In dorsal view, apical lamella thin and moderately long. Internal sac folding as in Figs. 26, 28. Identification: Within the fauna of Kumaon and Nepal Himalaya P. a t re m a differs from other Pristosia species by the combination of characters of pronotal and elytral shape, elytral chaetotaxy and form of aedeagal median lobe. P. championi is a species of sympatric distribution, and has a similar pronotal shape, but has a smaller pronotal base with hind angles more obtuse, has elytra narrower at shoulders and has usually two dorsal setiferous pores in interval III. In addition, the aedeagal median lobe is much more elongated. P. dahud Morvan, 1994, P. gl a be ll a sp. n., and P. similata sp. n., all from western Nepal Himalaya, are darker in colour of body, have legs more slender, pronotal posterior angles rounded, aedeagal median lobe larger with terminal bead of apical lamella more protruded dorsally, and with different form of internal sac folding (see Figs. 24, 30–40). Both the species P. leptodes Andrewes, 1934, and P. brancuccii Deuve, Lassalle & Quéinnec, 1985, which have a more western distribution in the Kumaon Himalaya, are easily distinguished in pronotal shape, too, because sides are convexly rounded throughout and posterior angles are strongly obtuse (for the latter see Deuve et al. 1985: p. 78, Fig. 3). In addition, P. leptodes is a smaller species (body length 6.5–7 mm), has usually 2 setiferous pore punctures in elytral interval III, and terminal lamella of aedeagal median lobe more strongly angular (see Lindroth 1956: p. 550, Fig. 31H). Distribution and geographical variation: P. a trem a seems endemic to the Nanda Devi massif of Kumaon Himalaya. The species is currently only known from the Gori Valley on SE slope of Nanda Devi which is located close to the Indian-Nepalese border, and from the Pindar Valley on SW slope of Nanda Devi massif. Based on the material studied, the two populations slightly differ in aedeagal characters: The single male specimen from Pindar valley has the median lobe distinctly slenderer and the internal sac more strongly sclerotized before median lobe apex (see Figs. 28, 29). According to these differences, P. at re m a seems to be a polytypic species, but more material from additional localities needs to be studied before taxonomical conclusions can be drawn. Habitat: During original description and subsequent species group revisions (Andrewes 1926, 1934, Lindroth 1956) no notes about species habitat where given. However, during the last decade three closely related species were frequently found in the adjacent Nepal Himalaya. These species probably have similar if not identical habitat preferences (see below for further details).

Pristosia dahud Morvan, 1994 Figs. 6–9, 32–39.

Catalogue: Pristosia dahud Morvan, 1994: 329–331. Type locality: Western Nepal, Jumla district, environment of place Jumla. Pristosia dahud Morvan: Hovorka & Sciaky, 2003: 531. Pristosia dahud Morvan: Lorenz, 2005: 400.

Type material: Holotypus female, with label data „Nepala Breizh, Jumla XI.1987 P. Morvan“, „Type“ (CMORV). Additional material: NEPAL: JUMLA DISTRICT: 12 males, 18 females, Khari Lagna, 3500–3700 m,

12 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

23.VI.–4.VII.1995, leg. D. Ahrens & H. Pommeranz (CSCHM, NME); 2 males, 1 female, Khali Lagna Pass [= Khari Lagna], 3500 m, 16.–17.VI.1998, leg. W. Schawaller (SMNS); 1 male, 10 km NNW Jumla, Bachtal N Khari La, 3500–3200 m, 29°22’N 82°09’E, 20.VI.1999, leg. A. Weigel (CWG); 1 male, Weg Jumla ü. Khari Lagna (Pass), 2600–3570 m, ca. 29°20’25N 82°09’36E, 20.VI.1999, leg. E. Grill (CGR); 1 male, 2 females, 12 km N Jumla, Bachtal N Khari La, 3280 m, 29°29’14N 82°09’17E, 21.VI.1999, leg. A. Weigel (NME, CWG); 1 male, 1 female, 25 km NE Jumla, Sisne Himal, Chauke Khare Khola, 4100m, 29°24N 82°24E, 4.VII.1999, leg. A. Weigel (CWG, NME); 1 male, Lamri-Jumla, Uthu, Chaudabhise Khola, 2600–2400m, 22.VI.1997, leg. A. Weigel (CWG); 13 males, 9 females, Talphi 15 km NE, 3700–4200 m, 29°22’23N 82°23’26E, 17.VI.1997, leg. A. Weigel (CSCHM, CWG, NME); 20 males, 5 females, Talphi 15 km NE, Dhauli Lake, 4400 m, 17.VI.1997, leg. A. Weigel (CSCHM, CWG, NME); 1 male, 1 female, Weg Lamri über Talphi, 2695–3725 m, 13.–16.VI.1997, 29°21N 82°23E, leg. E. Grill (CSCHM, NME); 1 female, Lager N Maharigaon, 3200 mNN, Wald, Ufer, 29°20’25N, 82°23’16E, 07.–09.VII.1999, leg. Grill (NME); 6 males, 4 females, 20 km NE Jumla, Hochebene 5 km N Maharigaon, 3700m, 29°21’23N 82°23’41E, 06.VII.1999, leg. A. Weigel (CWG, NME); 41 males, 29 females, Maharigaon, Hochalm, 3680–3850 m, 29°21’23N 82°23’41E, 6.VII.1999, leg. E. Grill (CGR, CSCHM, NME); 3 males, 2 females, Maharigaon, Aufstieg zum Dhauli Lake, 3725–4230 m, 29°22N 82°23E, 17.VI.1997, leg. E. Grill (CSCHM); 1 male, 1 female, 25 km NE Jumla, Dhauli Lake, 4200m, 29°21N 82°23E, 05.VII.1999, leg. A. Weigel (CWG, NME); 2 males, 10 females, Umg. Hochlager am Dhauli Lake, 3800–4400 m, 29°22’26N 82°23’26E, 17.–18.VI.1997, leg. J. Weipert (CWP, NME); 45 males, 32 females, Umg. Hochlager am Dhauli Lake, 18.VI.1997, 4200–4500 m, 29°22’26N 82°23’26E, leg. J. Weipert (CSCHM, CWP, NME); 1 male, Maharigaon, Pass am Dhauli Lake, 4230–4600 m, 29°22’26N 82°23’26E, 18.VI.1997, leg. E. Grill (CSCHM); 5 male, 4 female, Maharigaon N, Dhauli Lake, 4200–4600 m, 29°22’3N 82°23’3E, 17.VI.1997, leg. M. Hartmann (CSCHM, NME); 9 males, 6 female, Maharigaon N, Dhauli Lake, 4200–4500 m, 29°22N 82°23’2E, 18.VI.1997, leg. M. Hartmann (CSCHM, NME). MUGU DISTRICT: 1 male, Churchi Lagna, 3200–3400 m, 26.VI.–2.VII.1995, leg. D. Ahrens & H. Pommeranz (CSCHM); 5 males, 1 female, SW Rara Lake, 3200 m, 12.VI.1998, leg. W. Schawaller, (CSCHM, SMNS). Redescription: 320 specimens studied. Body length 10.5–12.0 mm. Colour: Dorsal and ventral surface of body and femora black or almost black, knees, tibiae, tarsi, antennae and palpi reddish brown. Male dorsal surface shiny throughout; female shiny on head and pronotum but with elytra dull. Microsculpture: Head with mesh pattern isodiametric, moderately engraved, and pronotum with very weakly engraved slightly transverse meshes, visible under high magnification (80x). Meshes of microsculpture on elytra in male weakly engraved, slightly transverse; in female isodiametric, much more deeply engraved and scale-like in anterior half, but weakly engraved and slightly transverse in posterior half. Head: Temporae about 3/4 of eye diameter. Antennomeres I+II apart from primary apical setation each seldom with a very fine additional apical seta. Pronotum: Usually more slender and almost as long as wide (ratio PW/PL 1.00–1.09, but in Khari Lagna population up to 1.14; PW/HW 1.37–1.47, in Khari Lagna population up to 1.52). Anterior margin somewhat smaller than base. Pronotal sides convexly rounded in anterior 2/3 but straight or slightly concave in posterior third (Figs. 6, 7, 9), in Khari Lagna population sometimes slightly convex before base (Fig. 8). Hind angles rounded. Base almost straight in middle, strongly bent anteriorly toward sides. Lateral gutter slightly, in Khari Lagna population sometimes more strongly expanded toward base. Basolateral seta located slightly distant (1–2 times pore diameter) from lateral edge, but distinctly distant (5–7 times pore diameter) from base. Elytra: Slender oval, ratio EL/EW 1.58–1.72, EW/PW 1.50–1.52, usually distinctly narrowed toward shoulder, but in some specimens of Khari Lagna population with shoulders relatively broad. Basal groove moderately concave, forming a right angle with scutellar stria and an obtuse or rounded angle with lateral groove. Legs: Relatively slender.

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 13 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Male genitalia: Aedeagal median lobe usually of medium size (Figs. 34–38), but large in some specimens of Khari Lagna population (see Figs. 32, 33), more strongly curved in basal half, straight on ventral surface toward apex (or distinctly convex in some specimens of Khari Lagna population), and with terminal bead slightly angular, seen laterally (Figs. 33, 35, 37, 39). Apical lamella relatively broad. In dorsal view, the internal sac longitudinal folds on both sides of ostium are connected with the transverse folding of median lobe middle (Figs. 32, 34, 36, 38). Identification: P. dahud is very similar to P. g l ab e ll a sp. n. and P. si m il a ta sp. n., both from Far Western Nepal, but differs mainly in internal sac features of aedeagal median lobe; for more details see diagnosis of the two newly described species below. According to pronotal shape with rounded posterior angles P. dahud is also similar to P. leptodes Andrewes, 1934, and P. brancuccii Deuve, Lassalle & Quéinnec, 1985, from Kumaon Himalaya, but is easily differentiated from both of these species by lacking dorsal setiferous pores in interval III. P. at re m a which also occurs in the Kumaon Himalaya has the same elytral chaetotaxy, but differs by having pronotal posterior angles almost rectangular, and by having a smaller aedeagus with terminal bead of apical lamella not protruded dorsally. Distribution and geographical variation: Figs. 42, 43. Based on additional material from the adjacent southern mountains described below in detail, P. dahud seems to be a polytypic species. The nominotypical form is distributed in a relatively small area along the western slopes of the Sisne Himal, which is the western- most part of the Kanjiroba massif, Western Nepal, between the Chaudabise Khola in the south and the Mugu Karnali river in the north. Specimens from the Khari Lagna range north of the Jumla place are of remarkably high variability in the pronotal shape and in the aedeagal median lobe shape and size. We were able to document specimens of one and the same population that possess pronotal and aedeagal characteristics of the forma typica (Figs. 9, 34, 35) as well as individuals that possess characters similar to the allopatric populations in the Gothichaur valley (see description of P. dahud polita ssp. n. below). Such specimens exhibit a broader pronotum with the sides slightly convex and rounded toward the base and the lateral gutter more expanded in the posterior half (Fig. 8), as well as a larger median lobe with the ventral side distinctly convex (Fig. 33). However, not a single female specimen has been found that possesses similar elytral microsculpture characteristics as found in specimens from the Gothichaur valley. Based on these morphological data we hypothesize that: (1) The Gothichaur populations have their own evolutionary history documented in at least one autapomorphic feature. (2) Gene flow has taken place from populations in the Gothichaur valley to those of the Khari Lagna range, which resulted in transitional characteristics in some individuals distributed in Khari Lagna. This exchange of genetic material could have occurred during glacial periods when the vertical distribution of Himalayan Nepalese Pristosia species was lower than presently found and the previously separated populations met temporarily in the Tila river valley. (3) Irrespective of the present allopatry, gene flow is considered to be potentially possible because distinct differences in male genital internal sac characters could not be discovered and the external male genital characters appear to be transitionally developed within the Khari Lagna population. These assumptions induced us to hypothesize that the Gothichaur populations also belong to P. dahud sensu lato, but to describe a taxon for the Gothichaur populations at the subspecies level. Habitat: The species was found from the high montane zone to the lower alpine zone at altitudes from approximately 2600 to 4400 m. It prefers deciduous forests in lower altitudes and wet open mats in higher altitudes.

Pristosia dahud polita ssp. n. Figs. 5, 30, 31.

Type material: Holotypus female, with label „NEPAL, Prov. Karnali, distr. Jumla, Gothichaur valley, Wald, 2900–3800 mNN, 29°12N, 82°18,5E, 11.VI.1997, leg. Hartmann“ (NME). Paratypes (all from Western Nepal, Jumla district): 20 males, 14 females, with same label data as holotype

14 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

(CSCHM, NME); 10 males, 6 females, Tal von Gotichaur, Berg SW Lager, 2850–3800 m, 29°12N 82°19E, 9.VI.1997, leg. E. Grill (CGR, CSCHM); 11 males, 9 females, Gothichaur Khola SE, 3400–3600 m, 10.VI.1997, leg. A. Weigel (CSCHM, CWG, NME); 1 male, Lager E Churta bis Gothichaur-Tal, 3300–2800m, 07.VI.1997, leg. J. Weipert (CWP); 3 males, 3 females, Tal von Gothichaur, Berg SW Lager, 2850–3800 m, 29°12N 82°19E, 09.VI.1997, leg. E. Grill (NME). Etymology: Named after the weakly engraved elytral microsculpture in both sexes that gives the individuals a more polished feature (Latin “polit-us, -a, -um”: polished).

FIGURES 30–35. Pristosia spp., aedeagal median lobe, dorsal view (Figs. 30, 32, 34) and left lateral view (Figs. 31, 33, 35, the internal sac is figured only in dorsal view). Figs. 30, 31, P. dahud polita ssp. n., Paratype. Figs. 32, 33, P. dahud Morvan, 1994, non-type, Khari Lagna (transitional form). Figs. 34, 35, P. dahud Morvan, 1994, non-type, Khari Lagna (typical form). Scale bar = 1 mm.

Description: 78 specimens studied. Body length 10.6–12.2 mm. Colour: Dorsal surface of male and female shiny black throughout. Microsculpture: Elytra in female with weakly engraved slightly transverse meshes throughout; seldom mesh pattern isodiametric in basal quarter. Surface of sculpticells plane. Pronotum: Ratio PW/PL 1.05–1.13, PW/HW 1.47–1.53. Anterior margin almost as wide as base. Pronotal sides straight or convexly rounded toward base (Fig. 5). Lateral gutter more strongly expanded behind pronotal middle. Elytra: Ratio EL/EW 1.51–1.66, EW/PW 1.33–1.45. Shoulders broader, basal groove more strongly concave. Male genitalia: Aedeagal median lobe remarkable large, distinctly convexly rounded on ventral surface (Figs. 30, 31). In all other characters completely agreeing with the nominotypical form P. dahud dahud. Identification: On an average pronotum and shoulders broader, aedeagal median lobe larger, than in nominotypical subspecies, pronotal lateral gutter more distinctly expanded toward base. Main diagnostic

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 15 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. character is the female elytral microsculpture, which is not scale-like as in the nominotypical form, but weakly engraved and with surface of sculpticells plane, and with mesh pattern slightly transverse or partly isodiametric. Distribution: Figs. 42, 43. Currently only known from Gothichaur Valley, that is a southern side valley of Babila Khola river (= upper Tila river) at south western slope of Kanjiroba Himal south east of Jumla. Habitat: P. dahud polita was found under stones and dead wood in mixed and coniferous forests of the high montane zone.

Pristosia glabella sp. n. Figs. 3, 11, 40, 41.

Type material: Holotypus male, with labels „NEP: Mahakali/Darchula, 10 km NE Ghusa, Chamlya Khola (former vill. Shinae), 2850 m”, “29°53’35N, 80°56’30E 10.VI.2005 leg. A. Weigel river side/decid. forest“ (NME). Paratypes (both from Far Western Nepal, Darchula district): 1 female, 1 km NE Batar, valley at Chamlya Khola, 2100 m, 29°51’29N 80°54’34E, river side, 5.VI.2005, leg. A. Weigel, KL/HF (CWG); 1 female, 12 km NNE Ghusa, 3200 m, 29°54’51N 80°57’11E, West slope, deciduous forest, 7.VI.2005, leg. A. Weigel (CSCHM).

FIGURES 36–41. Pristosia spp., aedeagal median lobe, dorsal view (Figs. 36, 38, 40) and left lateral view (Figs. 37, 39, 41, the internal sac is figured only in dorsal view). Figs. 36, 37, P. dahud Morvan, 1994, non-type, Maharigaon. Figs. 38, 39, P. dahud Morvan, 1994, non-type, Rara Lake. Figs. 40, 41, P. glabella sp. n., Holotype. Scale bar = 1 mm.

Etymology: The species is named after the more weakly engraved elytral microsculpture in the female that gives the elytral surface a more shiny appearance compared to the sibling species P. dahud Morvan, 1994 (Latin “glabell-us, -a, -um”: polished). Description: Three specimens studied. Body length 9.8–11.3 mm. Colour: Dorsal and ventral surface of body and femora almost black, knees, tibiae, tarsi, antennae and palpi reddish brown. Male and female dorsal surface moderately shiny throughout. Microsculpture: Head with mesh pattern isodiametric, moderately engraved, and pronotum with very

16 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. weakly engraved slightly transverse meshes, visible under high magnification (80x). Meshes of microsculpture on elytra in male and female weakly engraved, slightly transverse in male and slightly transverse to isodiametric in female. Head: Temporae about 3/4 of eye diameter. Antennomeres I–III smooth apart from primary apical setation. Pronotum: Moderately slender (ratio PW/PL 1.07–1.12, PW/HW 1.47–1.53). Anterior margin as wide as base or slightly broader. Pronotal sides straight before base. Hind angles completely rounded (Fig. 11). Base almost straight in middle, strongly bent anteriorly toward sides. Lateral gutter flat, more strongly expanded behind pronotal middle. Basolateral seta located at a slight distance (1–2 times pore diameter) from lateral edge, but distinctly distant (5–6 times pore diameter) from base. Elytra: Slender oval, ratio EL/EW 1.56–1.73, EW/PW 1.33–1.46 (because left elytra of holotype is somewhat deformed, only the right elytra was measured and its width doubled), distinctly narrowed toward shoulder; basal groove more strongly concave, forming a right angle with scutellar stria and an obtuse or rounded angle with lateral groove. Legs: Relatively slender. Male genitalia: Aedeagal median lobe relatively small, with ventral surface almost straight toward apex (Fig. 41), with apical lamella relatively long and slender, seen dorsally (Fig. 40), and with terminal bead slightly angular. Internal sac with transverse folding in middle of median lobe arranged in two separated layers and broadly connected with the longitudinal folds on both sides of ostium; longitudinal folding relatively compact (Fig. 40). Identification: This new species is unambiguously distinguishable by its characteristic internal sac folding. Moreover, the pronotum is more strongly constricted toward base, and its lateral gutter is more strongly expanded behind pronotal middle than in P. dahud dahud Morvan, 1994, the meshes of female elytral microsculpture are not scale-like, and the apical lamella of the aedeagal median lobe is slender. In pronotal shape and elytral microsculpture the new species is similar to P. dahud polita ssp. n., but the elytra are more strongly constricted toward the shoulders, and the aedeagal median lobe is distinctly smaller with its apical lamella more slender. For differences with P. similata sp. n., see diagnosis of the latter below. Distribution: Figs. 42, 43. Currently only known from the Chamlya Khola Valley on south slope of Api Himal. Habitat: The three specimens were collected in deciduous forests of the high montane zone at altitudes between 2100 and 3200 m.

Pristosia similata sp. n. Figs. 10, 24, 25.

Type material: Holotypus male, with label „NEPAL, Prov. Karnali, Distr. Humla, 20 km W Simikot, 5–6 km SE Chala, 35–3600 m, 30°58N, 81°38E, HF, 28.VI.2001 leg. A. Kopetz, coniferous wood“ (NME). Paratypes (all from Far Western Nepal, Humla district): 22 males, 16 females, with same label data as holotype (CKOP, CSCHM, NME); 1 male, 600m W Simikot, 3000–3200 m, 29°58’N 81°49’E, terrace fields, 16.–17.06.2001, leg. A. Kopetz (CKOP); 1 male, 1000m W Simikot, 3050–4100m, coniferous forest, terrace fields, 29°58’00N, 81°48’48E, 17.VI.2001, leg. E. Grill (NME); 2 males, 12 km S Simikot, env. Raya, 3400–2500 m, 28°52’17N 81°51’34E, rural landscape, 8.VII.1997, leg. A. Kopetz, KL/KF/HF (CSCHM); 3 males, 13 km S Simikot, NE Malikasthan, 3800–3400 m, coniferous-oak-forest, 8.VII.1997, leg. A. Kopetz & A. Weigel, KL/HF (CKOP, CWG); 2 males, 15–12 km S Simikot, N Malikasthan nach Raya, 3800–3500m, coniferous-oak forest, 29°51N 81°49E, 08.VII.2001, leg. E. Grill, HF (NME); 1 male, 20 km W Simikot, env. Chala, 3750 m, HF, KF, 30°00’35N 81°37’12E, 23.VI.2001, leg. A. Kopetz (CSCHM); 1 male, 20 km NW Simikot, 3 km W Chala, 3700–4300m, 29°59’N 81°35’E, 24.VI.2001, leg. A. Weigel (CWG); 1 male, 2 females, 20 km NW Simikot, 3 km SE Chala, 42–4300m, 29°58’50N 81°39’06E, 28.VI.2001, leg. A. Weigel

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 17 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

(CWG); 1 male, 20 km W Simikot, 3,8 km SE Chala, 3500m, forest mead./conif. forest, 29°58’49N 81°38’23E, 27.VI.2001, leg. A. Weigel (CWG); 1 male, 1 female, 18 km WNW Simikot, Chumsa Khola (Bridge), 2950m, 30°02’25N 81°39’06E, 20.–22.VI.2001, leg. M. Hartmann & A. Weigel KL/HF (CWG, NME); 1 male, Umg. W Chala, 3800–4200m, 30°00,33N 81°37’18E, 24.VI.2001, leg. J. Weipert (CWP); 40 males, 24 females, 20 km W Simikot, 5–6 km SE Chala, 3500–3600 m, coniferous forest, 30°58N 81°38E, 27.VI.2001, leg. M. Hartmann & E. Grill (NME). Etymology: Named for its external similarity with P. dahud Morvan, 1994 (Latin “similat-us, -a, -um”). Description: 95 specimens studied. Body length 9.7–12.5 mm. Colour: Dorsal and ventral surface of body and femora almost black, knees, tibiae, tarsi, antennae and palpi reddish brown. Male dorsal surface moderately shiny throughout, female dull on elytra. Microsculpture: Head with mesh pattern isodiametric, moderately engraved, and pronotum with very weakly engraved slightly transverse meshes, visible under high magnification (80x). Meshes of microsculpture on elytra in male weakly engraved, slightly transverse; in female isodiametric, much more deeply engraved and scale-like in anterior half (in approx. 10% of females meshes as long as wide and not scale-like), but weakly engraved and slightly transverse in posterior half. Head: Temporae about 2/3 of eye diameter. Antennomeres I–III smooth apart from primary apical setation. Pronotum: More transverse, ratio PW/PL 1.09–1.16, PW/HW 1.55–1.60. Anterior margin nearly as wide as base. Sides convexly rounded throughout or straight before base. Hind angles completely rounded (Fig. 10). Base almost straight in middle, strongly bent anteriorly toward sides. Lateral gutter more strongly expanded beyond pronotal middle. Basolateral seta located at a slight distant (1–2 times pore diameter) from lateral edge, but distinctly distant (4–5 times pore diameter) from base. Elytra: Oval, ratio EL/EW 1.55–1.68, EW/PW 1.35–1.43, distinctly narrowed toward shoulder, basal groove more strongly concave, forming an almost right angle with scutellar stria and an obtuse angle with lateral groove. Legs: Relatively slender. Male genitalia: Aedeagal median lobe moderately large, with ventral surface almost straight toward apex (Fig. 25), with apical lamella relatively short (Fig. 24), and with terminal bead slightly angular. Internal sac, in dorsal view, distinctly asymmetric, with longitudinal folding on right side of ostium not connected with the more strongly sclerotized part of transversal folding in middle of median lobe (Fig. 24). Identification: This new species is unambiguously distinguishable by its characteristic internal sac folding. Moreover, the eyes are somewhat larger than in other Nepalese species of the P. a tre m a group (but see Pristosia spec. from W slope of Dhaulagiri Himal). On an average, the pronotum is more transverse and its lateral gutter is more distinctly expanded toward base than in P. dahud dahud Morvan, 1994. Meshes of female elytral microsculpture more deeply engraved in anterior half than in P. dahud polita ssp. n. and in P. glabella sp. n. Distribution: Figs. 42, 43. North eastern slopes of Saipal Himal, Far Western Nepal. Habitat: This species was found in dense or open coniferous and mixed forests of the high montane zone, and in a few cases on open ground near a forest, as well on wet subalpine meadows at altitudes from 2900 to 4200 m.

Pristosia spec.

Regarding other occurrences of Pristosia in the Nepal Himalaya, a widely isolated Pristosia population on the north western slope of the Dhaulagiri massif is known to us from a single immature female specimen. The eyes are slightly larger than in P. dahud Morvan, 1994, and in P. glabella sp. n., the elytral microsculpture is not scale-like as in females of P. dahud dahud, the pronotum is more slender than in P. dahud polita ssp. n.

18 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. and in P. similata sp. n. Because important diagnostic characters of male genitalia are not currently available we are not able to present a sufficient specific diagnosis and therefore we abstain from a denomination and description of a new species. Material: NEPAL, DOLPA DISTRICT: 1 female, with label data “nördl. [north of] Dhaulagiri, Gompa/ Tarakot 3300–3400 m, 2.–6.VI.1973”, “NEPAL-Expeditionen Jochen Martens” (SMNS).

The Pristosia amaroides species group

Diagnosis: The monotypic species group includes a medium sized species from Eastern Himalaya, with Amara-like body shape and slightly metallic elytra (Fig. 2). Pronotum strongly transverse, widest just before base (Fig. 12). Pronotal front angles distinctly protruded anterad. Like the pronotal shape, elytra are only slightly restricted toward base. Third elytral interval without setigerous pore punctures. Metafemur without setae on ventral surface. Aedeagal median lobe stout, in lateral view strongly bent from basal bulb to apex, and with terminal lamella very short (Fig. 23). Internal sac, in dorsal view, with two more strongly sclerotized, narrow lanceolate longitudinal folds, which are proceeding evenly and slightly arcuate on right side of ostium (Fig. 22). Body shape, elytral dorsal chaetotaxy, femoral chaetotaxy and aedeagal internal sac folding are derived features and unique within Pristosia. Description: Body length: 10–11 mm. Head: Averaged in general form, convex on disc, and with eyes moderately protruded laterally. Mandible normal. Collar constriction very slightly developed. Eyes moderately small. Antennae relatively slender, with antennomere VIII extending beyond the basal border of pronotum; antennomeres I–III smooth apart from primary apical setation. Pronotum: Remarkably transverse (Fig. 12), Amara-like, much wider than head across eyes, widest in posterior quarter, with sides evenly rounded toward base, the latter much wider than anterior margin. Pronotal disc moderately convex. Front angles wrinkled, distinctly protruding, hind angles rectangular but rounded at tip. Base straight. Anterior marginal bead broadly interrupted in middle, posterior marginal bead completely reduced. Lateral gutter flat, very narrow in anterior half, but distinctly extended behind pronotal middle. Laterobasal impressions large, very flat. Both lateral and basolateral setae present, with lateral setae located somewhat before pronotal middle. Elytra: Oval, but only slightly restricted toward base, with maximum width somewhat anterad to middle, a little broader than pronotum, humerus wrinkled, disc moderately convex. Basal groove strongly concave, bent forward toward scutellum and humerus as well. Striae deep, impunctate, intervals flat or convex. Parascutellar pore present, third interval without setigerous pore punctures, umbelicate series with 16–18 pore punctures. Hind wings: Reduced to small scales. Ventral side: Prosternal process with lateral bead reduced at tip. Metepisterna somewhat shorter than wide. Abdominal sternum VII in male and female with one pair of setae near apical margin. Legs: Moderately stout. Metafemur without setae on ventral surface. Middle and hind tarsi I–IV each with a thin but deeply engraved longitudinal furrow on outer lateral surface, and each with a very fine and weakly engraved longitudinal furrow on inner lateral surface; the latter is often completely reduced on tarsomere IV; tarsomere V with 3–4 pairs of setae underneath, claws pectinate. Male genitalia: Aedeagal median lobe short, in lateral view more strongly curved in basal half, moderately curved toward apex; apical lamella without terminal hook (Figs. 22, 23). Species included: Monotypic. Currently this species group includes only P. amaroides (Putzeys, 1877) from Eastern Himalaya. However, the Pristosia fauna of the Eastern Himalaya is poorly known and requires further investigation.

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 19 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Pristosia amaroides (Putzeys, 1877) Figs. 2, 12, 22, 23.

Catalogue: Calathus amaroides Putzeys, 1877: 103. Type locality: N India, W Bengal, environs of Darjeeling. Calathus amaroides Putzeys: Andrewes, 1934: 218. Pristosia amaroides (Putzeys): Lindroth, 1956: 552. Pristosia amaroides (Putzeys): Hovorka & Sciaky, 2003: 530. Pristosia amaroides (Putzeys): Lorenz, 2005: 400.

Type material: According to the original description two syntypes should exist: 1 male, 1 female, which should be stored at Musée Royal des Sciences Naturelle de Belgique, Bruxelles. During the present study, the type material was not investigated. Species identification is based on additional material from the type locality that H.E. Andrewes already compared with the types (see below). Furthermore, this species is unambiguously distinguishable due to its exceptional character combination. Additional material: BHUTAN: 1 male, British Bootang, Maria Basti, leg. L. Durel, Ex coll. R. Oberthür, H.E. Andrewes Coll. B.M. 1945-97 (NHML). INDIA: SIKKIM: 1 female, Gopaldhara, Br. Sikkim, leg. H. Stevens, H.E. Andrewes Coll. B.M. 1945-97 (NHML). WEST BENGAL: 1 female “Darjeeling”, “Bowring 63-47*”, “2612”, “Calathus amaroides Putz. Compared with type H.E.A.” (NHML); 1 female, Darjeeling, Mungpo, leg. Dr. M. Cameron, B.M. 1931-452 (NHML); 2 females, road from Sandakphu to Golkey, 26.III.1996, leg. Pastica (CSCHM, CWR). NEPAL: ILAM DISTRICT: 1 male, 1 female, [254] Mai Pokhari, 2150–2250 m, 23.–25.VIII.1983, leg. J. Martens & B. Daams (CSCHM, SMNS). PANCHTHAR DISTRICT: 1 male, 1 female, [258] zw. Deorali u. Sheldoti, 2600–2500 m, Tsuga-Lithocarp., 28.VIII.1983, leg. J. Martens & B. Daams (CSCHM, SMNS). TAPLEJUNG DISTRICT: 1 male, [288a] zw. Amjilesa u. Mündung der Gunsa Khola, 1700 m, Schluchtwald, 13.IX.1983, leg. J. Martens & B. Daams (SMNS); 1 male, [371] Hellok in Tamur Valley, 2000 m, forest remnant, bushes, 17.V.1988, leg. J. Martens & W. Schawaller (SMNS). THERATUM DISTRICT: 1 female, Kosi Prov., Basantapur, 2190 m, 27°11N 87°27E (GPS), 22.–23.VI.2000, leg. J. Farkac, D. Král & J. Schneider (NHMB). Redescription: 13 specimens studied. Body length: 10–11 mm. Colour: Dorsal and ventral surface of body and femora dark brown, pronotal lateral margin, knees, tibiae, tarsi, antennae and palpi lightened to yellowish brown, elytral surface slightly greenish or bluish metallic. Microsculpture: Head with mesh pattern isodiametric, weakly engraved, pronotum and elytra with very weakly engraved transverse meshes, visible under high magnification (120x). Head: Temporae about 2/5 of eye diameter. Pronotum: Ratio PW/PL 1.28–1.39, PW/HW 1.81–1.90. Laterobasal impressions often with suggestion of a puncture in middle. Lateral setae located beside internal border of lateral gutter, and basolateral seta located distinctly removed from lateral edge (4–5 times pore diameter) and distinctly distant from basal edge (3–4 times of pore diameter). Elytra: Ratio EL/EW 1.43–1.57, EW/PW 1.22–1.24. Basal groove forming a right angle with scutellar stria and an acute angle with lateral groove. Male genitalia: Aedeagal median lobe, in dorsal view, relatively broad with sides convex and apical lamella remarkably short (Fig. 22). Internal sac very characteristic: In dorsal view, with a vesicular fold in median lobe middle and several longitudinal folds extending toward median lobe apex; two of the latter are distinctly more sclerotized, narrow lanceolate, and proceeding evenly and slightly arcuate on right side of ostium (Fig. 22). Identification: Pristosia amaroides differs from all other Himalayan species by having an Amara-like body form, which means that pronotal sides are widest near base, elytral sides are only slightly restricted toward base, pronotal and elytral discs are only moderately convex, and pronotal front angles are wrinkled

20 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. and distinctly protruded anterad. Moreover, the species differs by slightly metallic surface of elytra, by the metafemur without setae on ventral surface, and by a very characteristic internal sac folding. Distribution: Fig. 42. Southern slopes of Eastern Himalaya from Eastern Nepal to Bhutan. Habitat: This species inhabits subtropical and meridional broadleaved forests of the lower montane zone and lower cloud forest zone (“Untere Montanstufe” and “Untere Nebelwaldstufe” after Miehe 1991) at altitudes between approximately 1700–2500 m.

The Pristosia crenata species group

Diagnosis: This is a monotypic species group, too, and include the only fully winged species of the Himalaya, which is a shiny dark brown species of medium body size, and which is very characteristic both in external features and aedeagal characters: According with the ability to fly the elytra are relatively slender with sides parallel in middle, and the metepisterna are longer than wide (plesiomorphic character set). Elytral striae deep, punctate, third interval with two setigerous pore punctures (plesiomorphic features). Aedeagal median lobe capsule very weekly sclerotized, elongated, in lateral view not bent behind basal bulb, and with a sharp terminal hook. Internal sac with a strongly sclerotized clubbed longitudinal fold extending from basal bulb up to median lobe apex. The weekly sclerotized median lobe on the one hand, and the strongly sclerotized internal sac which also fills out the whole basal bulb on the other hand, together constitute a very remarkable character set in which the internal sac, inter alia, seems to assume the ancient backing function role of the lobe. These aedeagal characters are derived and unique within Sphodrini and related tribes. Description: Remarks: Up to now we have seen just a single male specimen and therefore, we will present a short description only, with regard to the most important diagnostic features within the genus. Body length 9.5–11.5 mm. Head: Averaged in general form, convex on disc, collar constriction very slightly developed, mandible relatively short. Eyes not reduced and distinctly protruded laterally, temporae short (about 1/4 of eye diameter). Antennae slender, with antennomere VIII extending beyond the basal border of pronotum; antennomeres I–III smooth apart from primary apical setation. Pronotum: Moderately transverse, distinctly wider than head across eyes, widest in middle, base distinctly wider than anterior margin, disc convex. Front angles rounded, slightly protruding, hind angles obtuse and broadly rounded at tip. Base almost straight. Anterior marginal bead interrupted in middle, posterior marginal bead completely reduced. Lateral gutter moderately narrow in anterior third, distinctly extended toward base and broadly connected with the laterobasal impressions; the latter deep and sparsely punctate in middle. Both lateral and basolateral setae present, with lateral setae located somewhat before pronotal middle and beside interior border of lateral gutter, and basolateral seta located distinctly distant from lateral and basal edges (each with 2 times pore diameter). Elytra: Relatively slender, with sides parallel in middle, moderately restricted toward base, distinctly broader than pronotum, humerus obtuse, disc convex. Basal groove moderately concave, forward bent toward scutellum and humerus as well, forming a right angle with scutellar stria and an obtuse angle with lateral groove. Striae deep, punctate, intervals convex. Parascutellar pore present, third interval with two setigerous pore punctures, the first slightly anterad to elytral middle, the second at beginning of posterior quarter; umbelicate series with 18 pore punctures. Hind wings: Fully developed. Ventral side: Prosternal process with lateral bead reduced at tip. Metepisterna 1.4 times longer than wide. Abdominal sternum VII in male with one pair of setae near apical margin. Legs: Relatively stout. Metafemur with two setae on ventral surface, one near base and one beyond middle of femoral length. Middle and hind tarsi I–III laterally each with longitudinal furrows, but which are more weakly engraved on inner lateral surface; tarsomere V with 5 pairs of setae underneath, claws pectinate. Male genitalia: Aedeagal median lobe capsule remarkably soft (weakly sclerotized; “immature” sensu

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 21 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

Lindroth 1956), elongated, in dorsal view slightly S-shaped, in lateral view not bent behind basal bulb, with a short apical lamella which is ending in a sharp terminal hook (Figs. 20, 21, see also Lindroth 1956: p. 547, Fig. 30 C+D). Internal sac with a strongly sclerotized clubbed longitudinal fold extending from basal bulb up to median lobe apex. Species included: Pristosia crenata (Putzeys, 1873).

Pristosia crenata (Putzeys, 1873) Figs. 1, 20, 21.

Catalogue: Calathus crenatus Putzeys, 1873: 82. Type locality: „Inde boréale“. Very probably, this labeling refers to a place on the southern slope of the North-Western Himalaya of Indian provinces Kashmir, Himalchal Pradesh or Uttar Pradesh. Calathus crenatus Putzeys: Andrewes, 1934: 215. Calathus yunnanensis Jedlicka, 1937: 78; synonymy proposed by Lindroth (1956). Pristosia crenata (Putzeys): Lindroth, 1956: 547. Pristosia crenata (Putzeys): Hovorka & Sciaky, 2003: 531. Pristosia crenata (Putzeys): Lorenz, 2005: 400.

Type material: Not studied. This species is unambiguously distinguishable due to its exceptional character combination (see also Lindroth 1956: p. 545, Fig. 28 E, and p. 547, Fig. 30 C+D). Additional material: NEPAL, DAILEKH DISTRICT: 1 male, N Dailekh, 1600 m, 1.–2.VI.1998, leg. W. Schawaller (SMNS). Diagnosis: One specimen studied. Body length 9.5 (specimen studied)–11.5 mm (Andrewes 1934). Colour: Dorsal surface of body shiny, almost black, ventral surface of body and femora dark brown, pronotal lateral margin, knees, tibiae, tarsi, antennae and palpi reddish brown. Microsculpture: Head with mesh pattern isodiametric, weakly engraved, pronotum with mesh pattern slightly transverse, very weakly engraved, visible under high magnification (120x), elytra with mesh pattern transverse, weakly engraved in anterior half, moderately engraved in posterior half. Head and pronotum: Ratio PW/HW 1.57, PW/PL 1.27. Elytra: Ratio EL/EW 1.60, EW/PW 1.36. Identification: This species, as far as is known, is the only member of the genus with fully developed and certainly functional hind wings (Lindroth 1956), and accordingly with parallel sides of elytra, and with metepisterna distinctly longer than wide. Moreover, P. crenata differs from all other Pristosia species by having extraordinary male genital characters, in which the aedeagal median lobe capsule is weakly sclerotized, an only slightly bent behind basal bulb, and in which the internal sac has strongly sclerotized longitudinal folding extending from basal bulb up to median lobe apex. Distribution: Although P. crenata was originally described from Northern India, within the “Catalogue of Palaearctic Coleoptera” Hovorka & Sciaky (2003) have specified only the Chinese provinces Fujian and Yunnan, probably based on the fact that Lindroth (1956) had proposed the Chinese Calathus yunnanus Jedlicka, 1937, as a junior synonym. However, Andrewes (1934) and Lindroth (1956) have already listed other localities, and most of them are located in the Palaearctic region: BURMA: Without additional data (Lindroth 1956); Karen Hills (Andrewes 1934). INDIA: Mussoori, Mossy Falls; Nainital, Ranikhet; West Almora (all listed by Andrewes 1934); Punjab, Kulu (Lindroth 1956). In addition, we can present the first occurrence of the species for the fauna of Nepal (Fig. 42). Based on this data the species seems more widely distributed along the southern slopes of the Himalaya east to Indochinese Mountains (Burma) and South West China. Habitat: Unknown.

22 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

FIGURE 42. Distribution of Pristosia in Nepal and adjacent parts of the Himalaya.

FIGURE 43. Distribution of Pristosia in the Western Nepal Himalaya.

Biogeographical considerations

The data presented above illustrate that the genus Pristosia is distributed in the Nepal Himalaya with at least six species, many more species than previously thought, but that large regions of the mountain arch are

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 23 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. uninhabited by unwinged species. Although the winged species P. crenata has only been found in Western Nepal one could postulate, based on the geographic position of other localities in North-Western Himalaya and Burma, that it inhabits the entire Himalayan arch. The apparent rarity of P. crenata is most probably explained by the limited knowledge of its life history and its habitat preferences. All other Himalayan Pristosia species are unwinged and exhibit shortened metepisterna and have, therefore, a limited dispersal ability. Nevertheless, P. amaroides inhabits several massifs in the Eastern Himalaya between Eastern Nepal east of the Arun River and Bhutan. The entire Central Nepal Himalaya is uninhabited by unwinged Pristosia species (Fig. 42). This distributional gap is the more surprising as this region has sampled very extensively. In the Western Nepal Himalaya, Pristosia occurs with two species groups, i.e., P. a t re m a group and P. championi group, which have related species in the Kumaon Himalaya of northern India and which together with all other species distributed in the North-Western Himalaya probably form a monophyletic lineage. There are no related species in the Eastern Himalaya. The ranges of all of these western species are very small and encompass a relatively small part of the face of a single massif (see Fig. 43). Strict geographical vicariance is found between closely related species. In the Himalaya north west of Nepal, Pristosia species seem to occur throughout the region, which is evident from the many species descriptions published previously (see literature overview in Introduction). Similar distributions of high montane species are found within other taxa of the ground beetle fauna of the Nepal Himalaya. Extremely small species ranges, which often occupy only a single valley system of one face of a massif, are not only found in edaphous taxa with small body size, e.g., Trechus Clairville, 1806, but are also typical for species groups with only unwinged members, e.g., medium sized and larger sized species of Calathus Bonelli, 1810, Cychropsis Boileau, 1901, Pseudethira Sciaky, 1996, and Xestagonum Habu, 1978 (see Deuve & Schmidt 2007a, Schmidt 1999, 2003, 2006). All of the aforementioned taxa also exhibit strict geographical vicariance within closely related species. It appears that the enormous relief dynamic of the Himalaya provides effective dispersal barriers for even short distances. These barriers are not only formed by canyons or high, ice-covered mountain crests. The range of Pristosia dahud polita ssp. n. is restricted to a side-valley of the Tila river (Gothichaur valley), which is only surrounded by mid-elevation crests that are lower than the highest elevation known so far for this species. Pristosia dahud polita is absent from the adjacent side-valleys. The causes for such a pronounced valley endemism, as it is also observed in the other genera mentioned above, is still unknown. However, the Pristosia populations from the Gothichaur valley must have experienced considerable vertical movements during the last glaciation because the snowline during the largest glaciation was situated several hundred or even up to 1000 m below the current line (see Fort 1995, Kuhle 2004). The detection of a population with shared morphological characteristics between the subspecies Pristosia dahud dahud and P. dahud polita in the Khari Lagna region could serve as evidence for a temporary contact zone during the last glaciation maximum. This contact zone might have been situated at a lower elevation in the Tila river valley near the present village of Jumla. Another biogeographically interesting finding is the extensive distributional gap in central Nepal and the associated habitat shift of Pristosia species. Very similar shifts can be observed in other Carabidae taxa, i.e., Calathus Bonelli, 1810 (Schmidt 1999), Carabus subgen. Imaibius Bates, 1889 (Deuve 1984, Deuve & Schmidt 2007b), and Platynus Bonelli, 1810 (unpublished data). The western species groups of Pristosia are only comprised of species inhabiting the North-Western Himalayan conifer forests of the upper montane zone and, in some cases, also the lower alpine zone above the tree limit. These species groups reach their easternmost distributions in Western Nepal, where they only exhibit discontinuous patterns. However, they are not part of the West-Asian faunal component of the Himalaya sensu Martens (1993) because Pristosia species are absent from Western Asia. Pristosia amaroides from the Eastern Himalaya prefers the evergreen broad leaved forests of lower elevations with warm temperate climate. This species, on the other hand, is not part of the Indochinese faunal component of the Himalaya sensu Martens (1993), which typically is distributed at this elevation, because Indochina does not exhibit a faunal centre for Pristosia. In addition, the Himalayan and Chinese species groups of Pristosia do not share recognisable relationships (see Lindroth 1956). It can be postulated that western Nepalese Pristosia species groups as well as the P. amaroides species

24 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. group evolved independently and are endemic groups within the Himalaya. Based on phylogenetic studies of the Carabidae taxa Ethira Andrewes, 1936, Pseudethira Sciaky, 1996, and Xestagonum Habu, 1978, which exhibit a similar species group endemism and range discontinuities as Pristosia, Schmidt (2003, 2006) postulates the origin of these groups lies in the Tertiary of the high mountains along the southern margin of the Tibetan plateau (Transhimalaya or Tibetan Himalaya, respectively). These regions were uplifted much earlier than the High Himalaya and reached alpine elevations possibly already during the Miocene (see Fort 1996, Spicer et al. 2003). The primary diversification of the genera could have taken place in South Tibet due to the tropical high montane climate in this region during the Miocene. The secondary diversification of the terminal species groups could have occurred in the Pliocene following the folding of the immediately adjacent High Himalaya in the south into appropriate elevations and a stepwise colonization. The primarily wingless Pristosia species groups of Nepal, which followed this dispersal route, belong most probably to the Tertiary Tibetan faunal components of the Himalaya sensu Schmidt (2006). Dispersal from north to south following the uplift of the mountain chain and colonization of the High Himalaya of the ancestral species (of the several species groups as well as other genera mentioned above) occurred most probably on different routes and at different times. This can be postulated based on the presence of extensive distributional gaps and ecological differentiation among the species groups. Those species groups that are endemic to the subtropical and montane broad leaved forests, e.g., the P. amaroides group, might have been the earliest colonizers of the then young High Himalayan mountains in the late Tertiary.

Acknowledgements

We are very grateful to all co-operating curators and private collectors, listed in chapter ‘Taxonomic material’, who provided specimens for the study presented in this paper. We also thank Elsa Obrecht, Bern, Torsten Dikow, Chicago, Henri Goulet, Ottawa, and Martin Baehr, Munich, for helpful comments and linguistic revision of the text. Furthermore, we thank Johannes Reibnitz (SMNS) for producing the photographs (Figs 1–4). The study of J. S. was supported in part by the German Research Council (DFG grant MI 271/20-1).

References

Andrewes, H.E. (1924) Mission Guy Babault dans les provinces centrales de l’Inde et dans les région occidentale de l’Himalaya 1914. Insectes coléoptères Carabidae. Lahure, Paris, 125 pp. + 4 plates. Andrewes, H.E. (1926) On a collection of Carabidae from the Kumaon-Tibetan frontier. The Entomologist’s Monthly Magazine, 62, 65–80. Andrewes, H.E. (1934) Keys to some Indian genera of Carabidae (Col.). IV. The genus Calathus. Stylops 3 (9), 209–222. Bates, H.W. (1889) On new species of the coleopterous family Carabidae, collected by Mr. J.H. Leech in Kashmir and Baltistan. Proceedings of the Zoological Society of London 57, 210–215. Battoni, F. (1982) Nuovi Sfodrini del Pakistan e del Kashmir (Coleoptera Carabidae). Bolletino della Società Entomologica Italiana 114, 17–24. Battoni, F. (1984) Una nuova specie di Pristosia Motsch. del Pakistan (Coleoptera Carabidae). Bolletino della Società Entomologica Italiana 116, 148–150. Battoni, F. (1987) Una nuova sottospecie di Pristosia leurops (Andrewes) della regione himalayana (Coleoptera Carabidae). Bolletino della Società Entomologica Italiana 119, 17–19. Casale, A. (1988) Revisione degli Sphodrina (Coleoptera, Carabidae, Sphodrini). Museo Regionale di Scienze Naturali, Torino, 1024 pp. Deuve, T. (1984) Liste descriptive des Carabes des sous-genres Imaibius Bates. Miscellanea Entomologica 50 (4), 109–129. Deuve, T., Lassalle, B. & Quéinnec, E. (1985) Nouveaux Pristosia Motschulsky et Calathus Bonelli de la région himalayenne (Coleoptera, Carabidae, Pterostichinae). Entomologica Basiliensia 10, 75–84. Deuve, T. & Schmidt, J. (2007a) Nouvelles données sur la présence du genre Cychropsis Boileau, 1901, dans le Manaslu Himal, Népal Central (Coleoptera, Carabidae). Bulletin de la Société entomologique de France, 112 (1), 53–56. Deuve, T. & Schmidt, J. (2007b) Description d’un nouvel Imaibius du Népal (Coleoptera, Carabidae). Revue Française

PRISTOSIA FROM THE NEPAL HIMALAYA Zootaxa 2009 © 2009 Magnolia Press · 25 TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited.

d’Entomologie (N.S.), 29 (1), 11–14. Fort, M. (1995) The himalayan glaciation: Myth and reality. Journal of Nepal Geological Society, 11, 257–272. Fort, M. (1996) Late cenozooic environmental changes and uplift of the northern side of the central Himalaya: a reappraisal from field data. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 123–145. Hovorka, O. & Sciaky, R. (2003) Subtribe Pristosiina Lindroth, 1956. In: Löbl, I. & Smetana, A. (Eds), Catalogue of Palaearctic Coleoptera, Volume 1. Archostemata-Myxophaga-Adephaga. Apollo Books, Stenstrup, pp. 530–531. Jedlicka, A. (1937) Calathus-Arten und ihre Verwandten aus China. Casopis Ceskoslovenské Spolecnosti Entomologické, 34, 44–47. Kuhle, M. (2004) The High Glacial (Last Ice Age and LGM) ice cover in High and Central Asia. In: Ehlers, J. & Gibbart, P.L. (Eds) Quaternary glaciations-extent and chronology, Part III: South America, Asia, Africa, Australia, Antarctica. Amsterdam, Elsevier, pp. 175–199. Lindroth, C.H. (1956) A revision of the genus Synuchus Gyllenhal (Coleoptera: Carabidae) in the widest sense, with notes on Pristosia Motschulsky (Eucalathus Bates) and Calathus Bonelli. The Transactions of the Royal Entomological Society of London 108, 485–576. Lorenz, W. (2005) A systematic list of extant ground beetles of the world (Coleoptera “Geadephaga”: Trachypachidae and Carabidae incl. Paussinae, Cicindelinae, Rhysodinae), Second edition. Published by the author, Tutzing, 530 pp. Martens, J. (1993) Bodenlebende Arthropoden im zentralen Himalaya: Bestandsaufnahme, Wege zur Vielfalt und ökologische Nischen. In: Schweinfurth, U. (Ed.) Neue Forschungen im Himalaya. Steiner, Stuttgart, pp. 231–250. Miehe, G. (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter, H. & Breckle, S.-W. (Eds) Ökologie der Erde, Band 4. Spezielle Ökologie der Gemässigten und Arktischen Zonen ausserhalb Euro-Nordasiens. Gustav Fischer, Stuttgart, pp. 181–230. Morvan, D.m. (1994) Carabidae nouveaux du Nepal et de Malaisie (Coleoptera, Carabidae). Bulletin de la Société entomologique de France 99 (3), 323–334. Putzeys, J.A.A.H. (1873) Monographie des Calathides. Annales de la Société Entomologique de Belgique, 16, 19–96. Putzeys, J.A.A.H. (1877) Carabiques nouveaux du nord de l’Inde (Darjeling). Entomologische Zeitung Stettin, 38, 100–103. Sasakawa, K., Kim, J.-L., Kim, J.-K. & Kubota, K. (2006) Description of two new species of Pristosia (Coleoptera : Carabidae) from South Korea. Annals of the Entomological Society of America 99 (6), 1006–1011. Schmidt, J. (1999) Revision of the genus Calathus from Nepal (Descriptions of new species of Carabidae from Nepal Himalayas, part 6) (Coleoptera Carabidae Sphodrini). In: Zamotajlov, A. & Sciaky, R. (Eds) Advances in Carabidology. MUISO Publishers, Krasnodar, pp. 299–318. Schmidt, J. (2003) Neue und interessante Laufkäferarten der Gattung Xestagonum Habu, 1978 aus dem Himalaya (Insecta: Coleoptera: Carabidae). In: Hartmann, M. & Baumbach, H. (Eds) Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt, pp. 85–106. Schmidt, J. (2006) Die Pterostichus-Arten des Subgenus Pseudethira Sciaky, 1996, in Zentral- und West-Nepal (Coleoptera, Carabidae): Taxonomie, Phylogenie, Biogeographie. In: Hartmann, M. & Weipert, J. (Eds) Biodiversität und Naturausstattung im Himalaya. Band 2. Verein der Freunde und Förderer des Naturkundemuseums Erfurt e.V., Erfurt, pp. 179–243. Spicer, R.A., Harris, N.B.W., Widdowson, M., Herman, A.B., Guo, S., Valdes, P.J., Wolfe, J.A. & Kelley, S.P. (2003) Constant elevation of southern Tibet over the past 15 million years. Nature, 421, 622–623.

26 · Zootaxa 2009 © 2009 Magnolia Press SCHMIDT & HARTMANN

Publikation IV

Schmidt, J., Opgenoorth, L., Höll, S., Bastrop, R. & Hundsdörfer, A.

Phylogeography of the Ethira clade supports the hypothesis of Tertiary-Tibetan origin of a Himalayan ground beetle species group.

Molecular Ecology (submitted).

1

1 Phylogeography of the Ethira clade supports hypothesis of Tertiary-Tibetan origin of a

2 Himalayan ground beetle species group

3

4 Joachim Schmidt1, Lars Opgenoorth2, Steffen Höll3, Ralf Bastrop3, Anna Hundsdörfer4 5 1Faculty of Geography, University of Marburg, Deutschhausstr. 10, 35039 Marburg, Germany 6 2Department of Ecology, University of Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, 7 Germany 8 3 Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18051 9 Rostock, Germany 10 4 Museum of Zoology, Senckenberg Natural History Collections Dresden, Königsbrücker 11 Landstr. 159, 01109 Dresden, Germany 12 13 Phylogeography, Pterostichus, Ethira, Himalaya, Tertiary-Tibetan Origin,

14 Joachim Schmidt, Faculty of Geography, University of Marburg, Deutschhausstr. 10, 35039

15 Marburg, Germany, fax: 06421/28-28950, [email protected]

16 Phylogeography of the Ethira clade

17

18 Abstract

19 The Himalaya is a hotspot of biodiversity which has been demonstrated in plants in

20 vertebrates. However, insect diversity is still not adequately assessed. Likewise, only little is

21 known about the reasons of the high diversity, the ways of speciation, or the origin of the

22 Himalayan insect fauna. In this phylogeographic analysis, the Ethira clade of the genus

23 Pterostichus is used as a model group to assess the dimensions of in situ speciation, as well as

24 endemism on higher taxonomic levels in the Central Himalaya. Based on mitochondrial and

25 nuclear genetic data monophyly as well as group endemism of the Ethira clade can be

26 demonstrated. Furthermore, the spatially limited occurrence of closely related taxa shows the

27 limited dispersal ability as well as allopatric speciation of these ground beetles. Finally we

28 show that this data is best explained by a model of Tertiary Tibetan origin.

29 2

30 Introduction

31

32 The Himalaya is one of the hotspots of biodiversity on earth, which has been impressively

33 demonstrated in plants and vertebrates (e.g. Barthlott et al. 1996, Conservation International

34 2010). Species diversity of tropical mountains are expected to be especially high in insects

35 (Stork 1997, Umeå University 2010), however, due to the lack of comprehensive revisions of

36 the most diverse taxa such as Coleoptera, Diptera and Hymenoptera, it seems impossible to

37 specify a realistic dimension of the insect species number occurring in the Himalayan

38 mountain arc. Furthermore, only little is known about the reasons of the remarkable high

39 diversity, the ways of speciation, or the origin of the Himalayan insect fauna. Previous

40 morphological based analyses in some Himalayan taxa point to extremely limited distribution

41 ranges of the species and to strictly allopatric speciation due to geographic vicariance (see

42 Martens 1993 for an overview). Most striking cases are known from high altitude ground

43 beetles: Distributional areas of wingless Carabidae species are commonly restricted to single

44 slopes or side valleys along the separate Himalayan mountain chains, whereas next related

45 species occur in directly adjacent parts of the mountains (e.g. Hieke 2003, Schmidt 1999,

46 2006a, 2009a, Schmidt & Hartmann 2001, 2009). As a consequence the Himalaya seems to be

47 strewn with swarms of closely related species of many different genera of ground beetles. One

48 example is the Ethira clade of the Holarctic ground beetle genus Pterostichus. This putatively

49 natural group contains the subgenera Ethira Andrewes, 1936 with ten species in the

50 Northwest Himalaya and Pseudethira Sciaky, 1996 with 66 species and subspecies in the

51 Central and East Himalaya (Schmidt 2006a+b, 2007, 2009b, and unpublished data; for

52 geographical distribution see Fig. 1). All species of that clade are wingless; larvae and

53 imagines (the latter with body length of 11-17 mm) are night active predators of small

54 invertebrates, they are living on humid soil and in leave litter of mountain cloud forests or on

55 alpine meadows, and they are hidden under big stones, under rotten trunks or in humid 3

56 crevices during day time. They are strictly adapted to temperate or even alpine environments

57 and to relatively humid habitat conditions and thus, species of the Ethira clade lack in the

58 subtropical valleys of Himalayan foothills as well as in the dry valleys of the Inner Himalaya.

59 Habitat preference specialities and winglessness, both strongly limit the distributional ability

60 of the beetle individuals. It is therefore not surprising that the distributional areas of all the

61 known species of the Ethira clade each are very limited and usually do not exceed a single

62 mountain slope or valley system.

63

64 Nevertheless, such distributional patterns are difficult to explain if one considers previous

65 hypothesis of fauna development in High Asia which are mainly based on data from species

66 groups with high dispersal ability such as butterflies and birds. The origin of the Himalayan

67 high altitude forest fauna was hypothesized in Western Asia, in the Western Chinese

68 Mountains and Indochinese Mountains, respectively (Holloway 1974, Mani 1974, 1986,

69 Martens 1993). Because the High Himalaya itself is believed an effective distributional barrier

70 to the north, these authors assumed that colonization of this mountain arc occurred from the

71 northwest or from the east depending on the position of the centres of origin named above.

72 Based on this assumption Martens (1993) has named the Himalayan fauna an immigration

73 fauna (“Einwanderungs-Fauna”). If this hypothesis matches the reality, close relatives of

74 Himalayan high altitude ground beetle taxa should occur in adjacent mountains and, the oldest

75 lineages of Himalayan species groups should occur in the north western and eastern parts of

76 the Himalaya, respectively. However, recent morphology data based analyses did not find

77 much congruence with this hypothesis. Various ground beetle species groups were identified

78 as Himalayan endemics for which no evidence of closer relationships to taxa occurring in

79 areas adjacent to the Himalaya could be found (see Schmidt & Hartmann 2009 for an

80 overview). Several putatively older lineages of Palearctic ground beetle genera have been

81 detected which are endemic to the Central Himalaya (e.g. Nepalobroscus: Schmidt & Arndt 4

82 2000; Calathus heinertzi group: Schmidt 1999; Pristosia amaroides group: Schmidt &

83 Hartmann 2009). And finally, various observations of species and species group endemism in

84 most of the Himalayan high altitude ground beetle groups strongly speak against long-

85 distance dispersal in the evolutionary history of the relevant ground beetle taxa.

86

87 Based on these findings Schmidt (2003, 2006a) and Schmidt & Hartmann (2009) postulated

88 the origin of wingless high altitude ground beetle taxa, such as the Ethira clade in the Tertiary

89 of South Tibet. They reasoned that adaptation to high altitude environments and primary

90 diversification within the groups would have taken place in the Tibetan Himalaya and

91 Transhimalaya, respectively, long before the terminal uplift of the High Himalayan mountain

92 chain. Colonization of the latter would have occurred in the course of its growth by the

93 ancestral species coming from the north, using the transverse valleys for dispersion.

94

95 The aim of this paper is to test the Tertiary Tibetan origin of the Ethira clade by means of a

96 phylogeographic analysis and to explore what the major speciation processes are within the

97 Ethira clade as a model for Himalayan insect speciation. More specifically, by using sequence

98 data from COI mitochondrial DNA and from nuclear 28S rDNA of 37 species and subspecies

99 of the Ethira clade and of 47 species of various additional Pterostichini taxa we want to test 1)

100 whether the Ethira clade is monophyletic and thus a Himalayan endemic, 2) whether species

101 group endemism to the Central Himalaya is supported by the molecular analyses, 3) whether

102 the assumption of strongly limited dispersal ability of the species and subspecies can be

103 verified by the molecular data, and 4) whether the phylogeographic analysis is consistent with

104 the assumption of a Tertiary Tibetan origin of the Ethira clade. For the present study we

105 strongly benefited from the previous works of Sasakawa & Kubota (2005, 2007) and of Will

106 & Gill (2008) who studied several other Pterostichini ground beetle groups and thus provide a

107 comprehensive set of DNA sequences for comparison. 5

108

109

110 Materials and Methods

111

112 Taxon sampling

113 Sampling was designed to test species and subspecies boundaries as well as species group

114 monophyly. We focused on three taxon sampling strategies (Appendix 1). First, in order to

115 determine taxonomic position and potential sister species groups of the Ethira clade we

116 considered all subgenera of Pterostichus and putative closely related taxa of which DNA

117 sequence data of the selected 28S rRNA gene segment are available in GenBank. To this

118 taxon set we added members of all Pterostichus sub-generic groups and putative closely

119 related taxa which are known to occur in the Himalaya. Beside Ethira and Pseudethira, these

120 are Lesticus, Trigonotoma, the Pterostichus subgenera Bothriopterus, Pseudohaptoderus and

121 the species group of Pterostichus migliaccioi which, presumably, represents a hitherto

122 undescribed subgenus. Thus, we included 35 subgenera of Pterostichus and ten putatively

123 related genera in this analysis.

124 Second, in order to ensure species group monophyly and to identify evolutionary lines within

125 the clade we included as many taxa of the Ethira clade as possible. This sampling was limited

126 by the availability of relative freshly preserved alcohol material. We could analyse 25 species

127 and 12 additional subspecies which together cover approximately 50% of the known

128 taxonomic diversity of the Ethira clade.

129 Third, in order to test species and subspecies boundaries and morphological taxonomy for

130 selected species of the Ethira clade we considered individuals from different localities within

131 the whole species range together with individuals from all sympatric species and from all

132 parapatric species. A total of 187 specimens of 97 populations of the Ethira clade were thus

133 investigated. 6

134

135 Sequence-data acquisition methods

136 Genomic DNA samples were prepared from specimens conserved in the field in 70-98%

137 ethanol and later preserved in absolute EtOH and stored at -20°C. DNA was extracted from

138 femur muscles using a silica spin column procedure with the NucleoSpin® Tissue Kit

139 (Macherey-Nagel) following the protocol provided by the manufacturer.

140 Two data sets of the COI mitochodrial region were acquired, one that is about 1440bp in

141 length, the other 650bp. The fragments were amplified using the following three pairs of

142 primers: 1) LCO 1490 (5’-GGT CAA CAA ATC ATA AAG ATA TTG G-3’; Folmer et al.

143 1994) and HCO 709 (5’- AAT NAG AAT NTA NAC TTC NGG GTG-3’; Blank et al. 2008)

144 and, if the latter did not give positive results, the newly designed reverse pimer PterRevN (5’-

145 CCT GTA TTR GCW GGR GCW ATT AC-3’) was used instead; 2) PterFw (5’- AGG AGC

146 TCC TGA TAT AGC TTT-3’ and KSCOIN (5’-GGA GCA GTA TTT GCT ATT ATA

147 GCA-3’), which were also designed for this study; 3) the universal insect primer JER (5’-

148 CAA CAT TTA TTT TGA TTT TTT GG-3’; Simon et al. 1994) and the primer PATN (5’-

149 TCT AAT ATG GCA GAW TAG TGC AHT-3’), designed for this study. For the first two

150 primer pairs PCR was performed in a 30 µl reaction volume consisting of 3 µl DNA template,

151 0.75 U of Moltaq (Molzym GmbH & Co.KG), 3 µl 10x PCR buffer (Molzym), 3.5 mM

152 MgCl2 (final concentration), 0.25 mM dNTP each and 1 pmol of each primer, under the

153 following PCR conditions: denaturation step for 60 s at 94°C, followed by 37 cycles of: 30 s

154 at 94°C, 30 s at 50°C and 60 s at 72°C, and completed with 5 min at 72°C as a final extension

155 step. For the primer pair JER and PATN the concentrations of PCR reagents were the same

156 with the exception of a final MgCl2 concentration of 1.5 mM and the PCR conditions were as

157 follows: denaturation step for 120 s at 94°C, followed by 37 cycles of: 20 s at 94°C, 25 s at

158 53°C and 55 s at 65°C, and completed with 7 min at 72°C as a final extension step. 7

159 Approximately 1070bp of the D1-D3 region of the 28S rDNA were amplified using the

160 primers D1 (5’-GGG AGG AAA AGA AAC TAA C-3’; Ober 2002) and D3i (5’-GCA TAG

161 TTC ACC ATC TTT C-3’; Will & Gill 2008). Concentrations of PCR reagents and the PCR

162 profile were the same as for COI with the exception of a final MgCl2 concentration of 2.5 mM

163 and the PCR conditions were as follows: denaturation step for 120 s at 94°C, followed by 37

164 cycles of: 30 s at 94°C, 25 s at 51°C and 55 s at 65°C, and completed with 7 min at 72°C as a

165 final extension step.

166 Amplified reactions were cleaned using the NucleoSpin® Extract Kit (Macherey-Nagel) or

167 the innuPREP Gel Extraction Kit (Analytik Jena). All PCR products were sequenced using

168 the DTCS Quick Start Kit (Beckman Coulter) and electrophoresed on an automated DNA

169 sequencer (CEQTM 8000; Beckman Coulter).

170

171 Sequence processing and alignments

172 Sequences were automatically analysed using the software CEQTM 8000 (Beckman Coulter)

173 and manually edited and aligned using the BioEdit software (Hall 1999). All variable

174 positions in a sequence were checked on the basis of the corresponding electropherogram.

175 Sequence fragments of the 28S rDNA were of variable length and the positions which could

176 not be aligned without a doubt were removed from the data set. Distance matrices (p-distance)

177 were obtained with PAUP* (Swofford 2002) and group means of pairwise sequence

178 divergence were calculated with MS-Excel.

179

180 Phylogenetic analyses

181 Following previous studies in Pterostichus ground beetles (Sasakawa & Kubota 2007, Will &

182 Gill 2008), 28S rDNA sequence data are also used to identify the taxonomic position of

183 subgenera Ethira and Pseudethira within the genus Pterostichus in this study. This gene,

184 however, evolves too slowly to disclose relationships of very young evolutionary lines. Due 8

185 to comparatively high sequence evolution rates of mitochondrial markers, COI gene

186 sequences are widely used for questions of inter- and intra-specific diversification patterns in

187 insects and also in Carabidae (e.g. Emerson et al. 1999, 2000, Clarke et al. 2001, Cardoso &

188 Vogler 2005, Contreras-Diaz 2007, Will & Gill 2008). However, evolution of mitochondria in

189 ground beetles frequently seems to be influenced by introgression from sympatric or

190 parapatric species due to hybridization, as impressively shown in the genus Carabus (Sota et

191 al. 2001, Sota & Vogler 2001, Sota 2002, Ujiie et al. 2005, Nagata et al. 2007, Zhang & Sota

192 2007, Sota & Nagata 2008) and thus, mitochondrial phylogeny often does not reflect species

193 group phylogeny. Therefore, we generate trees for 28S and COI sequence data separately in

194 this study. In order to identify potential hybridization events, we compare the results of gene

195 trees with each other, as well as with the morphological tree proposed by Schmidt (2006a).

196 The data sets were analysed according to the optimality criterion “maximum likelihood” (ML)

197 using PAUP* 4.0b10 (Swofford 2002), implementing the best fit model established by the

198 Akaike Information Criterion (AIC), as implemented in Modeltest 3.06 (Posada & Crandall

199 1998). These parameters were fixed for the ML calculations. The command “add=cl” was

200 used for the heuristic search. We calculated bootstrap values with GARLI 0.951 (settings

201 bootstrapreps=100 genthreshfortopoterm=5000 {as advised in the manual of the program};

202 Zwickl 2006).

203

204

205 Results

206

207 28S rDNA sequences

208 The sequences of the 28S rDNA from 91 taxa (34 species and subspecies of the Ethira clade

209 and 57 Pterostichini outgroup taxa) were between 974 and 1063 bp in length. Alignments for

210 the phylogenetic analyses were undertaken in two different ways. First, in order to determine 9

211 the taxonomic position of the Ethira clade within Pterostichini, an alignment considering all

212 the taxa mentioned above was performed for a comprehensive taxon data set. Sequences of

213 Molops spartanus and Tapinopterus balcanicus (GenBank) were included for outgroup

214 comparison. Altogether 14 sections of this sequence alignment could not be aligned without a

215 doubt and were removed from the data set (a total of about 116-164 bp was deleted). The

216 resulting 91-taxa data set has a length of 941 bp after alignment. Second, in order to get a

217 better solution within the Ethira clade an additional 28S rDNA data set was prepared

218 including only one species each of two different outgroup Pterostichus subgenera besides all

219 the investigated taxa of the Ethira clade. In this data set all variable sequence positions could

220 be aligned with high certainty and therefore, no removing of data was necessary. The

221 resulting 36-taxa data set has a length of 1082 bp after alignment. Both the alignments are

222 available from J. S. upon request. For phylogenetic analyses Modeltest (Posada & Crandall

223 1998) resulted in GTR+I+G as the appropriate model for the first 28S rDNA sequence data

224 set (91 taxa; shape=0.6111, pinvar=0.4301), and in TVM+I+G as the appropriate model for

225 the second 28S rDNA sequence data set (36 taxa; shape=0.7171, pinvar=0.5756).

226

227 The mean pairwise sequence divergence of all the analysed species of the 91-taxa alignment

228 (incl. outgroups) is 5.94 % (standard deviation ϭ = 2.22). The mean pairwise distance between

229 species of different Pterostichus subgenera is 5.12 % (ϭ = 1.57), the highest distance is 9.6 %.

230 Within the Ethira clade the mean pairwise sequence divergence of all the analysed species is

231 1.73 % (ϭ = 0.82). The mean pairwise sequence divergence between all the analysed species

232 of the Ethira clade in the 36-taxa alignment (Ethira clade + two outgroup taxa) is 2.26 % (ϭ =

233 0.97; the higher values compared to the proceeding alignment arose from the use of the

234 unreduced data set), the maximum pairwise distance between all investigated species of the

235 Ethira clade is 3.95 %, the lowest is zero. Within populations no variability could be detected.

236 Within some of the morphological species a low pairwise distance divergence could be 10

237 detected between individuals of different populations that appear not to be distinguishable by

238 morphological characters, examples are P. juga (0.38 %), P. kleinfeldi (0.19 %), and in P.

239 letensis (0.19 %). In contrast, no sequence variability could be detected between species of the

240 gompanus group, of the terminal nepalensis group, and of the terminal harmandi group.

241 These data indicate that the 28S rDNA sequences are highly conserved within Pterostichus

242 and that saturation of the mutations in this gene has not been reached by far. This is

243 corroborated by the linear slope in the plot of the number of transitions and transversions and

244 the distance (performed with DAMBE, Xia and Xie 2001; data not shown). Good resolution is

245 expected between genera, most of the Pterostichus subgenera and between the more basal

246 lineages of the Ethira clade.

247

248 COI mtDNA sequences

249 The data set of the longer sequence segment from 34 species and subspecies of the Ethira

250 clade and two selected species of other Pterostichus subgenera (outgroup taxa) consisted of

251 sequences of 1444 bp in all taxa. The mean pairwise sequence divergence of all the analysed

252 species of the Ethira clade is 3.04 % (ϭ = 0.84), the highest distance is 4.99 %, and the lowest

253 is 0.28 %. In polytypical species the pairwise sequence divergences of subspecies range from

254 maximal 2.08 % in P. deuvei to minimal 0.07 % in P. ganja. This indicates that within the

255 Ethira clade saturation of the mutations in this gene has not been reached by far (again

256 corroborated by the saturation curve plotted with DAMBE, Xia and Xie 2001; data not

257 shown) and good resolution is expected between species groups of the Ethira clade and

258 between taxa on species level. For phylogenetic analyses Modeltest (Posada & Crandall 1998)

259 resulted in GTR+G as the appropriate model for the COI mtDNA sequence data set.

260

261 A shorter COI mtDNA sequence fragment of 646 bp of a variable sequence region was used

262 to assess the within populations variability of the species. We tested up to seven individuals of 11

263 each population and no (most cases) or very low variability (up to 0.46% pairwise sequence

264 divergence within populations of P. balachowskyi trapezicollis) was found (data will be

265 published elsewhere). In contrast, in all species of the Ethira clade we could discover distinct

266 sequence divergence between most of the geographical separated populations. This was

267 especially striking in populations from the southern slope of the Himalaya: not one identical

268 sequence could be found between individuals of populations from two separated mountain

269 chains, as well as even from the east and west slope of the same mountain chain. In other

270 words, the geographical origin of the individuals from southern slope of the Himalaya is

271 unambiguously determinable based on the investigated COI mtDNA sequence segment.

272 Exceptions could only be found in taxa occurring the Himalayan transverse valleys where

273 individuals from populations of adjacent side valleys exhibit identical COI sequences.

274

275 Phylogenetic analyses

276 Monophyly of an evolutionary line comprising all the investigated taxa of the Ethira clade is

277 well supported by the ML analysis of the sequenced 28S rDNA fragment of various groups of

278 the tribe Pterostichini (Fig. 2). The more basal nodes of the tree are, however, not sufficiently

279 resolved or supported. Evidence for closer relationships of the Ethira clade to other

280 evolutionary lines of the tribe could therefore not be found and the taxonomic position of the

281 Ethira clade within Pterostichini remains unknown. It seems probable that the taxon sampling

282 does not comprise the recent sister group of the Ethira clade. Nevertheless, the data indicate

283 that the most closely related group should not occur in the Himalaya, since all other

284 Himalayan Pterostichus subgenera (Bothriopterus, Pseudohaptoderus and the taxonomical

285 unplaced Pterostichus migliaccioi species group) and putatively related genera (Lesticus,

286 Trigonotoma) are all members of distinct evolutionary lines well separated from the Ethira

287 clade (Fig. 2). Due to the relatively high evolutionary distance of the Ethira clade compared

288 to the other lineages of the tree (Fig. 2), a long-lasting separated evolutionary history of the 12

289 Ethira clade can be assumed. The existence of two separated evolutionary lines Ethira and

290 Pseudethira within the Ethira clade is not supported by this analysis.

291

292 Because no taxon of the investigated Pterostichini turns out to be most closely related to the

293 Ethira clade, we could select two outgroup taxa for the phylogenetic analysis shown in Fig. 3

294 more or less arbitrarily. We used the flightless high montane to alpine species Pterostichus

295 (Pterostichus) fasciatopunctatus from the European Alps and P. (Pseudohaptoderus)

296 semenowi from the Tibetan Plateau, since 28S rDNA and COI mtDNA fragments were

297 available from both these species. Although for this analysis all variable sequence positions

298 were included, we could not get a better solution between the more basal lineages within the

299 Ethira clade than in the previous analysis. There is no strong support for monophyly of the

300 subgenus Pseudethira without Ethira (sensu stricto) from the Northwest Himalaya. Although

301 the data do indicate that the latter taxon represents a separated evolutionary line that evolved

302 at an early stage of the evolutionary history of the Ethira clade, the relationship to the

303 Pseudethira lineages remains in question.

304

305 The samples of Pseudethira form two well supported deep branching clades (Fig. 3). These

306 are the morphological gagates group from Central Nepal, and a clade which comprises all

307 other species of the subgenus Pseudethira (lineage A). Within the latter monophyly of the

308 following four lineages is noteworthy: the morphological balachowskyi group from Central

309 Nepal, the morphological nepalensis species group from West Nepal, a group of species from

310 Central Nepal comprising Pterostichus chainapaani, P. juga, and the morphological

311 gompanus and letensis species groups (lineage A1), and a sub-clade of the latter lineage

312 which comprises both the monophyletic gompanus and letensis species groups (lineage A1i).

313 The phylogenetic relationships between the other lineages remain in question.

314 13

315 The ML analysis of the COI mtDNA sequence data moderately supports sister group

316 relationship between lineage A and a clade consisting of Ethira (sensu stricto) and the

317 morphological gagates species group (Fig. 4). Also for both the latter taxa this analysis

318 suggests a sister group relationship. Most of the more basal branches of the 28S tree are not

319 supported by the COI mtDNA data analysis, but the morphological balachowskyi and

320 gompanus species groups. All species from East Nepal form a well supported clade (the

321 morphological harmandi group, paraphyletic in the 28S tree). Lineage A1 of the 28S tree is

322 not monophyletic in the COI mtDNA analysis. Its species are divided in two separate clades

323 (Fig. 4). It is especially noteworthy that Pterostichus hartmanni which is part of the letensis

324 group of the morphological and of the 28S rDNA analyses in the COI mtDNA analysis

325 clusters together P. chainapaani and P. juga. By this reason also lineage A1i of the 28s

326 analysis is not supported by the COI data.

327

328

329 Discussion

330

331 Monophyly of the Ethira clade

332 Our phylogenetic data strongly indicate the monophyly of the Ethira clade. These results are

333 supported by the fact that the derived phylogenetic groups are largely congruent with groups

334 derived on the basis of morphological data in our previous studies. This bivariat support

335 extends to lower taxonomic levels as well. Given that all species that are known to belong to

336 the Ethira clade occur only in the Himalaya we must consider the whole clade as a Himalayan

337 endemic. This interpretation of the data gains even stronger support when we consider the

338 spatial distribution of the different lineages.

339 14

340 Pterostichus (Ethira) pilifer is one of ten morphologically extremely similar species

341 geographically restricted to the Kashmir Himalaya (Fig. 5b), and it has been identified as one

342 of the three more basal lineages of the Ethira clade (Fig. 2-4). The two other more basal

343 lineages (the gagates group and lineage A) both contain many species which all are endemic

344 to small parts of the Central Himalaya and Eastern Himalaya, respectively (Fig. 5b). These

345 two lineages represent the taxon Pseudethira which is probably paraphyletic. The remarkable

346 branch length of the Ethira clade in the phylogenetic analysis of the 28S rDNA data (Fig. 2)

347 suggests a long-lasting evolutionary history of this lineage separated from any other

348 Pterostichini species group. In contrast, the three more basal lineages of the Ethira clade,

349 which are Ethira (sensu stricto), the gagates group and lineage A, seem to have evolved more

350 or less contemporaneously and are probably the result of a primary radiation of the group.

351 Thus, the molecular data support the assumption of the morphological data based analysis that

352 the Ethira clade is a Himalayan endemic of higher taxonomic level. This result may be

353 preliminary because from several Pterostichini taxa which are known to occur outside the

354 Himalaya sequence data were not available and, the question for the sister group of the Ethira

355 clade could not be solved.

356

357 Central Himalaya species groups endemism

358 Monophyly of the balachowskyi group, the gagates group and the gompanus group which all

359 are endemic to restricted areas of the Central Himalaya (Fig. 5b), and the phylogenetic

360 separated position of the monotypic olafi group from Annapurna Himal in the Central

361 Himalaya, all are well supported by the analyses of 28S rDNA as well as of the COI mtDNA

362 data (Figs. 3+4). Concerning other morphological species group hypotheses the molecular

363 analyses brought ambiguous results. We could detect more congruities between the

364 morphological and the 28S rDNA analysis than between the morphological and the COI 15

365 mtDNA analysis and between both the molecular data analyses, respectively. In two cases the

366 morphological data allow for a weighting of the ambiguous results of the molecular analyses:

367

368 1) Phylogenetic position of Pterostichus hartmanni, and monophyly of lineages A1 and A1i:

369 In the COI tree P. hartmanni together P. chainapaani and P. juga form a clade with uncertain

370 relationship to other terminal clades of lineage A (Fig. 4). Based on 28S (Fig. 3) and

371 morphological data P. hartmanni is considered a member of the letensis group. More

372 precisely, monophyly of the letensis species group is very strongly supported by several

373 synapomorphic characters of habitus and male genital (aedeagus) (Schmidt 2006a). For

374 example, all species of that group possess the same constitution of a highly complicated apical

375 lamella of the aedeagal median lobe: The lamella is distally bent to the right against the

376 generally left turning of the median lobe, and possess a hook-like appendix (Fig. 6: P.

377 dhorpatanicus, P. hartmanni, P. letensis). This genital feature is unique and was doubtless

378 evolved only once in the evolutionary history of the Ethira clade. In contrast, P. chainapaani

379 and P. juga, beside several differences in external body shape, possess the plesiomorphic

380 character state of the aedeagal median lobe terminal lamella (Fig. 6). Based on this insight

381 from morphology and in congruence with the 28S rDNA data we conclude that the

382 mitochondrial gene tree does not reflect the true cladogenesis of the letensis group. Instead we

383 assume mitochondria capture from either P. chainapaani or P. juga to P. hartmanni as a

384 consequence of hybridisation during a former stage in the evolutionary history of these

385 species (before the geographical separation and evolution of P. hartmanni hartmanni and P.

386 hartmanni khukuri). From this assumption monophyly of lineage A1i of the 28S rDNA

387 analysis can be deduced directly because there is no more difference with the COI data set. If

388 one considers that hybridisation should be limited to the closer related species, monophyly of

389 lineage A1 of the 28S rDNA analysis is very probable, too.

390 16

391 2) Monophyly of the immarginatus group (sensu novo): A lineage of the three Central

392 Nepalese species P. ganesh, P. immarginatus, and P. matsumurai is well supported by the

393 COI mtDNA analysis (lineage [gim], Fig. 4), but without further resolution within the group.

394 The 28S rDNA analysis suggests a sister species relationship of P. immarginatus and P.

395 matsumurai, but the taxonomic position of this clade, as well as that of P. ganesh, within

396 lineage A remain insufficiently resolved (Fig. 3). Low pairwise distances of these three

397 species (up to 0.47 %) are probably the reason for bad resolution in the 28S data analyses.

398 Based on synapomorphic aedeagal characters the morphological analysis strongly supports a

399 sister species relationship of P. ganesh and P. immarginatus (Schmidt 2006a, for illustration

400 see Fig. 6): The median lobe is markedly thickened in basal portion and lacks the widening in

401 middle portion. Summarising these data, although some doubt remain regarding the true sister

402 species relationships, we can conclude that P. ganesh, P. immarginatus, and P. matsumurai

403 are closer related to each other than to any other of the investigated species and thus, that a

404 group containing these three species is natural (=immarginatus group sensu novo).

405

406 As a result of the review of the three data sets (28S rDNA, COI mtDNA, morphology) we

407 have generated a summary tree of the Ethira clade (Fig. 5a). In this tree only those branching

408 pattern are shown which were supported by at least two of the analyses with the exceptions

409 discussed above. The summary tree impressively proves that all the terminal lineages are

410 geographically restricted to small parts of the Himalayan mountain arc as can be seen in

411 figure 5b. The distributional area of a single species group often does not exceed the

412 catchment area of one or two transverse valleys. Only the phylogenetic older lineages

413 (gagates group, lineages A and A1) occur in somewhat wider areas. Seven of the nine species

414 groups identified by this analysis are endemic to parts of the Central Himalaya (including the

415 gagates group which is one of the oldest lineages of the Ethira clade). The harmandi group

416 (three East Nepalese species were tested) and the atrox group (Schmidt 2006a, not tested) are 17

417 the only species groups known to occur in the East Himalaya. Only two species groups are

418 known to occur in the Kashmir Himalaya (Ethira (sensu stricto) and the monotypic viridellus

419 group, the latter was not tested by molecular analyses). The extensive distributional gap of the

420 Ethira clade across the Kumaon Himalaya divides the distributional areas of the deepest sub-

421 clades of the Ethira clade completely, specifically Ethira (sensu stricto) in the Kashmir

422 Himalaya, the gagates group and lineage A in the Central and East Himalaya. The only

423 Pterostichini species group known to occur in the Kumaon Himalaya (the Pterostichus

424 Subgenus Pseudohaptoderus) was identified as a distinct lineage not closely related to the

425 Ethira clade (Fig. 2).

426

427 Strongly limited dispersal ability of the species and subspecies

428 An effective limitation of dispersal ability caused by the extreme geomorphodynamics of the

429 Himalaya was hypothesised based on the observation in morphology that all species and

430 subspecies of the Ethira clade are local endemics of single mountain slopes or valley systems.

431 Because the taxonomical concept is widely supported by the molecular data presented in this

432 paper there seems no more doubt about its biogeographical consequence. However, the few

433 disagreements between the morphological data and the molecular data based analyses on the

434 one hand, and the distribution of private haplotypes of intraspecific taxa on the other hand,

435 provoke a further discussion of the real extensions or limitations of dispersion of the ground

436 beetle populations.

437

438 Despite the fact that the investigated 28S rDNA sequence fragment was identical in some of

439 the closely related species, monophyly of the morphological species was confirmed with the

440 exception of Pterostichus letensis. In this species the molecular genetic results were

441 ambiguous (see Figs. 3 and 4). In the 28S rDNA analysis very low pairwise sequence

442 divergences in the letensis species group (up to 0.47%) are probably the reason for bad 18

443 resolution in this terminal clade, causing P. letensis to appear paraphyletic. As would be

444 expected from a mitochondrial marker, the pairwise sequence divergences are much higher in

445 the COI mtDNA data set (up to 1.3% only within the species P. letensis), however, in the

446 phylogenetic analysis of these data (Fig. 4) the population from Marang Khola Valley south

447 of Dhaulagiri Mountain Range (specimen with internal identification code [IC] 970) clusters

448 together the geographical neighboured species P. dhorpatanicus. In contrast, the investigated

449 28S rDNA sequence segment was identical in all P. letensis specimens from populations on

450 the southern macro slope of Dhaulagiri (IC 970, 988, 998) but slightly different from that of

451 the populations of Kali Gandaki Valley (IC 506, 536). These facts suggest introgression of P.

452 letensis mitochondria into populations of P. dhorpatanicus and P. letensis, or vice-versa, due

453 to temporary hybridization in the evolutionary history of these species which virtually have

454 quasi parapatric distribution today.

455

456 On subspecies level morphological taxonomy was supported by at least one of the molecular

457 analyses except for populations of P. balachowskyi. Variability in 28S rDNA of this taxon is

458 too low or did not exist, but COI data contain an informative signal (Fig. 7): Along the upper

459 Kali Gandaki Valley, were distributional borders of the four subspecies P. b. anguleus, P. b.

460 balachowskyi, P. b. myagdikholensis, and P. b. tukchensis meet, populations in the

461 phylogenetic tree are arranged mainly geographically and, morphology based taxonomy is not

462 supported. Consequently, COI sequence data of a P. b. anguleus population occurring south

463 of Lete Pass (specimen IC 953) cluster together with those of P. b. myagdikholensis from Lete

464 Pass (IC 790), with those of P. b. balachowskyi from north eastern slope of this pass (IC 514)

465 and with those of P. b. tukchensis populations which occur some kilometres further north (IC

466 566, 818), whereas P. b. anguleus and P. b. myagdikholensis populations from localities

467 outside this valley section cluster outside the upper Kali Gandaki clade of the tree (Fig. 7). 19

468 Also these findings give strong evidence for at least temporary maternal gene flow between

469 the quasi parapatric distributed taxa which all are very closely related to each other.

470

471 Those evidences of temporary gene flow between populations of directly adjacent mountain

472 slopes reveal dispersion of the Ethira populations on a small scale. However, the molecular

473 analyses in the balachowskyi group also reveal that gene flow events are mostly restricted to

474 the Himalayan transverse valleys. Most likely, in some sections of the upper Kali Gandaki

475 Valley recent dispersal barriers have temporarily not existed. This assumption is indicated by

476 the comparatively wide distribution of haplotypes within populations which are recently

477 separated by steep glacier river valleys and, probably more efficient, by south exposed dry

478 slopes (haplotypes 7 and 8 in Fig. 7). On the southern macro slope of the Himalaya, however,

479 we could detect private haplotypes for almost all of the investigated populations and thus,

480 dispersion paralleling the Himalaya should be very much an exception. This predication is

481 impressively supported by the phylogenetic analyses of the COI data of the balachowskyi

482 group (Fig. 7): The deepest clades of the tree divide populations from different sections of the

483 western central Nepal Himalaya completely. It can thus assumed, that dispersion on a larger

484 scale along the High Himalayan mountain arc is impossible for the wingless Ethira ground

485 beetles.

486

487 Biogeography and the evolutionary history of the Ethira clade – a case for the Tertiary

488 Tibetan Origin

489 The molecular analyses in the Ethira clade widely support the assumption from the

490 morphological analyses that dispersion of high altitude ground beetles along the northwest-

491 east axis of the Himalayan mountain arc is strongly limited, at least today, but very probably

492 also in the past. The enormous relief dynamics of the Himalaya seems to produce effective

493 distributional barriers especially along its southern macro slope where the upper parts of the 20

494 river valleys are shaped as deep gorges and the lower parts reach into the tropical zone. It can

495 be assumed to be sure that the observed diversity on species and subspecies levels is mainly

496 the result of limited gene flow between the populations of the cold adapted beetles which are

497 geographical separated by those barriers. Dispersal events across valleys and mountain crests

498 along the southern macro slope of the Himalaya are rare; if those rare events cause in

499 successful species area extensions they inevitably produce populations which, further on, are

500 geographically separated as well and thus, which evolve genetically distinct lineages. As a

501 result, within the distributional areas of the species the private haplotypes usually are lined up

502 each on a single mountain slope in the form of stings of pearls. The evidenced strong

503 geographically restriction of each of the species groups of the Ethira clade to small parts of

504 the Himalayan mountain arc let us further conclude that dispersal activity of the ancestral

505 species of the lineages was not distinctly higher than those of the recent species. This is not

506 surprisingly if one considers that, due to the peculiar geographical situation of the southern

507 edge of High Asia, similar geo-morphological conditions as the Ethira species have to

508 overcome today must have already existed since that time in which the Himalayan orogeny

509 has developed suitable high altitude habitats. Because the southern macro slope of the High

510 Himalaya reaches into the tropical zone whereas its northern macro slope borders with the

511 Tibetan Himalaya (Inner Himalaya, Tethyan Himalaya), the drainage systems of the northern

512 mountain ensemble must have deeply corrugated the High Himalaya from the beginning of its

513 Cenozoic uplift. Evidence has been found that the Tibetan Himalaya was uplifted distinctly

514 before the High Himalaya (Fort 1996, Yin & Harrison 2000) which let conclude that

515 Himalayan transverse valleys have been simultaneously developed to the uplift of the High

516 Himalaya. There is also evidence that at least 1400 km north-south shortening has been

517 absorbed by the Himalayan-Tibetan orogen since the onset of the Indo-Asian collision (Yin &

518 Harrison 2000, DeCelles et al. 2002). From the latter we can conclude that in earlier orogenic

519 periods the Himalaya was located in somewhat lower latitudes and thus, its southern slope 21

520 reached deeper into the tropical zone than it does today. Accordingly, deep river gorges and

521 steep slopes which are effective distributional barriers for wingless high altitude ground

522 beetles were developed to the same degree in which the High Himalaya was uplifted. There

523 still remain great uncertainties concerning the timing of the uplift of the High Himalaya

524 (Mulch & Chamberlain 2006), however, there is a wide agreement in geosciences that South

525 Tibet has been reached altitudes similar today at least since the mid or early Miocene (e.g.

526 Garzione et al. 2000, Blisniuk et. al. 2001, Spicer et al. 2003, Currie et al. 2005, Saylor et al.

527 2009), or already during the Eocene/Oligocene (Rowley & Currie 2006, DeCelles et al. 2007,

528 C. Wang et al. 2008, Dupont-Nivet et al. 2008, Royden et al. 2008). Despite of some

529 impreciseness of timing it can be concluded from these data that environmental conditions on

530 the southern edge of the Himalayan-Tibetan Orogen which strongly limit dispersal of

531 wingless high altitude ground beetles are distinctly older than the evolutionary history of each

532 of the terminal species groups of the Ethira clade.

533

534 The connection of the geological findings with the results of the molecular genetic analyses

535 shows that derivation of the evolutionary history of the Ethira clade from the hypothesis

536 which assumes immigration of the ancestors from areas northwest or east of the Himalaya

537 (Holloway 1974, Mani 1974, 1986, Martens 1993) seems not much obvious because two

538 further presumptions are needed. These are: 1) Long distance dispersal and secondary loss of

539 fly capability of each of the ancestors of the terminal species groups, independent from each

540 other. – Fully winged ground beetles are able to overcome the above mentioned distributional

541 barriers along the northwest-east axis of the Himalayan mountain arc. Thus, fly capability of

542 all ancestral species of the terminal groups of the Ethira clade and long distance dispersal,

543 both would be necessary to explain the observed species group endemism to restricted parts of

544 the Central Himalaya. However, morphology lead to the assumption that winglessness was

545 evolved during an earlier stage of the evolutionary history of the Ethira clade because 22

546 metathoracal plates of exoskeleton (which are insertions of wing musculature) are likewise

547 reshaped in all the recent species (Schmidt 2006a). 2) Large scale extinctions in two areas

548 along the Himalayan south slope. – If the ancestors of the recent Ethira lineages dispersed

549 along the Himalayan northwest-east axis also those areas must have been once part of the

550 distributional area in which species of the relevant lineage lack today. Thus, remarkable large

551 scale extinction must have occurred in the Kumaon Himalaya, and has to explain the almost

552 500 km stretching intra-Himalayan distributional gap of the Ethira clade (see Fig. 1).

553 Extinction must have also occurred in eastern Central Nepal and has to explain an

554 approximately 180 km stretching distributional gap of lineage A. Regarding the wide

555 amplitude of ecological conditions which characterizes Ethira habitats in the whole range of

556 the distribution of this clade (with occurrences in the dry Northwest Himalaya as well as in

557 the extremely humid Eastern Himalaya, and from the temperate montane zone up to the alpine

558 zone) extinctions of such dimensions are really difficult to imagine. Moreover, the

559 immigration hypothesis let the question unanswered why relatives of the Ethira clade cannot

560 be found in the mountains immediately adjacent to the Himalaya. Probably this problem is an

561 artifact and results from an insufficient data base, however, if advanced molecular genetic

562 analyses (which have to include additional Pterostichini taxa from Asia and which have to

563 consider additional appropriate gene sequences) get the same result, additional large scale

564 extinction has to assumed which should explain the lack of Ethira in the mountains northwest

565 of Indus catchment and east of Brahmaputra.

566

567 The hypothesis of a Tertiary Tibetan origin sensu Schmidt (2006a) seems to present a more

568 simple explanation of the recent distributional peculiarities of the Ethira clade. This

569 hypothesis assumes that the Ethira ancestor lived in South Tibet during an earlier stage of the

570 orogeny when this part of the Himalayan-Tibetan Orogen was already uplifted to heights

571 above 2500 m (such a minimum altitude is necessary to present sufficient habitat conditions 23

572 within tropical latitudes), but when the area that today is the High Himalaya was too low.

573 Thus, adaptation to high altitude environments including winglessness and primary

574 diversification, both could have evolved in South Tibet and, the ancestors of the recent

575 species groups could have invaded the High Himalaya successively during its uplift. Large

576 gaps within the recent distributional area of the Ethira clade can simply be explained by the

577 fact that the High Himalayan uplift developed a mountain belt transverse to the southern

578 macro slope of the South Tibetan mountain ranges. Due to the low dispersal ability of the

579 wingless species dispersion routes to the South into the High Himalaya were necessarily

580 limited. These assumptions are supported by the molecular data in two ways: First, species

581 and intraspecific diversity on the one hand and species group endemism on the other hand,

582 both can simply be explained as a consequence of secondary radiation after immigration of

583 the relevant species group ancestor into the High Himalaya, coming from the northern

584 adjacent Tibetan Himalaya. Second, the molecular data suggest that the Himalayan transverse

585 valleys are appropriate routes also for species with low dispersal capability. The lack of any

586 species of the Ethira clade as well as of closely related taxa in today’s South Tibet is not

587 inconsistent with this theory because since the drying up of the mountain regions north of the

588 High Himalaya due to uplift of the latter (e.g. Guo et al. 2002, DeCelles et al. 2007, Dupont-

589 Nivet et al. 2007, Saylor et al. 2009) all the potential habitats of these species must necessarily

590 have gotten lost which lead to the extinction of members of this clade and to those of its

591 relatives.

592

593 Final conclusions und future prospects

594

595 The hypothesis of the Tibetan origin of the Ethira clade seems to be a reasonable explanation

596 for the distributional patterns of the Ethira clade also on the basis of this molecular analysis.

597 However, due to the prevailing strong limitations in data availability in the Himalaya, a final 24

598 assessment of alternative explanations is not feasible at this moment. For example regarding

599 the Ethira clade this means that additional taxa of the Pterostichini from the mountains of

600 Indochina and Western China need to be sampled. Furthermore, additional nuclear genes need

601 to be sequenced, to achieve a better resolution of the basal phylogeny. It is decisive to answer

602 where the sister taxon of the Ethira clades occur. Only if it proofs right, that these do not

603 occur in the adjacent mountain ranges can we exclude the hypothesis of a northwestern and/or

604 eastern immigration to the Himalaya. In order to get a better understanding of the timing of

605 these events, the fossil record needs to be re-evaluated to obtain better calibration possibilities

606 for setting a distinct molecular clock. Finally, if the hypothesis of the Tibetan origin of the

607 Ethira clade fits the reality, it remains unclear whether the ancestors of the clade were

608 originally distributed in the Tibetan Himalaya or on the southern Tibetan Plateau (Gangdise

609 Shan and Transhimalaya, respectively).

610

611

612 References

613 Andrewes, H.E. (1926) On a collection of Carabidae from the Kumaon-Tibetan frontier. The

614 Entomologist’s Monthly Magazine, 62: 65-80.

615 Barthlott, W., Lauer W. & Placke, A. (1996) Global distribution of species diversity in

616 vascular plants: towards a world map of phytodiversity. Erdkunde, 50: 317-327.

617 Böhner, J., Lehmkuhl, F., (2005) Environmental change modelling for Central and High Asia:

618 Pleistocene, present and future scenarios. Boreas, 34, 220-231

619 Blank, M., Laine, A.O., Jürss, K. & Bastrop, R. (2008) Molecular identification key based on

620 PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the

621 species’ current distribution in the Baltic Sea. Helgoland Marine Research, 62 (2): 129-

622 141. 25

623 Blisniuk, P.M., Hacker, B.R., Glodny, J., Ratschbacher, L., Bi, S., Wu, Z., McWilliams, M.O.

624 & Calvert, A. (2001) Normal faulting in central Tibet since at least 13.5 Myr ago. Nature,

625 412: 628.

626 Cardoso, A. & Vogler, A.P. (2005) DNA taxonomy, phylogeny and Pleistocene

627 diversification of the Cicindela hybrida species group (Coleoptera: Cicindelidae).

628 Molecular Ecology, 14: 3531-3546.

629 Clarke, T.E., Levin, D.B., Kavanaugh, D.H. & Reimchen, T.E. (2001) Rapid evolution in the

630 Nebria gregaria group (Coleoptera: Carabidae) and the paleogeography of the Queen

631 Charlotte Islands. – Evolution, 55 (7): 1408-1418.

632 Conservation International (2010) http://www.biodiversityhotspots.org (last accessed

633 25.02.2010)

634 Coleman, M. & Hodges, K. (1995) Evidence for Tibetan Plateau uplift before 14 Myr ago

635 from a new minimum estimate for east-west extension. Nature, 374: 49-52.

636 Contreras-Diaz, H.G., Moya, O., Oromi, P. & Juan, C. (2007) Evolution and diversification of

637 the forest and hypogean ground-beetle genus Trechus in the Canary Islands. Molecular

638 Phylogenetics and Evolution, 42: 687-699.

639 Cui, Z., Gao, Q., Liu, G., Pan, B. & Chen, H. (1997) The initial elevation of palaeokarst and

640 planation surfaces on Tibet Plateau. Chinese Science Bulletin, 42: 934-939.

641 Currie, B.S., Rowley, D.B. & Tabor, N.J. (2005) Middle Miocene paleoaltimetry of southern

642 Tibet: Implications for the role of mantle thickening and delamination in the Himalayan

643 orogen. Geology, 33 (3): 181-184

644 DeCelles, P.G., Robinson, D.M. & Zandt, G. (2002) Implications of shortening in the

645 Himalayan fold-Thrust belt for uplift of the Tibetan Plateau. Tectonics, 21 (6): 12/1-12/25.

646 DeCelles, P.G., Quade, J., Kapp, P., Fan, M., Dettman, D.L. & Ding, L. (2007) High and dry

647 in central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253 (3-

648 4): 389-401. 26

649 Deuve, T. (1988) Les Carabes des sous-genres Trachycarabus Reitter et Meganebrius Kraatz

650 dans l’Himalaya Central et Oriental (Coleoptera, Carabidae). Entomologia basiliensia, 12:

651 115-146.

652 Dupont-Nivet, G., Hoorn, C. & Konert, M. (2008) Tibetan uplift prior to the Eocene-

653 Oligocene climate transition: Evidence from pollen analysis of the Xining Basin. Geology,

654 36 (12): 987-990.

655 Dupont-Nivet, G., Krijgsman, W., Langereis, C.G., Abels, H.A., Dai, S. & Fang, X. (2007)

656 Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition.

657 Nature, 445: 635-638.

658 Emerson, B.C., Oromi, P. & Hewitt, G.M. (1999) MtDNA phylogeography and recent intra-

659 island diversification among Canary Island Calathus beetles. Molecular Phylogenetics

660 and Evolution, 13 (1): 149-158.

661 Emerson, B.C., Oromi, P. & Hewitt, G.M. (2000) Interpreting colonization of the Calathus

662 (Coleoptera: Carabidae) on the Canary Islands and Madeira trough the application of the

663 parametric bootstrap. Evolution, 54 (6): 2081-2090.

664 Fort, M (1996) Late Cenozoic environmental changes and upilft on the northern side of the

665 central Himalaya: a reappraisal from field data. Palaeogeography, Palaeoclimatology,

666 Palaeoecology, 120, 123–145

667 Folmer, O., Black, M., Hoeh, W., Lutz, R., Vrijenhoek, R., (1994) DNA primers for

668 amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan

669 invertebrates. Molecular Marine Biology & Biotechnology, 3, 294-299.

670 Garzione, C.N., Dettman, D.L., Quade, J., DeCelles, P.G. & Butler, R.F. (2000) High times

671 on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal. Geology, 28: 339-

672 342. 27

673 Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei,

674 J.J., Yuan, B.Y. & Liu, T.S. (2002) Onset of Asian desertification by 22 Myr ago inferred

675 from loess deposits in China. Nature, 416: 159-163.

676 Hall, T.A., (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis

677 program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41, 95-98.

678 Harrison, T.M., Copeland, P., Kidd, W.S.F. & Yin, A. (1992) Raising Tibet. Science, 255:

679 1663-1670.

680 Harrison, T.M., Copeland, P., Kidd, W.S.F. & Lovera, O.M. (1995) Activation of the

681 Nyainquentanghla Shear Zone: implications for uplift of the southern Tibetan Plateau.

682 Tectonics, 14: 658-676.

683 Hieke, F. (2003) Die Amara-Arten des Subgenus Bradytulus Tschitscherin, 1894 (Insecta:

684 Coleoptera: Carabidae). Pp. 107-194. In: Hartmann M., Baumbach H. (Eds.):

685 Biodiversität und Naturausstattung im Himalaya. Erfurt (Verein der Freunde und Förderer

686 des Naturkundemuseums Erfurt e. V.), 389 pp.

687 Holloway, J.D. (1974) The biogeography of Indian butterflies. In: Mani, M.S. (Ed.): Ecology

688 and biogeography in India. Dr. W. Junk Publishers, The Hague: 473-499.

689 Li, J. (1992) The environmental effects of the uplift of the Qinghai-Xizang Plateau.

690 Quaternary Science Reviews, 10: 479-483.

691 Li, J. & Fang, X. (1999) Uplift of the Tibetan Plateau and environmental changes. Chinese

692 Science Bulletin, 44: 2117-2124.

693 Liu, J., Yu, G., Chen, X., (2002) Palaeoclimate simulation of 21 ka for the Tibetan Plateau

694 and Eastern Asia. Climate Dynamics, 19, 575-583.

695 Maddison, D.R. (2008) Systematics of the North American beetle subgenus Pseudoperyphus

696 (Coleoptera: Carabidae: Bembidion) based upon morphological, chromosomal, and

697 molecular data. Annals of the Carnegie Museum, 77 (1): 147-193. 28

698 Mani, M.S. (1974) Biogeographical Evolution in India. In: Mani, M.S. (Ed.): Ecology and

699 biogeography in India. Dr. W. Junk Publishers, The Hague: 698-724.

700 Mani, M.S. (1986) Butterflies of the Himalaya. Oxford & IBH Publishing Co., New Delhi,

701 Bombay, Calcutta, 181 pp.

702 Martens, J. (1993) Bodenlebende Arthropoden im zentralen Himalaya: Bestandsaufnahme,

703 Wege zur Vielfalt und ökologische Nischen. In: Schweinfurth, U. (Ed.) Neue Forschungen

704 im Himalaya. Steiner, Stuttgart, pp. 231–250.

705 Miehe, G. (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter, H. & Breckle,

706 S.-W. (Eds.): Ökologie der Erde, Band 4. Spezielle Ökologie der Gemäßigten und

707 Arktischen Zonen außerhalb Euro-Nordasiens. – Gustav Fischer Verlag, Stuttgart: 181-

708 230.

709 Mulch, A. & Chamberlain, C.P. (2006) The rise and growth of Tibet. Nature, 439: 670-671.

710 Nagata, N., Kubota, K. & Sota, T. (2007) Phylogeography and introgressive hybridization of

711 the ground beetle Carabus yamato in Japan based on mitochondrial gene sequences.

712 Zoological Science 24: 465-474.

713 Nagata, N., Kubota, K., Yahiro, K. & Sota, T. (2007) Mechanical barriers to introgressive

714 hybridization revealed by mitochondrial introgression patterns in Ohomopterus ground

715 beetle assemblages. Molecular Ecology, 16: 4822-4836.

716 Ober, K.A. (2002) Phylogenetic relationships of the carabid subfamily Harpalinae

717 (Coleoptera) based on molecular sequence data. Molecular Phylogenetics and Evolution,

718 24:228–248.

719 Paudayal, K.N. (2005) Late Pleistocene pollen assemblages from the Thimi Formation,

720 Kathmandu Valley, Nepal. The Island Arc, 14: 328-337.

721 Posada, D. & K.A. Crandall (1998) Modeltest: testing the model of DNA substitution.

722 Bioinformatics, 14: 817–818. 29

723 Rowley DB & Currie BS (2006) Paleo-altimetry of the Late Eocene to Miocene Lunpola

724 basin, central Tibet. Nature 439, 677–681.

725 Rowley, D.B., Pierrehumbert, R.T. & Currie, B.S. (2001) A new approach to stable isotope-

726 based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High

727 Himalaya since the Late Miocene. Earth and Planet Science Letters, 188: 243-268.

728 Royden, LH, Burchfiel, BC & van der Hilst, RD (2008) The Geological Evolution of the

729 Tibetan Plateau. Science 321, 1054–1058

730 Sasabe, M., Takami, Y. & Sota, T. (2007) The genetic basis of interspecific differences in

731 genital morphology of closely related carabid beetles. Heridity, 98: 385-391.

732 Sasakawa, K. & Kubota, K. (2005) Cryptic species of the subgenus Morphnosoma Lutshnik

733 (Coleoptera: Carabidae; genus Pterostichus) from Japan. Entomological Science, 8: 389-

734 404.

735 Sasakawa, K. & Kubota, K. (2007) Phylogeny and genital evolution of carabid beetles in the

736 genus Pterostichus and its allied genera (Coleoptera: Carabidae) inferred from two nuclear

737 gene sequences. Annals of the Entomological Society of America, 100 (2): 100-109.

738 Saylor, JE, Quade, J, Dettman, DL, DeCelles, PG, Kapp, PA, Ding, L (2009) The late

739 Miocene through present paleoelevation history of southwesten Tibet. American Journal

740 of Science, 309, 1–42

741 Schmidt, J. (1999) Revision of the genus Calathus from Nepal (Descriptions of new species

742 of Carabidae from Nepal Himalayas, part 6) (Coleoptera Carabidae Sphodrini). Advances

743 in Carabidology, Krasnodar: 299-318.

744 Schmidt, J. (2003) Neue und interessante Laufkäferarten der Gattung Xestagonum Habu, 1978

745 aus dem Himalaya (Insecta: Coleoptera: Carabidae). In: Hartmann, M. & Baumbach, H.

746 (Hrsg.): Biodiversität und Naturausstattung im Himalaya. Verein der Freunde und

747 Förderer des Naturkundemuseums Erfurt e.V., Erfurt: 85-106. 30

748 Schmidt, J. (2006a) Die Pterostichus-Arten des Subgenus Pseudethira Sciaky, 1996, in

749 Zentral- und West-Nepal (Coleoptera, Carabidae): Taxonomie, Phylogenie,

750 Biogeographie. In: Hartmann, M. & Weipert, J. (Hrsg.): Biodiversität und

751 Naturausstattung im Himalaya. Band 2. Verein der Freunde und Förderer des

752 Naturkundemuseums Erfurt e.V., Erfurt: 179-43.

753 Schmidt, J. (2006b) Neues zur Pseudethira-Fauna des Manaslu-Massivs im zentralen Nepal-

754 Himalaya (Coleoptera, Carabidae, Pterostichus). Veröffentlichungen Naturkundemuseum

755 Erfurt, 25: 197-202.

756 Schmidt, J. (2007) Neue Pseudethira-Funde im Annapurna-Massiv im westlichen Zentral-

757 Nepal-Himalaya mit Hinweisen zur Lage von Glazialrefugien im oberen Kali Gandaki-

758 und Marsyangdi Khola-Tal (Coleoptera, Carabidae, Pterostichus) . Veröffentlichungen

759 Naturkundemuseum Erfurt, 26: 13-25.

760 Schmidt, J. (2009a) Taxonomic and biogeographical review of the genus Trechus Clairville,

761 1806, from the Tibetan Himalaya and the southern central Tibetan Plateau (Coleoptera:

762 Carabidae: Trechini). Zootaxa, 2178: 1-72.

763 Schmidt, J. (2009b) Neue Arten und Unterarten der Pterostichus Untergattung Pseudethira

764 Sciaky, 1996 aus Nepal (Coleoptera, Carabidae). Vernate, 28: 183-196.

765 Schmidt, J. & Arndt, E. (2000) Die Gattung Broscus Panzer im Zentral-Himalaya (Insecta:

766 Coleoptera: Carabidae: Broscini). Entomologische Abhandlungen, Staatliches Museum für

767 Tierkunde Dresden, 58 (1): 5-28.

768 Schmidt, J. & Hartmann, M. (2001) Revision der Notiophilus-Arten Nepals (Coleoptera,

769 Carabidae). Veröffentlichungen Naturkundemuseum Erfurt, 20: 151-164.

770 Schmidt, J. & Hartmann, M. (2009) Pristosia Motschulsky, 1865 from the Nepal Himalaya:

771 Taxonomy and Biogeography (Coleoptera: Carabidae: Sphodrini). Zootaxa, 2009: 1-26.

772 Sciaky, R. (1996) New taxa and new synonyms among Pterostichinae from Asia (Coleoptera

773 Carabidae). Entomofauna, 17 (29): 429-440. 31

774 Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook (1994) Evolution,

775 weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of

776 conserved polymerase chain-reaction primers. Annals of the Entomological Society of

777 America, 87:651–701.

778 Sota, T. (2002) Radiation and reticulation: extensive introgressive hybridization in the carabid

779 beetles Ohomopterus inferred from mitochondrial gene genealogy. Population Ecology,

780 44: 145-156.

781 Sota, T., Ishikawa, R., Ujiie, M. & Vogler, A.P. (2001) Extensive trans-species mitochodrial

782 polymorphisms in the carabid beetles Carabus Subgenus Ohomopterus caused by

783 repeated introgressive hybridization. Molecular Ecology, 10: 2833-2847.

784 Sota, T. & Nagata, N. (2008) Diversification in a fluctuating island setting: rapid radiation of

785 Ohomopterus ground beetles in the Japanese Islands. Philosophical Transactions of the

786 Royal Society B, 363: 3377-3390.

787 Sota, T. & Vogler, A.P. (2001) Incongruence of mitochodrial and nuclear gene trees in the

788 carabid beetles Ohomopterus. Syst. Biol., 50: 39-59.

789 Spicer, RA, Harris, NB, Widdowson, M, Herman, AB, Guo, S, Valdes, PJ, Wolfe, JA, Kelley,

790 SP (2003) Constant elevation of southern Tibet over the past 15 million years. Nature, 42,

791 622–624

792 Stork, N.E. (1997) Measuring global biodiversity and its decline. In: Reaka-Kudla, M.L.,

793 Wilson, D.E. & Wilson, E.O. (Eds.): Biodiversity II. Understanding and protecting our

794 biological resources. Joseph Henry Press, Washington D.C.: 41-68.

795 Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other

796 Methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

797 Ujiie, M., Kubota, K., Sota, T. & Ishikawa, R. (2005) Parallel formation of hybrid swarms of

798 ground beetles in the genus Carabus (Coleoptera: Carabidae) in adjacent river basins.

799 Entomological Science, 8: 429-437. 32

800 Umeå University (2010) Six times more insect species in tropical mountains than predicted.

801 ScienceDaily. http://www.sciencedaily.com /releases/2010/09/100906084811.htm (last

802 accessed 18.10. 2010).

803 Usami, T., Yokoyama, J., Kubota, K. & Kawata, M. (2006) Genital lock-and-key system and

804 premating isolation by mate preferences in carabid beetles (Carabus subgenus

805 Ohomopterus). Biological Journal of the Linnean Society, 87: 145-154.

806 Wang, C., Zhao, X, Liu, Z, Lippert, PC, Graham, SA, Coe, RS, Yi, H, Zhu, L, Liu, S & Li, Y

807 (2008) Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the

808 National Academy of Sciences, USA, 105 (13): 4987–4992.

809 Wang, Y. & Deng, T. (2005) A 25 m.y. isotopic record of paleodiet and environmental

810 change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau.

811 Earth and Planetary Science Letters, 236: 322-338.

812 Wang, Y., Deng, T. & Biasatti, D. (2006) Ancient diets indicate significant uplift of southern

813 Tibet after ca. 7 Ma. Geology, 34 (4): 309-312.

814 Wang, Y., Wang, X., Xu, Y., Zhang, C., Li, Q., Tseng, Z.J., Takeuchi, G. & Deng, T. (2008)

815 Stable isotopes in fossil mammals, fish and shells from Kunlun Pass Basin, Tibetan

816 Plateau: Paleo-climatic and paleo-elevation implications. Earth and Planetary Science

817 Letters, 270 (1-2): 73-85.

818 Will, K. W. & Gill, A.S. (2008) Phylogeny and classification of Hypherpes auctorum

819 (Coleoptera: Carabidae: Pterostichini: Pterostichus). Annals of Carnegie Museum, 77 (1):

820 93-127.

821 Xia, X. & Xie Z. (2001) DAMBE: Data analysis in molecular biology and evolution. Journal

822 of Heredity, 92, 371-373.

823 Zhang, A.-B. & Sota, T. (2007) Nuclear gene sequences resolve species phylogeny and

824 mitochondrial introgression in Leptocarabus beetles showing trans-species

825 polymorphisms. Molecular Phylogenetics and Evolution, 45: 534-546. 33

826 Zhang, D., Fengquan, L. & Jianmin, B. (2000) Eco-environmental effects of the Qinghai-

827 Tibet Plateau uplift during the Quaternary in China. Environmental Geology, 39 (12):

828 1352-1358.

829 Zwickl, D.J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large

830 biological sequence datasets under the maximum likelihood criterion, Ph.D. dissertation,

831 Austin, TX: The University of Texas. [Genetic Algorithm for Rapid Likelihood Inference

832 software available from http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html].

833

834

835 Figure captions

836

837 Fig. 1. Map of High Asia showing disjunct distribution of the Ethira clade along the High

838 Himalayan Mountain Range, with Ethira Sciaky, 1996 in the Northwest Himalaya (horizontal

839 hatching) and Pseudethira Andrewes, 1936 in the Central and East Himalaya (vertical

840 hatching) (after Schmidt 2006a and unpublished data).

841

842 Fig. 2. Best tree of the maximum likelihood analysis of the 28S sequences (only

843 unambiguously aligned positions, 941 bp, identical sequences removed) of the Ethira clade

844 and additional 57 species of various groups of the tribe Pterostichini (91-taxa alignment).

845 Numbers on or beside branches are bootstrap values (values of 50% and less are not shown).

846 Numbers in brackets refer to the internal specimen identification code. P. = Pterostichus; Ps.

847 = Pseudethira. Himalayan taxa are marked with an asterisk.

848

849 Fig. 3. Best tree of the maximum likelihood analysis of the 28S sequences of the Ethira clade

850 using Pterostichus fasciatopunctatus and P. semenowi as outgroups (36-taxa alignment).

851 Numbers on or beside branches are bootstrap values (values of 50% and less are not shown). 34

852 Numbers in brackets refer to the internal specimen identification code. Morphology based

853 species groups are shown on the right (groups not supported by this analysis are indicated by

854 dotted brackets). E. = Ethira (sensu stricto); gom. = gompanus group; imm. = immarginatus

855 group; ol. = monotypic olafi group; P. = Pterostichus; Ps. = Pseudethira.

856

857 Fig. 4. Best tree of the maximum likelihood analysis of the COI sequences of the Ethira clade

858 using Pterostichus fasciatopunctatus and P. semenowi as outgroups. Numbers on or beside

859 branches are bootstrap values (values of 50% and less are not shown). Numbers in brackets

860 refer to the internal specimen identification code. Morphology based species groups are

861 shown on the right (groups not supported by this analysis are indicated by dotted brackets).

862 Abbreviations as in Fig. 3.

863

864 Fig. 5a. Summary tree of the maximum likelihood analyses of the 28S sequences (nodes

865 supported by this analysis are indicated by small boxes), of the COI sequences (triangles), and

866 of the morphological analysis (circles) of the Ethira clade. Only those nodes are shown which

867 are supported by at least two of the analyses, with three exceptions (immarginatus groups

868 sensu novo, lineage A1, lineage A1i) which are discussed in the text. Unsolved branching

869 patterns are indicated by dotted lines. Resulting species groups are shown on the right.

870 Geographical restriction of lineages and species are indicated by colouration: Yellow, NW

871 Himalaya. Green, Western Nepal Himalaya. Red, Western Central Nepal Himalaya. Light

872 blue, Central Nepal Himalaya. Dark blue, East Nepal-Sikkim Himalaya.

873

874 Fig. 5b. Map of High Asia with Geographical restriction of lineages and species indicated by

875 colouration Geographical restriction of lineages and species are indicated by colouration:

876 Yellow, NW Himalaya. Green, Western Nepal Himalaya. Red, Western Central Nepal

877 Himalaya. Light blue, Central Nepal Himalaya. Dark blue, East Nepal-Sikkim Himalaya. 35

878

879 Fig. 6. Drawings of parts of the male genital armature (aedeagal median lobe) of selected

880 species of the Ethira clade (after Schmidt 2006a+b). Those parts were mainly used for species

881 differentiation and phylogeny. Combined with the results of the molecular genetic analyses

882 presented in this paper synapomorphic genital characters give strong evidences for

883 hybridization events between Pterostichus hartmanni and P. juga, and between P.

884 immarginatus and P. matsumurai (for details see text).

885

886 Fig. 7. Comparision of mitochondrial phylogeny and geographical distribution of the

887 balachowskyi species group. Below: Best tree of the maximum likelihood analysis of the COI

888 sequences using Pterostichus gompanus and P. olafi as outgroups. Numbers on or beside

889 branches are bootstrap values (values of 50% and less are not shown). Numbers in brackets

890 refer to the internal specimen identification code. Private haplotypes are numbered (bold in

891 coloured small boxes). The collecting localities of all these haplotypes in the western Central

892 Nepal Himalaya are shown in the map above.

893

894 895 Figure 1 36

896 897 Figure 2 37

898 899 Figure 3 38

900 901 Figure 4 39

902 903 Figure 5a 40

904 905 Figure 5b 41

906 907 Figure 6 42

908 909 Figure 7 910 911 Suppementary Material Erklärung

Hiermit erkläre ich, dass ich bisher zu keinem anderen Zeitpunkt einen Promotionsversuch unternommen habe. lch versichere, dass ich die vorliegende Dissertation

"Biogeographisch-phylogenetische Untersuchungen an Hochgebirgs-Laufkäfern - Ein Beitrag zur Umweltgeschichte des Himalaya-Tibet Orogens"

selbst und ohne fremde Hilfe verfasst, nicht andere als die in ihr angegebenen Quellen und Hilfsmittel benutzt, alle vollständig oder sinngemäß übernommenen Zitale als solche gekennzeichnet sowie die Dissertation in der vorliegenden oder einer ähnlichen Form noch bei keiner anderen in- oder ausländischen Hochschule anlässlich eines Promotionsgesuches oder zu anderen Prüfzwecken eingereicht habe,

-) ,- {r "#* .t r, &,,*-..* .jo" !'r"*fiu p.,, L' Admannshagen, 17 .01 .2011

Anlage:

Curriculum Vitae

T-

Curriculum Vitae

Persönliche Daten

Name: Schmidt Vorname: Joachim Geburtsdatum: 08.06.1963 Geburtsort: Schwerin Staatsangehörigkeit: deutsch Familienstand: Verheiratet, 2 Kinder

Schulbildung

1970-1980 Allgemeinbildende Oberschule Rostock-Evershagen 1980-1983 Berufsausbildung mit Abitur in der Berufsschule des VEG Velgast, mit den Abschlüssen: Allgemeine Hochschulreife Facharbeiter Agrotechniker

Studium

1986-1988 Studium der Pädagogik Biologie/Chemie an der Universität Rostock und Exmatrikulation aus politischen Gründen 1996-2002 Studium der Biologie an der Universität Rostock Diplomarbeit: „Habitatpräferenzen küstentypischer Laufkäfer der Mecklenburgischen Ausgleichsküste“

Promotion

2007-2011 Doktorand am Fachbereich Geographie, Philipps-Universität Marburg (DFG-Projekt MI 271/20-1)