A Complete Massive Star Census of R136/NGC2070: the Core of 30

Total Page:16

File Type:pdf, Size:1020Kb

A Complete Massive Star Census of R136/NGC2070: the Core of 30 A complete massive star census of R136/NGC 2070: the core of 30 Doradus Joachim M. Bestenlehner1, Paul A. Crowther1, Saida M. Caballero-Nieves2, Sergio Simon-D´ ´ıaz3, Fabian R.N. Schneider4 10 September 2019 1University of Sheffield, 2Florida Institute of Technology, 3Instituto de Astrof´ısica de Canarias, 4University of Heidelberg 1 Outline R136 Data and analysis Masses and Ages Feedback He abundances and stellar winds Future massive star surveys (Stellar wind theory) 2 30 Doradus, NGC 2070 and R136 3 The star cluster R136 Stellar mass of 105 M ∼ Metallicity of 50% Z ∼ WNh, Of/WN and O stars 7.0 WNh-stars 6.5 6.0 O-stars ! L 5.5 / WR-stars L log 5.0 4.5 4.0 5.0 4.9 4.8 4.7 4.6 4.5 log Teff 4 R136: HST/STIS programme Crowther et al. 2016 39 HST orbits during Cycles 19-20 (17 STIS 52 0:2" slits) × 5 R136: HST/STIS programme Spectroscopic data (stellar parameters and chemical abundances): UV: HST/STIS 1180 to 1700 A˚ (G140L) blue-optical: HST/STIS 3800 to 4800 A˚ (G430M) Hα: HST/STIS 6300 to 6865 A˚ (G750M) Photometric data (luminosity and reddening): HST/WFC3: B-band (F438W) and V-band (F555W), de Marchi et al. (2011) VLT/SPHERE: K-band, Khorrami et al. (2017) HST/WFPC2: U (F336W) and V (F555W) photometry, Hunter et al. (1995) 6 Spectroscopic analysis: HSH95-31 FASTWIND analysis (Puls et al. (1995)) to be comparable with VLT/Flames Tarantula Survey (Evans et al. (2011)) CMFGEN analysis (Hillier & Miller (1998)) for R136a1, a2, a3 Reddening law from Ma´ız Apellaniz´ et al. (2014) UV-spectra from Crowther et al. (2016) 7 Spectroscopic analysis: HSH95-31 O2V((f*)) IACOB-GBAT: S. Simon-D´ ´ıaz et al. (2011), Puls et al. (2005), Sab´ın-Sanjulian´ et al. (2014) + Nitrogen lines 8 HR-diagram 7.0 ZAMS 200M 150M 6.5 R136b 100M 70M 6.0 50M 2.5My L/L 5.5 30M log 20M 5.0 15M 4.5 single SB? low S/N 4.0 crowding 4.75 4.70 4.65 4.60 4.55 4.50 4.45 log Teff Evolutionary tracks are from Yusof et al. (2013), Brott et al. (2011) and Kohler¨ et al. (2015). 9 Masses and ages BONNSAI (Schneider et al. (2014)) evolutionary tracks from Brott et al. (2011) and Kohler¨ et al. (2015) Median age 1:6 My (similar to Crowther et al. (2016) from UV calibration)' Cluster age peaks 1.2 Myr low mass stars: star-formation∼ rate peaked between 1 and 2 Myr ago (Cignoni et al. 2015) 10 Masses and ages 7 stars > 100M Top-heavy IMF with γ 2 < 2:35 (Salpeter (1955)) ≈ 30 Dor γ = 1:9 (Schneider et al. (2018)) Abundances can be better reproduce with a top-heavy IGIMF (Palla et al. submitted) 11 Masses and ages age < 2:5 My, age > 2:5 My 12 Ionising fluxes and mechanical feedback Within 0.5 pc around R136a1: Ionising flux Q = 2:75 1051 ph/s 0 × 1 _ 2 39 Stellar wind luminosity Lsw = 2 Mv = 1:17 10 erg/s 1 × (7 stars > 100M ) / R136: 57% of ionising flux and 90% of mechanical feedback ∼ ∼ Doran et al. (2013) estimated the output of the Tarantula Nebula (within in a radius of 150 pc) R136 / Tarantula Nebula: 27% of ionising flux and 60% of mechanical feedback ∼ ∼ (7 stars > 100M ) / Tarantula Nebula: 15% of ionising flux and 54% of mechanical feedback ∼ ∼ 13 Cumulative ionizing output Crowther (2019), review of massive stars in the Tarantula Nebula 14 HRD of the Tarantula Nebula Crowther (2019), review of massive stars in the Tarantula Nebula 15 Helium enrichment R136a2 0.55 R136a3 R136a1 0.50 0.45 0.40 R136a5 in mass0 fraction .35 R136a7 R136b Y 0.30 0.25 9.0 8.5 8.0 7.5 7.0 6.5 6.0 − − − − − − − log (M/M˙ evo) 16 Helium enrichment R136a3 0.55 R136a2 R136a1 0.50 0.45 0.40 R136a5 in mass0 fraction .35 R136b H121 R136a7 Y 0.30 0.25 100 150 200 250 300 vbroad R136a7, age ∼ 0.8 Myr, binary interaction or binary merger product ??? 17 Wind momuentum – luminosity relation 31 fit through our targets Vink et al. (2000, 2001) ) Sab´ın-Sanjuli´anet al. (2017) 30 R/R p ∞ 29 v v f √ ˙ 28 M/ single log ( SB? 27 low S/N crowding 5.0 5.5 6.0 6.5 7.0 log L/L 18 Summary Young and older population in R136 Star formation peaked 1.2 Myr ago ∼ Top-heavy IMF? Most massive stars dominate ionsing and mechanical output R136 accounts for 1/4 of ionsing flux and 2/3 of mechanical feedback∼ of the Tarantula Nebula∼ Helium enrichment as a result of core-overshoot and mass loss? Good agreement between observed and predicted mass-loss rates for the most massive stars Mass-loss rates for O stars are over-predicted 19 Future surveys: 4MOST and ULLYSES 1001 MC survey (Cioni et al. 2019, Eso Messenger): 10 000 to 15 000 WR, OB and Y/RSG Mini & 15M Hubble UV Legacy Library of Young Stars as Essential Standards (ULLYSES): 150 OB and WR stars in the Magellanic Clouds ∼ 180 existing archival data ∼ 20.
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • The Central Density of R136 in 30 Doradus
    A&A 552, A94 (2013) Astronomy DOI: 10.1051/0004-6361/201220396 & c ESO 2013 Astrophysics The central density of R136 in 30 Doradus F. J. Selman and J. Melnick European Southern Observatory, Alonso de Cordova 3107 Vitacura Casilla 7630355, Santiago, Chile e-mail: [email protected] Received 18 September 2012 / Accepted 13 February 2013 ABSTRACT The central density, ρ0, of a stellar cluster is an important physical parameter for determining its evolutionary and dynamical state. How much mass segregation there is or whether the cluster has undergone core collapse both depend on ρ0. We reanalyze the results of a previous paper that gives the mass density profile of R136 and combine them with both a conservative upper limit for the core parameter and a more uncertain recent measurement. We thus place a lower limit on ρ0 under reasonable and defensible assumptions 4 3 about the IMF, finding ρ0 ≥ 1.5 × 10 M/pc for the conservative assumption a < 0.4 pc for the cluster core parameter. If we use the 7 3 lower, but more uncertain value a = 0.025 pc, the central density estimate becomes greater than 10 M/pc . A mechanism based on the destruction of a large number of circumstellar disks is posited to explain the hitherto unexplained increase in reddening presented in that same work. Key words. circumstellar matter – galaxies: clusters: individual: R 136 – stars: luminosity function, mass function – Magellanic Clouds – dust, extinction 1. Introduction therein). The cluster R136 has been claimed to have the char- acteristics of a PCC cluster: a cuspy density profile (Mackey Owing to its nearness and extreme nature, Radcliffe 136 (Feast & Gilmore 2003), and a large number of runaway stars (see et al.
    [Show full text]
  • Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
    Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses.
    [Show full text]
  • The Hubble Tarantula Treasury Project
    Mem. S.A.It. Vol. 89, 95 c SAIt 2018 Memorie della The Hubble Tarantula Treasury Project E. Sabbi and the HTTP Team Space Telescope Science Institute – 3700 San Martin Dr. 21218, Baltimore, MD USA e-mail: [email protected] Abstract. We present results from the Hubble Tarantula Treasury Project (HTTP), a Hubble Space Telescope panchromatic survey (from the near UV to the near IR) of the entire 30 Doradus region down to the sub-solar (∼ 0:5 M ) mass regime. The survey was done using the Wide Field Camera 3 and the Advanced Camera for Surveys in parallel. HTTP provides the first rich and statistically significant sample of intermediate- and low-mass pre-main se- quence candidates and allows us to trace how star formation has been developing through the region. We used synthetic color-magnitude diagrams (CMDs) to infer the star formation his- tory of the main clusters in the Tarantula Nebula, while the analysis of the pre-main sequence spatial distribution highlights the dual role of stellar feedback in quenching and triggering star formation on the giant Hii region scale. Key words. galaxies: star clusters: individual (30 Doradus, NGC2070, NGC2060, Hodge 301) – Magellanic Clouds – stars: formation – stars: massive – stars: pre-main sequence stars: evo- lution - stars: massive - stars: pre-main sequence 1. Introduction 1:3 × 10−8 erg cm−2 s−1, Kennicutt & Hodge 1986). Located in the Large Magellanic Cloud The Tarantula Nebula (also known as 30 (LMC), 30 Dor is the closest extragalactic gi- Doradus, hereafter ”30 Dor”) is one of the ant Hii region, and is comparable in size (∼ most famous objects in astronomy.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey III
    A&A 530, L14 (2011) Astronomy DOI: 10.1051/0004-6361/201117043 & c ESO 2011 Astrophysics Letter to the Editor The VLT-FLAMES Tarantula Survey III. A very massive star in apparent isolation from the massive cluster R136 J. M. Bestenlehner1,J.S.Vink1, G. Gräfener1, F. Najarro2,C.J.Evans3, N. Bastian4,5, A. Z. Bonanos6, E. Bressert5,7,8, P.A. Crowther9,E.Doran9, K. Friedrich10, V.Hénault-Brunet11, A. Herrero12,13,A.deKoter14,15, N. Langer10, D. J. Lennon16, J. Maíz Apellániz17,H.Sana14, I. Soszynski18, and W. D. Taylor11 1 Armagh Observatory, College Hill, Armagh BT61 9DG, UK e-mail: [email protected] 2 Centro de Astrobiología (CSIC-INTA), Ctra. de Torrejón a Ajalvir km-4, 28850 Torrejón de Ardoz, Madrid, Spain 3 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany 5 School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, UK 6 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou Street, P. Penteli 15236, Greece 7 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 87548 Garching bei München, Germany 8 Harvard-Smithsonian CfA, 60 Garden Street, Cambridge, MA 02138, USA 9 Dept. of Physics & Astronomy, Hounsfield Road, University of Sheffield, S3 7RH, UK 10 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 11 SUPA, IfA, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 12 Departamento
    [Show full text]
  • Properties of Bright Variable Stars in Unusual Metal Rich
    PROPERTIES OF BRIGHT VARIABLE STARS IN UNUSUAL METAL RICH CLUSTER NGC 6388 Gustavo A. Cardona V. AThesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Committee: Andrew C. Layden, Advisor John B. Laird Dale W. Smith ii ABSTRACT Andrew C. Layden, Advisor We have searched for Long Period Variable (LPV) stars in the metal-rich cluster NGC 6388 using time series photometry in the V and I bandpasses. A CMD was created, which displays the tilted red HB at V = 17.5 mag. and the unusual prominent blue HB at V = 17 to 18 mag. Time-series photometry and periods have been presented for 63 variable stars, of which 30 are newly discovered variables. Of the known variables nine are LPVs. We are the first to present light curves for these stars and to classify their variability types. We find 3 LPVs as Mira, 6 as Semi-regulars (SR) and 1 as Irregular (Irr.), 18 are RR Lyrae, of which we present complementary time series and period for 14 of these stars, and 7 are Population II Cepheids, of which we present complementary time series and period for 4 of them. The newly discovered variables are all suspected LPV stars and we classified them, using time series photometry and periods, as Mira for 1 star, SR for 15 stars, Irr for 7 stars, Suspected Variables for 7 stars, out of which there are 3 very bright stars that could have overexposed the CCD, with no definite borderline between the SR and Irr stars.
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • Stars Using Data from the NASA TESS Spacecraft
    Characterizing Variability in Bright Metallic-Line A (Am) Stars Using Data from the NASA TESS Spacecraft Joyce Ann Guzik Los Alamos National Laboratory, MS T-082, Los Alamos, NM 87545 [email protected] Jason Jackiewicz Department of Astronomy, New Mexico State University, Las Cruces, NM Giovanni Catanzaro INAF--Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy Michael S. Soukup Los Alamos National Laboratory (retired), Albuquerque, NM 87111 Abstract Metallic-line A (Am) stars are main-sequence stars of around twice the mass of the Sun that show element abundance peculiarities in their spectra. The radiative levitation and diffusive settling processes responsible for these abundance anomalies should also deplete helium from the region of the envelope that drives d Scuti pulsations. Therefore, these stars are not expected to be d Scuti stars, which pulsate in multiple radial and nonradial modes with periods of around 2 hours. As part of the NASA TESS Guest Investigator Program, we proposed photometric observations in 2-minute cadence for samples of bright (visual magnitudes around 7-8) Am stars. Our 2020 SAS meeting paper reported on observations of 21 stars, finding one d Scuti star and two d Scuti / g Doradus hybrid candidates, as well as many stars with photometric variability possibly caused by rotation and starspots. Here we present an update including 34 additional stars observed up to February 2021, among them three d Sct stars and two d Sct / g Dor hybrid candidates. Confirming the pulsations in these stars requires further data analysis and follow-up observations, because of possible background stars or contamination in the TESS CCD pixels with scale 21 arc sec per pixel.
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Large Magellanic Cloud, One of Our Busy Galactic Neighbors
    The Large Magellanic Cloud, One of Our Busy Galactic Neighbors www.nasa.gov Our Busy Galactic Neighbors also contain fewer metals or elements heavier than hydrogen and helium. Such an environment is thought to slow the growth The cold dust that builds blazing stars is revealed in this image of stars. Star formation in the universe peaked around 10 billion that combines infrared observations from the European Space years ago, even though galaxies contained lesser abundances Agency’s Herschel Space Observatory and NASA’s Spitzer of metallic dust. Previously, astronomers only had a general Space Telescope. The image maps the dust in the galaxy known sense of the rate of star formation in the Magellanic Clouds, as the Large Magellanic Cloud, which, with the Small Magellanic but the new images enable them to study the process in more Cloud, are the two closest sizable neighbors to our own Milky detail. Way Galaxy. Herschel is a European The Large Magellanic Cloud looks like a fiery, circular explosion Space Agency in the combined Herschel–Spitzer infrared data. Ribbons of dust cornerstone mission, ripple through the galaxy, with significant fields of star formation with science instruments noticeable in the center, center-left and top right. The brightest provided by consortia center-left region is called 30 Doradus, or the Tarantula Nebula, of European institutes for its appearance in visible light. and with important participation by NASA. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. JPL contributed mission-enabling technology for two of Herschel’s three science instruments.
    [Show full text]