Giant Stellar Arcs in the Large Magellanic Cloud: a Possible Link with Past Activity of the Milky Way Nucleus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Skytools Chart
38 Octans - Chamaleon SkyTools 3 / Skyhound.com β NGC 6025 NGC 2516 IC 2448 β β ε γ Chamaeleon Volans δ ε ε PK 315-13.1 Triangulum Australe β γ 12h δ2 α ε 3195 ζ PK 325-12.1 1 α ζ 6101 5h η θ δ α Apus 09h 2 IC 4499 γ δ1 β γ ζ 6362 η 2 2210 η 2164 18h 06h Large Magellanic Cloud Tarantula Nebulaδ Mensa 2031 NGC 2014 NGC 1962 NGC 1955 ζ NGC 1874 NGC 1829 θ 1866 κ NGC 1770 1805 Collinder 411 NGC 1814 1978 1818 1783 03h 6744 21h β ε ε γ Octans Pavo ν -80° 00h ν 1559 β α δ θ Hydrus Reticulum β γ ι δ 1313 β Small Magellanic Cloud 0° 52° x 34° -7 ε ζ κ 00h00m00.0s -90°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 38 Octans - Chamaleon GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 292 Small Magellanic Cloud Tuc 00h 52m 38s +72° 48' 01” +2,80 318',0x204',0 SBm 0,2 Mly --- --- --- NGC 1313 Ret 03h 18m 15s -66° 29' 51” +9,70 9',5x7',2 Sbcd 13,5 Mly --- --- --- NGC 1559 Ret 04h 17m 36s -62° 47' 01" +11,00 4',2x2',1 SBc 34,0 Mly --- --- --- PGC 17223 Large Magellanic Cloud Dor 05h 23m 35s -69° 45' 22" +0,80 648',0x552',0 SBm 0,2 Mly --- --- --- NGC 6744 Pav 19h 09m 46s -63° 51' 28" +9,10 17',0x10',7 SABb 21,0 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost. -
The Messenger
THE MESSENGER No, 40 - June 1985 Radial Veloeities of Stars in Globular Clusters: a Look into CD Cen and 47 Tue M. Mayor and G. Meylan, Geneva Observatory, Switzerland Subjected to dynamical investigations since the beginning photometry of several clusters reveals a cusp in the luminosity of the century, globular clusters still provide astrophysicists function of the central region, which could be the first evidence with theoretical and observational problems, wh ich so far have for collapsed cores. only been partly solved. The development of photoelectric cross-corelation tech If for a long time the star density projected on the sky was niques for the determination of stellar radial velocities opened fairly weil represented by simple dynamical models, recent the door to kinematical investigations (Gunn and Griffin, 1979, N .~- .", '. '.'., .' 1 '&307 w E ,. 1~ S Fig. 1: Left: 47 Tue (NGC 104) from the Deep Blue Survey - SRC-(J). Right: Centre of 47 Tue from a near-infrared photometrie study of Lioyd Evans. The diameter ofthe large eirele eorresponds to the disk ofthe left photograph. The maximum ofthe rotation appears inside the eircle; the linear part of the rotation eurve (solid-body rotation) affeets only stars inside one areminute of the eentre. 1 Rlre J 250r;.' .;r2' -i4.:...__.....;6;.;.. .;rB. ,;.;10::....--. Tentative Time-table of Council Sessions (J lkm/5] and Committee Meetings in 1985 (.) Gen x =2. November 12 Scientific Technical Committee November 13-14 Finance Committee December 11 -12 Observing Programmes Committee December 16 Committee of Council December 17 Council 10. All meetings will take place at ESO in Garching. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
Atlas Menor Was Objects to Slowly Change Over Time
C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts. -
Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1). -
The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. II
This is a repository copy of The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166782/ Version: Accepted Version Article: Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Crowther, P.A., Caballero-Nieves, S.M. et al. (11 more authors) (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/staa2801 This is a pre-copyedited, author-produced version of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Joachim M Bestenlehner, Paul A Crowther, Saida M Caballero-Nieves, Fabian R N Schneider, Sergio Simón-Díaz, Sarah A Brands, Alex de Koter, Götz Gräfener, Artemio Herrero, Norbert Langer, Daniel J Lennon, Jesus Maíz Apellániz, Joachim Puls, Jorick S Vink, The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136, Monthly Notices of the Royal Astronomical Society, , staa2801] is available online at: https://doi.org/10.1093/mnras/staa2801 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
The Changing Role of the 'Catts
Journal of Astronomical History and Heritage , 13(3), 235-254 (2010). THE CHANGING ROLE OF THE ‘CATTS TELESCOPE’: THE LIFE AND TIMES OF A NINETEENTH CENTURY 20-INCH GRUBB REFLECTOR Wayne Orchiston Centre for Astronomy, James Cook University, Townsville, Queensland 4811, Australia. [email protected] Abstract: An historic 20-in (50.8-cm) Grubb reflector originally owned by the London amateur astronomer, Henry Ellis, was transferred to Australia in 1928. After passing through a number of amateur owners the Catts Telescope— as it became known locally—was acquired by Mount Stromlo Observatory in 1952, and was then used for astrophysical research and for site-testing. In the mid-1960s the telescope was transferred to the University of Western Australia and was installed at Perth Observatory, but with other demands on the use of the dome it was removed in 1999 and placed in storage, thus ending a century of service to astronomy in England and Australia. Keywords: Catts Telescope, Henry Ellis, Walter Gale, Mount Stromlo Observatory, Mount Bingar field station, photoelectric photometry, spectrophotometry, Lawrence Aller, Bart Bok, Priscilla Bok, Olin Eggen, Don Faulkner, John Graham, Arthur Hogg, Gerald Kron, Pamela Kennedy, Antoni Przybylski, David Sher, Robert Shobbrook, Bengt Westerlund, John Whiteoak, Frank Bradshaw Wood. 1 INTRODUCTION what of other telescopes, like the 20-in (50.8-cm) ‘Catts Telescope’? After passing from amateur owner- One of the roles of the Historic Instruments Working ship to Mount Stromlo Observatory in 1952, this was Group of the IAU is to assemble national master lists used over the following twelve years to make a valu- of surviving historically-significant telescopes and able contribution to astrophysics and to provide data auxiliary instrumentation, and at the 2000 General for five different Ph.D. -
Spitzer Analysis of HII Region Complexes in the Magellanic
DRAFT VERSION AUGUST 16, 2018 Preprint typeset using LATEX style emulateapj v. 04/20/08 SPITZER ANALYSIS OF H II REGION COMPLEXES IN THE MAGELLANIC CLOUDS: DETERMINING A SUITABLE MONOCHROMATIC OBSCURED STAR FORMATION INDICATOR B. LAWTON1,K.D.GORDON1,B.BABLER2,M.BLOCK3,A.D.BOLATTO4,S.BRACKER2,L.R.CARLSON5,C.W.ENGELBRACHT3, J. L. HORA6,R.INDEBETOUW7,S.C.MADDEN8,M.MEADE2,M.MEIXNER1,K.MISSELT3,M.S.OEY9,J.M.OLIVEIRA10, T. ROBITAILLE6,M.SEWILO1,B.SHIAO1 U. P. VIJH11 , AND B. WHITNEY12 Draft version August 16, 2018 ABSTRACT H II regionsare the birth places of stars, and as such they providethe best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 µm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared(IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulusphotometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope’s IRAC (3.6, 4.5, 8 µm) and MIPS (24,70, 160 µm) bands. -
Fundamental Astrophysics Course Lecture 1 - Overview
Fundamental Astrophysics Course Lecture 1 - Overview • An Introduc3on to Stars • Observed Features of Star Formaon • Overview of the Star Formaon Sequence • The InterStellar Medium • Mean Molecular Weight • The Angular Momentum Issue • The Virial Theorem • Linearized Hydrodynamical Equaons 10:10 pm An Introduc3on to Stars 10:10 pm Star field image 10:10 pm The Sun is the best studied star • Stellar interiors not directly observable. • Solar neutrinos emiLed in core and detectable. • Helioseismology - vibraons of solar surface can be used to probe density structure • Models of stellar interiors constructed and predic3ons of these models are tested by comparison with observed proper3es of individual stars. 10:10 pm The building blocks in the universe:stars corona photosphere Stellar core chromosphere 10:10 pm Star clusters Star clusters are very useful to understand stars and their evolu3on: • Stars all at same distance • Stars are dynamically bound • Stars have same age • Stars have same chemical composi3on Can contain 103 – 106 stars NGC3603 from Hubble Space Telescope 10:10 pm Globular clusters are more massive star clusters 10:10 pm Observable properties of stars Basic parameters to compare theory and observations: • Stellar mass (M) • Luminosity (L) ∞ – The total energy radiated per second i.e. power (in W): L = L dλ ∫0 λ – If F is the flux (W·m−2) and L is the luminosity (W) or where F is the flux (erg·s−1·cm−2) and L is the luminosity (erg·s−1) and D the distance to the star: L F = 2 • Radius (R) 4πD € • Effective temperature (Te) – The temperature of a black body of the same radius as the star that would radiate the €same amount of energy. -
The Messenger
THE MESSENGER No, 40 - June 1985 Radial Veloeities of Stars in Globular Clusters: a Look into CD Cen and 47 Tue M. Mayor and G. Meylan, Geneva Observatory, Switzerland Subjected to dynamical investigations since the beginning photometry of several clusters reveals a cusp in the luminosity of the century, globular clusters still provide astrophysicists function of the central region, which could be the first evidence with theoretical and observational problems, wh ich so far have for collapsed cores. only been partly solved. The development of photoelectric cross-corelation tech If for a long time the star density projected on the sky was niques for the determination of stellar radial velocities opened fairly weil represented by simple dynamical models, recent the door to kinematical investigations (Gunn and Griffin, 1979, N .~- .", '. '.'., .' 1 '&307 w E ,. 1~ S Fig. 1: Left: 47 Tue (NGC 104) from the Deep Blue Survey - SRC-(J). Right: Centre of 47 Tue from a near-infrared photometrie study of Lioyd Evans. The diameter ofthe large eirele eorresponds to the disk ofthe left photograph. The maximum ofthe rotation appears inside the eircle; the linear part of the rotation eurve (solid-body rotation) affeets only stars inside one areminute of the eentre. 1 Rlre J 250r;.' .;r2' -i4.:...__.....;6;.;.. .;rB. ,;.;10::....--. Tentative Time-table of Council Sessions (J lkm/5] and Committee Meetings in 1985 (.) Gen x =2. November 12 Scientific Technical Committee November 13-14 Finance Committee December 11 -12 Observing Programmes Committee December 16 Committee of Council December 17 Council 10. All meetings will take place at ESO in Garching. -
Open Clusters PAGING
Open Clusters in Turn Left at Orion (5th edition) Page Name Constellation RA Dec Chapter 193 NGC 129 Cassiopeia 0 H 29.8 min. 60° 14' North 210 NGC 220 Tucana 0 H 40.5 min. −73° 24' South 210 NGC 222 Tucana 0 H 40.7 min. −73° 23' South 210 NGC 231 Tucana 0 H 41.1 min. −73° 21' South 192 NGC 225 Cassiopeia 0 H 43.4 min. 61° 47' North 210 NGC 265 Tucana 0 H 47.2 min. −73° 29' South 202 NGC 188 Cepheus 0 H 47.5 min. 85° 15' North 210 NGC 330 Tucana 0 H 56.3 min. −72° 28' South 210 NGC 371 Tucana 1 H 3.4 min. −72° 4' South 210 NGC 376 Tucana 1 H 3.9 min. −72° 49' South 210 NGC 395 Tucana 1 H 5.1 min. −72° 0' South 210 NGC 460 Tucana 1 H 14.6 min. −73° 17' South 210 NGC 458 Tucana 1 H 14.9 min. −71° 33' South 193 NGC 436 Cassiopeia 1 H 15.5 min. 58° 49' North 210 NGC 465 Tucana 1 H 15.7 min. −73° 19' South 193 NGC 457 Cassiopeia 1 H 19.0 min. 58° 20' North 194 M103 Cassiopeia 1 H 33.2 min. 60° 42' North 179 NGC 604, in M33 Triangulum 1 H 34.5 min. 30° 47' October–December 195 NGC 637 Cassiopeia 1 H 41.8 min. 64° 2' North 195 NGC 654 Cassiopeia 1 H 43.9 min. 61° 54' North 195 NGC 659 Cassiopeia 1 H 44.2 min.