Genome-Wide DNA Methylation Analysis Reveals Epigenetic Pattern of SH2B1 in Chinese Monozygotic Twins Discordant for Autism Spectrum Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide DNA Methylation Analysis Reveals Epigenetic Pattern of SH2B1 in Chinese Monozygotic Twins Discordant for Autism Spectrum Disorder fnins-13-00712 July 15, 2019 Time: 15:26 # 1 ORIGINAL RESEARCH published: 17 July 2019 doi: 10.3389/fnins.2019.00712 Genome-Wide DNA Methylation Analysis Reveals Epigenetic Pattern of SH2B1 in Chinese Monozygotic Twins Discordant for Autism Spectrum Disorder Shuang Liang1, Zhenzhi Li2, Yihan Wang3, Xiaodan Li1, Xiaolei Yang1, Xiaolei Zhan1, Yan Huang1, Zhaomin Gao1, Min Zhang3, Caihong Sun1, Yan Zhang3* and Lijie Wu1* 1 Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China, 2 Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States, 3 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder. Aberrant Edited by: DNA methylation has been observed in ASD but the mechanisms remain largely Leonard C. Schalkwyk, unknown. Here, we employed discordant monozygotic twins to investigate the University of Essex, United Kingdom contribution of DNA methylation to ASD etiology. Genome-wide DNA methylation Reviewed by: analysis was performed using samples obtained from five pairs of ASD-discordant Claus Jürgen Scholz, Labor Dr. Wisplinghoff, Germany monozygotic twins, which revealed a total of 2,397 differentially methylated genes. Emma Louise Dempster, Further, such gene list was annotated with Kyoto Encyclopedia of Genes and Genomes University of Exeter, United Kingdom and demonstrated predominant activation of neurotrophin signaling pathway in ASD- *Correspondence: Lijie Wu discordant monozygotic twins. The methylation of SH2B1 gene was further confirmed [email protected] in the ASD-discordant, ASD-concordant monozygotic twins, and a set of 30 pairs of Yan Zhang sporadic case-control by bisulfite-pyrosequencing. The results showed that there was [email protected] a greater DNA methylation difference in ASD-discordant monozygotic twins than ASD- Specialty section: concordant monozygotic twins. Further, verification of the Chr.16:28856743 of SH2B1 This article was submitted to Neurogenomics, showed significant differences in DNA methylation between case and control. These a section of the journal results suggest abnormal methylation of SH2B1 is associated with ASD etiology. Our Frontiers in Neuroscience data suggest that it might be worthwhile to further explore the functions of SH2B1 and Received: 01 November 2018 related genes of neurotrophin signaling pathway in ASD. Accepted: 24 June 2019 Published: 17 July 2019 Keywords: autism spectrum disorder, monozygotic twins, discordant, DNA methylation, SH2B1 Citation: Liang S, Li Z, Wang Y, Li X, Yang X, Zhan X, Huang Y, Gao Z, INTRODUCTION Zhang M, Sun C, Zhang Y and Wu L (2019) Genome-Wide DNA Autism spectrum disorder (ASD) is a group of serious neurodevelopmental disorders defined in an Methylation Analysis Reveals individual by deficits in social interaction and communication, accompanied by restricted interests Epigenetic Pattern of SH2B1 in Chinese Monozygotic Twins and stereotypical repetitive behaviors. ASD affects 1–2% of children and confers severe lifelong Discordant for Autism Spectrum disability, thus ASD has become a growing clinical and public health problem worldwide (Kim Disorder. Front. Neurosci. 13:712. et al., 2011; Elsabbagh et al., 2012; Hill et al., 2015). Traditionally, the etiology for ASD mainly doi: 10.3389/fnins.2019.00712 attributed to different genetic variants such as de novo mutations, copy number variations (CNV), Frontiers in Neuroscience| www.frontiersin.org 1 July 2019| Volume 13| Article 712 fnins-13-00712 July 15, 2019 Time: 15:26 # 2 Liang et al. Epigenome Changes in ASD Twins and single-nucleotide polymorphisms (SNP) (State and Levitt, of ASD-concordant MZ twins and 30 pairs of sporadic patients 2011; Neale et al., 2012). Although focuses on research efforts with aged-, sex-matched controls were invited to participate. have grown in intensity during the past decade and due to More than two experienced psychiatrists independently issued the highly clinical and etiological heterogeneous nature of ASD diagnoses according to the criteria of international ASD, no findings of biological or clinical markers have been Diagnostic and Statistical Manual of Mental Disorders, 5th Ed definitively identified. This shows that additional epigenetic (DSM-5). All probands were also administered by the Autism or environmental factors are an underlying cause for the Diagnostic Observation Schedule-generic (ADOS) (Lord et al., susceptibility to ASD. A more recent twin study further suggested 2000), and were all found to meet the criteria for autism. that an environmental contribution might be a potentially The ADOS, a semi-structured observational instrument, is substantial role for ASD etiology (Hallmayer et al., 2011; Schendel made up for four modules to assess social and communicative et al., 2014). A large survey of over 14,000 children with ASD in abilities in individuals suspected of having ASD, in which two Sweden revealed that heritable factors were found to contribute different cut-points that depend on symptom severity result to about half of ASD risk and the other half were contributed in a diagnosis of (i) ASD (milder variant) or (ii) autism (more from undetected genetic factors, environmental effects and/or severe variant). Cases with Rett syndrome, tuberous sclerosis, stochastic effects. fragile-X syndrome, and any other neurological conditions The epigenetic mechanisms allow stable regulation of gene suspected to be associated with autism, were excluded by expression without altering the DNA sequence that is optimally clinical examination and molecular genetic tests of the FMR1 positioned between the genome and the environment (Vogel gene (Khaniani et al., 2008). The standard biosecurity and Ciernia and LaSalle, 2016). Environmentally driven changes institutional safety procedures for the blood collection have have also propelled the development of neuropsychiatric been carried out. This study was performed in accordance diseases via the alteration of epigenetic profiles, including with the recommendations of Institutional Research Board of classic ASD (Schanen, 2006; Grafodatskaya et al., 2010) and Harbin Medical University (HMUIRB2012006). The protocol symptomatic ASD such as Rett syndrome and Fragile X was approved by the Institutional Research Board of Harbin syndrome. However, environmental modulation of epigenetic Medical University. Safety and fairness principle has been fully states is poorly understood. Since, monozygotic twins have a considered in the study plans. All subjects gave written informed DNA sequence in common, the study of discordant monozygotic consent in accordance with the Declaration of Helsinki and the (MZ) twins provides an ideal model to investigate the value content of the research have no harm or risk. of epigenetic factors in the field of disease etiology. DNA methylation, as the most widely investigated process in epigenetic DNA Extraction and Bisulfite Conversion mechanisms, was considered as a key element that mediates Genomic DNA was extracted from whole blood using the reversible changes in gene expression regardless of DNA QIAamp DNA Mini Kit (Qiagen, Darmstadt, German), and sequence variation (Henikoff and Matzke, 1997). Recent advances assessed for integrity, quantity, purity and concentration in high-throughput genomic technology expand our knowledge by electrophoresis in a 1% agarose gel and Nanodrop2000 of DNA methylation. As a result, uncovering this complex spectrophotometer. Bisulfite conversion of 500 ng of genomic relationship will be important for understanding the mechanism DNA was performed using EZ 96-DNA methylation kit (Zymo of DNA methylation in ASD. Lately, two studies have dissected Research, Irvine, CA, United States) consistent of manufacturer’s several ASD-associated differentially methylated loci (Nguyen standard protocol. The bisulfite conversion reaction was et al., 2010; Wong et al., 2014), and further support that the conducted in duplicate to minimize potential bias caused by peripherally derived DNA can be used to identify disease- variable conversion efficiency, and pooled bisulfite-treated DNA associated epigenetic changes. Nonetheless, to date, no study was used for subsequent array experiments. has been reported for the methylomic profile in the samples of Chinese ASD-discordant MZ twins, and it is necessary to investigate the significance of epigenetic mechanism in the Infinium Human-Methylation Chinese population. 450BeadChip (450K) Array This study was designed to identify the genome-wide DNA Three pairs of ASD-discordant MZ twins for Genome-wide DNA methylation patterns in Chinese MZ twins discordant for methylation were measured via the Illumina Infinium Human ASD, and further provide the evidence for ASD associated Methylation 450BeadChip assay (Illumina, San Diego, CA, epigenetic alterations. United States), which interrogated the DNA methylation profile of more than 485,000 methylation sites per sample at single- nucleotide resolution. Arrays were scanned by HiScan 2000 MATERIALS AND METHODS (Illumina). Illumina Genome Studio software (Illumina) was used to extract signal intensities for each probe and to perform Samples Recruitment initial control quality checks. There were no failed samples which All the participants were recruited from the Children needed to be excluded by examined 450K array control probes Development and Behavior Research Center (CDBRC), to assess
Recommended publications
  • Microdeletions in 16P11.2 and 13Q31.3 Associated with Developmental Delay and Generalized Overgrowth
    Microdeletions in 16p11.2 and 13q31.3 associated with developmental delay and generalized overgrowth A.M. George1, J. Taylor2 and D.R. Love1 1Diagnostic Genetics, LabPlus, Auckland City Hospital, Auckland, New Zealand 2Northern Regional Genetic Service, Auckland City Hospital, Auckland, New Zealand Corresponding author: D.R. Love E-mail: [email protected] Genet. Mol. Res. 11 (3): 3133-3137 (2012) Received November 28, 2011 Accepted July 18, 2012 Published September 3, 2012 DOI http://dx.doi.org/10.4238/2012.September.3.1 ABSTRACT. Chromosome microarray analysis of patients with developmental delay has provided evidence of small deletions or duplications associated with this clinical phenotype. In this context, a 7.1- to 8.7-Mb interstitial deletion of chromosome 16 is well documented, but within this interval a rare 200-kb deletion has recently been defined that appears to be associated with obesity, or developmental delay together with overgrowth. We report a patient carrying this rare deletion, who falls into the latter clinical category, but who also carries a second very rare deletion in 13q31.3. It remains unclear if this maternally inherited deletion acts as a second copy number variation leading to pathogenic variation, or is non-causal and the true modifiers are yet to be determined. Key words: Developmental delay; Obesity; Overgrowth; GPC5; SH2B1 Genetics and Molecular Research 11 (3): 3133-3137 (2012) ©FUNPEC-RP www.funpecrp.com.br A.M. George et al. 3134 INTRODUCTION Current referrals for chromosome microarray analysis (CMA) are primarily for de- termining the molecular basis of developmental delay and autistic spectrum disorder in child- hood.
    [Show full text]
  • Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance
    Diabetes Volume 68, November 2019 2049 Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance Anabel Flores,1 Lawrence S. Argetsinger,2 Lukas K.J. Stadler,3 Alvaro E. Malaga,2 Paul B. Vander,2 Lauren C. DeSantis,2 Ray M. Joe,1,2 Joel M. Cline,2 Julia M. Keogh,3 Elana Henning,3 Ines Barroso,4 Edson Mendes de Oliveira,3 Gowri Chandrashekar,2 Erik S. Clutter,2 Yixin Hu,2 Jeanne Stuckey,5 I. Sadaf Farooqi,3 Martin G. Myers Jr.,1,2,6 and Christin Carter-Su1,2,6 Diabetes 2019;68:2049–2062 | https://doi.org/10.2337/db19-0608 Disruption of the adaptor protein SH2B1 (SH2-B, PSM) is obesity and glucose intolerance of otherwise Sh2b1-null associated with severe obesity, insulin resistance, and mice (6), suggesting the importance of brain SH2B1 for neurobehavioral abnormalities in mice and humans. Here, the control of energy balance and glucose homeostasis. SH2B1 we identify 15 variants in severely obese children. At the cellular level, SH2B1 is an intracellular adaptor Four obesity-associated human SH2B1 variants lie in protein that is recruited to phosphorylated tyrosine res- OBESITY STUDIES the Pleckstrin homology (PH) domain, suggesting that idues on specific membrane receptor tyrosine kinases (e.g., the PH domain is essential for SH2B1’s function. We gen- receptors for brain-derived neurotrophic factor [BDNF], erated a mouse model of a human variant in this domain (P322S). P322S/P322S mice exhibited substantial prenatal nerve growth factor [NGF], insulin) and cytokine receptor/ lethality. Examination of the P322S/1 metabolic phenotype Janus kinase (JAK) complexes (e.g., leptin receptor/JAK2) – revealed late-onset glucose intolerance.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Crucial Role of the SH2B1 PH Domain for the Control of Energy Balance
    Diabetes Page 2 of 46 1 Crucial Role of the SH2B1 PH Domain for the Control of 2 Energy Balance 3 4 Anabel Floresa, Lawrence S. Argetsingerb+, Lukas K. J. Stadlerc+, Alvaro E. Malagab, Paul B. 5 Vanderb, Lauren C. DeSantisb, Ray M. Joea,b, Joel M. Clineb, Julia M. Keoghc, Elana Henningc, 6 Ines Barrosod, Edson Mendes de Oliveirac, Gowri Chandrashekarb, Erik S. Clutterb, Yixin Hub, 7 Jeanne Stuckeyf, I. Sadaf Farooqic, Martin G. Myers Jr. a,b,e, Christin Carter-Sua,b,e, g * 8 aCell and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA 9 bDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA 10 cUniversity of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, 11 Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK 12 dMRC Epidemiology Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, 13 Cambridge, UK 14 eDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA 15 fLife Sciences Institute and Departments of Biological Chemistry and Biophysics, University of Michigan, Ann Arbor, 16 MI 48109, USA 17 +Authors contributed equally to this work 18 gLead contact 19 *Correspondence: [email protected] 20 21 Running title: Role of SH2B1 PH Domain in Energy Balance 22 23 24 25 26 27 28 1 Diabetes Publish Ahead of Print, published online August 22, 2019 Page 3 of 46 Diabetes 29 30 Abstract 31 Disruption of the adaptor protein SH2B1 is associated with severe obesity, insulin resistance and 32 neurobehavioral abnormalities in mice and humans.
    [Show full text]
  • PV3320 Certificate of Analysis for Lot 1322684A
    Certificate of Analysis MAPK8 (JNK1), Inactive , 100 µg Mitogen-activated Protein Kinase 8 (MAP), Inactive, Histidine-tagged Part Number: PV3320 5781 Van Allen Way Lot Number: 1322684A Carlsbad, CA 92008 Immediate Storage: -80°C Phone: 760.603.7200 Shipping Conditions: dry ice www.thermofisher.com Description: Storage and Handling: Recombinant human full-length protein, inactive, Histidine-tagged, Store at -80°C. At first use, aliquot and store at -80°C to avoid multiple expressed in insect cells. freeze-thaws. If properly stored at -80°C, this product is guaranteed for 6 Specific Activity: months from date of purchase. Approximately 2% activity as compared to the active form of the kinase. Storage Buffer: 50 mM Tris (pH 7.5), 150 mM NaCl, 0.5 mM EDTA, 0.05% Triton® X–100, Can be activated by the upstream kinase MAP2K7, mutant. 2 mM DTT and 50% Glycerol. Concentration: 0.87 mg/mL total protein as measured using the Bradford protein assay with BSA as a standard. Calculated 18,300 nM. Aliases: JNK, JNK1, SAPK1 QUALITY ASSURANCE Activation Test: Gel Information for MAPK8 (JNK1), Inactive The coupled MAPK8 activation assay uses active MAP2K7, mutant to Page Description: The SDS- phosphorylate ATF2 substrate. The assay was setup in two states: 1st PAGE and/or Native PAGE MAPK8 phosphorylation by MAP2K7, mutant without 32P-ATP; and 2nd were run on 4-20% Tris-Glycine ATF2 substrate phosphorylation by activated MAPK8 in the presence of Novex® gels (Catalog #: 32P-ATP. The basal activity of MAPK8 was also assayed in the absence of EC6025BOX). MAP2K7, mutant. Lane 1: Invitrogen™ BenchMark™ Protein Ladder (Catalog #: 10747-012).
    [Show full text]
  • LIM and Cysteine-Rich Domains 1 (LMCD1) Regulates Skeletal Muscle Hypertrophy, Calcium Handling, and Force Duarte M
    Ferreira et al. Skeletal Muscle (2019) 9:26 https://doi.org/10.1186/s13395-019-0214-1 RESEARCH Open Access LIM and cysteine-rich domains 1 (LMCD1) regulates skeletal muscle hypertrophy, calcium handling, and force Duarte M. S. Ferreira1, Arthur J. Cheng2,3, Leandro Z. Agudelo1,4, Igor Cervenka1, Thomas Chaillou2,5, Jorge C. Correia1, Margareta Porsmyr-Palmertz1, Manizheh Izadi1,6, Alicia Hansson1, Vicente Martínez-Redondo1, Paula Valente-Silva1, Amanda T. Pettersson-Klein1, Jennifer L. Estall7, Matthew M. Robinson8, K. Sreekumaran Nair8, Johanna T. Lanner2 and Jorge L. Ruas1* Abstract Background: Skeletal muscle mass and strength are crucial determinants of health. Muscle mass loss is associated with weakness, fatigue, and insulin resistance. In fact, it is predicted that controlling muscle atrophy can reduce morbidity and mortality associated with diseases such as cancer cachexia and sarcopenia. Methods: We analyzed gene expression data from muscle of mice or human patients with diverse muscle pathologies and identified LMCD1 as a gene strongly associated with skeletal muscle function. We transiently expressed or silenced LMCD1 in mouse gastrocnemius muscle or in mouse primary muscle cells and determined muscle/cell size, targeted gene expression, kinase activity with kinase arrays, protein immunoblotting, and protein synthesis levels. To evaluate force, calcium handling, and fatigue, we transduced the flexor digitorum brevis muscle with a LMCD1-expressing adenovirus and measured specific force and sarcoplasmic reticulum Ca2+ release in individual fibers. Finally, to explore the relationship between LMCD1 and calcineurin, we ectopically expressed Lmcd1 in the gastrocnemius muscle and treated those mice with cyclosporine A (calcineurin inhibitor). In addition, we used a luciferase reporter construct containing the myoregulin gene promoter to confirm the role of a LMCD1- calcineurin-myoregulin axis in skeletal muscle mass control and calcium handling.
    [Show full text]
  • MAP2K7 Monoclonal Antibody (M04), Clone 2G5
    MAP2K7 monoclonal antibody (M04), clone 2G5 Catalog # : H00005609-M04 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Transfected lysate) Description: MAP2K7. Immunogen: MAP2K7 (NP_660186, 1 a.a. ~ 99 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: MAASSLEQKLSRLEAKLKQENREARRRIDLNLDISPQRPRPTLQLPLAND GGSRSPSSESSPQHPTPPARPRHMLGLPSTLFTPRSMESIEIDQKLQEI enlarge Host: Mouse Western Blot (Recombinant protein) Reactivity: Human Immunohistochemistry Isotype: IgG1 Kappa (Formalin/PFA-fixed paraffin- embedded sections) Quality Control Antibody Reactive Against Recombinant Protein. Testing: enlarge Immunofluorescence Western Blot detection against Immunogen (36.63 KDa) . enlarge Storage Buffer: In 1x PBS, pH 7.4 ELISA In situ Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. Proximity Ligation Assay (Cell) Instruction: MSDS: Download Datasheet: Download Applications enlarge Western Blot (Transfected lysate) Page 1 of 3 2016/5/21 Western Blot analysis of MAP2K7 expression in transfected 293T cell line by MAP2K7 monoclonal antibody (M04), clone 2G5. Lane 1: MAP2K7 transfected lysate(47.485 KDa). Lane 2: Non-transfected lysate. Protocol Download Western Blot (Recombinant protein) Protocol Download Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Immunoperoxidase of monoclonal antibody to MAP2K7 on formalin-fixed paraffin-embedded human pancreas. [antibody concentration 1.2 ug/ml] Protocol Download Immunofluorescence enlarge this image Immunofluorescence of monoclonal antibody to MAP2K7 on HeLa cell . [antibody concentration 10 ug/ml] Protocol Download ELISA In situ Proximity Ligation Assay (Cell) Page 2 of 3 2016/5/21 Proximity Ligation Analysis of protein-protein interactions between MAPK8 and MAP2K7. HeLa cells were stained with anti-MAPK8 rabbit purified polyclonal 1:1200 and anti-MAP2K7 mouse monoclonal antibody 1:50.
    [Show full text]
  • Insight Into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and Its Rare Obesity-Associated Variants
    Insight into the Brain-Specific Alpha Isoform of the Scaffold Protein SH2B1 and its Rare Obesity-Associated Variants By Ray Morris Joe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in the University of Michigan 2017 Doctoral Committee: Professor Christin Carter-Su, Chair Professor Ken Inoki Professor Benjamin L. Margolis Professor Donna M. Martin Professor Martin G. Myers © Ray Morris Joe ORCID: 0000-0001-7716-2874 [email protected] All rights reserved 2017 Acknowledgements I’d like to thank my mentor, Christin Carter-Su, for providing me a second opportunity and taking a chance on me after my leave of absence without hesitation. It is an honor to have a mentor guide me through the many challenges I have faced as a graduate student. She has taught me to find passion in my profession, and to strive to push through obstacles and find ways to reach my goals. In addition, she has given me insight to find a balance between work and life by giving me freedom to independently perform my research as well as stories on family and child-rearing. Throughout the many countless days and nights writing grants, manuscripts, and analyzing/interpreting data, it was wonderful to share our past cultural identities with one another. I look forward to having Christy as a mentor, colleague, and friend for all my future endeavors I have after I leave her laboratory. I want to thank my thesis committee, Ken Inoki, Ben Margolis, Donna Martin, and Martin Myers for the numerous insights for my scientific training.
    [Show full text]
  • Inhibition of ERK 1/2 Kinases Prevents Tendon Matrix Breakdown Ulrich Blache1,2,3, Stefania L
    www.nature.com/scientificreports OPEN Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown Ulrich Blache1,2,3, Stefania L. Wunderli1,2,3, Amro A. Hussien1,2, Tino Stauber1,2, Gabriel Flückiger1,2, Maja Bollhalder1,2, Barbara Niederöst1,2, Sandro F. Fucentese1 & Jess G. Snedeker1,2* Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fbrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants. Tendon is a musculoskeletal tissue that transmits muscle force to bone. To accomplish its biomechanical function, tendon tissues adopt a specialized extracellular matrix (ECM) structure1. Te load-bearing tendon compart- ment consists of highly aligned collagen-rich fascicles that are interspersed with tendon stromal cells. Tendon is a mechanosensitive tissue whereby physiological mechanical loading is vital for maintaining tendon archi- tecture and homeostasis2. Mechanical unloading of the tissue, for instance following tendon rupture or more localized micro trauma, leads to proteolytic breakdown of the tissue with severe deterioration of both structural and mechanical properties3–5.
    [Show full text]
  • Development of an Autophagy-Related Gene Expression Signature For
    Hu et al. J Transl Med (2020) 18:160 https://doi.org/10.1186/s12967-020-02323-x Journal of Translational Medicine RESEARCH Open Access Development of an autophagy-related gene expression signature for prognosis prediction in prostate cancer patients Daixing Hu1, Li Jiang1, Shengjun Luo1, Xin Zhao1, Hao Hu2, Guozhi Zhao1 and Wei Tang1* Abstract Background: Prostate cancer (PCa) is one of the most prevalent cancers that occur in men worldwide. Autophagy- related genes (ARGs) may play an essential role in multiple biological processes of prostate cancer. However, ARGs expression signature has rarely been used to investigate the association between autophagy and prognosis in PCa. This study aimed to identify and assess prognostic ARGs signature to predict overall survival (OS) and disease-free survival (DFS) in PCa patients. Methods: First, a total of 234 autophagy-related genes were obtained from The Human Autophagy Database. Then, diferentially expressed ARGs were identifed in prostate cancer patients based on The Cancer Genome Atlas (TCGA) database. The univariate and multivariate Cox regression analysis was performed to screen hub prognostic ARGs for overall survival and disease-free survival, and the prognostic model was constructed. Finally, the correlation between the prognostic model and clinicopathological parameters was further analyzed, including age, T status, N status, and Gleason score. Results: The OS-related prognostic model was constructed based on the fve ARGs (FAM215A, FDD, MYC, RHEB, and ATG16L1) and signifcantly stratifed prostate cancer patients into high- and low-risk groups in terms of OS (HR 6.391, 95% CI 1.581– 25.840, P < 0.001). The area under the receiver operating characteristic curve (AUC) of the =prediction model= was 0.84.
    [Show full text]
  • Map2k7 Map3k1
    MAP2K7 Assay platform : Mobility Shift Assay Product code 07-148 Substrate : JNK2 Full-length human MAP2K7 [1-419(end) amino acids of accession Cascade Assay* number NP_660186.1] was co-expressed as N-terminal GST-fusion Metal : Mg protein (75 kDa) with human His-tagged MAP3K3 [1-626(end) amino acids of accession number NP_002392.2] using baculovirus Reference compound : Staurosporine expression system. GST-MAP2K7 was purified by using glutathione IC50 at 1 mM ATP (nM) : 1100 sepharose chromatography. *JNK2/Modified Erktide MAP3K1 Assay platform : Mobility Shift Assay Product code 07-103 Substrate : MAP2K1 Human MAP3K1, catalytic domain [1327-1646(end) amino acids of Cascade Assay* accession number XP_042066.8] was expressed as N-terminal Metal : Mg GST-fusion protein (62 kDa) using baculovirus expression system. GST-MAP3K1 was purified by using glutathione sepharose Reference compound : Staurosporine chromatography and anion exchange chromatography. IC50 at 1 mM ATP (nM) : 160 *MAP2K1/Erk2/Modified Erktide MAP3K2 Assay platform : Mobility Shift Assay Product code 07-104 Substrate : MAP2K4/MAP2K7 Human MAP3K2, catalytic domain [337-620(end) amino acids of Cascade Assay* accession number NP_006600.3] was expressed as N-terminal Metal : Mg GST-fusion protein (59 kDa) using baculovirus expression system. GST-MAP3K2 was purified by using glutathione sepharose Reference compound : Staurosporine chromatography. IC50 at 1 mM ATP (nM) : 45 *(MAP2K4/MAP2K7)/JNK2/Modified Erktide MAP3K3 Assay platform : Mobility Shift Assay Product code 07-105 Substrate : MAP2K6 Full-length human MAP3K3 [1-626(end) amino acids of accession Cascade Assay* number NP_002392.2] was expressed as N-terminal GST-fusion Metal : Mg protein (98 kDa) using baculovirus expression system.
    [Show full text]
  • SNP Gene Chr* Region P Value Odd Ratios Minor Allele Major Allele Rs11184708 PRMT6 1 Upstream 6.447× 10−13 6.149 T a Rs108025
    Supplementary Table S1. Detailed information on scrub typhus-related candidate SNPs with a p value < 1 × 10−4. Odd Minor Major SNP Gene Chr* Region p value Ratios Allele Allele rs11184708 PRMT6 1 upstream 6.447× 10−13 6.149 T A rs10802595 RYR2 1 intron 0.00008738 2.593 A G downstream, intron, rs401974 LINC00276,LOC100506474 2 0.0000769 0.3921 T C upstream rs1445126 MIR4757,NT5C1B 2 upstream 0.00004819 3.18 A G LOC101930107,MIR4435-1,PLGLB rs62140478 2 downstream, upstream 7.404 × 10−8 9.708 T C 2 rs35890165 CPS1,ERBB4 2 downstream 0.00003952 0.373 A G rs34599430 ZNF385D,ZNF385D-AS2 3 intron, upstream 0.00002317 2.767 G A rs6809058 RBMS3,TGFBR2 3 downstream, upstream 0.00002507 3.094 G A rs3773683 SIDT1 3 intron 0.00006635 0.3543 C T rs11727383 CRMP1,EVC 4 intron 0.0000803 0.3459 A G rs17338338 NUDT12,RAB9BP1 5 upstream 0.00006987 0.3746 G A rs2059950 DTWD2,LOC102467225 5 downstream 0.000008739 2.911 G A rs72663337 DTWD2,LOC102467225 5 downstream 0.00009856 2.566 T C rs6882516 LSM11 5 UTR-3 0.00007553 2.968 A C rs76949230 TENM2 5 intron 0.00006305 3.048 G C rs3804468 LY86,LY86-AS1 6 intron 0.00003155 0.202 C T rs3778337 DSP 6 exon,intron 0.00007311 0.3897 G A rs16883596 MAP3K7,MIR4643 6 upstream 0.00005186 4.274 A G rs35144103 CCT6P3,ZNF92 7 downstream, upstream 0.00004885 3.422 A G rs13244090 LOC407835,TPI1P2 7 downstream, upstream 0.00004505 2.638 G A rs17167553 LRGUK 7 missense 0.00008788 2.75 T G rs6583826 IDE,KIF11 10 upstream 0.00006894 0.2846 G A rs10769111 LOC221122,PRDM11 11 downstream, upstream 0.0000619 0.3816 T G rs10848921
    [Show full text]