Properties of Bright Variable Stars in Unusual Metal Rich

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Bright Variable Stars in Unusual Metal Rich PROPERTIES OF BRIGHT VARIABLE STARS IN UNUSUAL METAL RICH CLUSTER NGC 6388 Gustavo A. Cardona V. AThesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Committee: Andrew C. Layden, Advisor John B. Laird Dale W. Smith ii ABSTRACT Andrew C. Layden, Advisor We have searched for Long Period Variable (LPV) stars in the metal-rich cluster NGC 6388 using time series photometry in the V and I bandpasses. A CMD was created, which displays the tilted red HB at V = 17.5 mag. and the unusual prominent blue HB at V = 17 to 18 mag. Time-series photometry and periods have been presented for 63 variable stars, of which 30 are newly discovered variables. Of the known variables nine are LPVs. We are the first to present light curves for these stars and to classify their variability types. We find 3 LPVs as Mira, 6 as Semi-regulars (SR) and 1 as Irregular (Irr.), 18 are RR Lyrae, of which we present complementary time series and period for 14 of these stars, and 7 are Population II Cepheids, of which we present complementary time series and period for 4 of them. The newly discovered variables are all suspected LPV stars and we classified them, using time series photometry and periods, as Mira for 1 star, SR for 15 stars, Irr for 7 stars, Suspected Variables for 7 stars, out of which there are 3 very bright stars that could have overexposed the CCD, with no definite borderline between the SR and Irr stars. Once classified we used probable distance for the cluster center and location on the CMD to establish possible membership, which left us with 63 possible cluster members, but the crowdedness of the cluster and the fact that the cluster is located near the bulge of the Milky Way prevents us from establishing a better certainty for its membership. iii Dedicado a mis padres Humberto Cardona y Magaly Velasquez, por haberme introducido el “Cosmos” y por ensa˜narme que nunca hay l`ımite para lo que queremos lograr mientras uno no deje de so˜nar iv ACKNOWLEDGMENTS First and foremost, my utmost gratitude to my advisor, Dr. Andrew Layden, for his patience, enthusiasm, encouragement and countless amount of hours he spent imparting knowledge while guiding me through this project. I would also like to thank the faculty and staffat the Physics and Astronomy department in BGSU for their support for the past two years. Special gratitude to my classmates,and expcially to Moe Abbas, my partner in crime, whose help while we raked through innumerable journals, books and across many obstacles to understand the material so we could apply it to our thesis, will never be forgotten. Words fail to express my appreciation to my parents, Humberto and Magaly, and my two best friends, my wife, Soo Choi, and my brother, Juan David Cardona, for their unwavering support and faith in what I was doing, and because each day they reminded me of the fact that following your dreams is never the wrong path to undertake. Finally to my friends and family, because they were all uniquely important in the suc- cessful realization of my thesis. v TABLE OF CONTENTS Page CHAPTER 1. INTRODUCTION ............................. 1 CHAPTER 2. PROCESSING ............................... 8 2.1 Observations . 8 2.2 Calibrations . 9 2.3 Combining................................... 14 CHAPTER 3. PHOTOMETRY .............................. 17 3.1 ISIS . 18 3.1.1 Setting up for ISIS . 18 3.1.2 Running ISIS . 19 3.2 DAOPHOT .................................. 25 3.2.1 SettingupforDAOPHOT . 25 3.2.2 RunningDAOPHOT ........................ 26 CHAPTER 4. CALIBRATION .............................. 37 4.1 Standard Stars . 37 4.2 Variable Stars . 47 CHAPTER 5. COLOR MAGNITUDE DIAGRAM ................... 51 5.1 Isochrones . 56 CHAPTER 6. VARIABLE STARS ............................ 59 6.1 Variability Detection . 59 6.1.1 Variability detection with ISIS . 59 6.1.2 VariabilitydetectionwithDAOPHOT . 59 6.2 Magnitude vs. time Detection . 63 6.3 Variable Properties . 69 6.4 Known Variables . 70 vi 6.4.1 Comparison with LEM . 72 6.4.2 Comparison with PSCS . 83 6.4.3 Comparison With Corwin et al................... 106 6.5 NewFoundVariables ............................. 113 CHAPTER 7. CLUSTER MEMBERSHIP ........................ 142 7.1 Projected distance from the center . 142 7.2 Location on the CMD diagram . 143 CHAPTER 8. CONCLUSIONS .............................. 150 8.1 Summary . 150 8.2 Future Research . 154 REFERENCES ....................................... 158 vii LIST OF FIGURES Figure Page 2.1 Dark current across the CCD . 11 2.2 Comparison of frame after calibration . 15 2.3 Comparison between good and bad frame stacking . 16 3.1 Comparison between original and trimmed image . 19 3.2 Convolution of two square pulses . 22 3.3 Comparison of two star profiles . 24 3.4 PHOT task values . 28 3.5 Subtracted image . 32 3.6 Montage Image . 35 4.1 Carreta et al. CMD with studied stars . 40 4.2 Comparison between Carreta et al. and Stetson standard stars . 41 4.3 Dependence of calibrated data . 48 4.4 V4locatedintheCMD .............................. 49 5.1 Color Magnitude Diagram for the whole field . 52 5.2 Tidal radius in the master frame . 54 5.3 SelectiveCMDforNGC6388........................... 55 5.4 Isochrones plotted over CMD . 58 6.1 ISIS var.fits image . 60 6.2 Variability index for Season 3 . 62 6.3 Zoomed-in variability index . 62 6.4 θ vs. Period graph . 64 6.5 Folded curve using θ close to 1 . 65 6.6 Folded curve using θ close to 1 . 65 6.7 Sample light curve . 67 viii 6.8 chi2 vs trial periods for template fitting method . 67 6.9 Foldedcurveusingtemplatefittingmethod . 68 6.10 CandidatevariablestarsfoundusingISIS . 71 6.11 CandidatevariablestarsfoundusingDAOPHOT . 71 6.12 VariableV2lightcurve .............................. 74 6.13 VariableV3lightcurve .............................. 75 6.14 VariableV4lightcurve .............................. 76 6.15 VariableV5lightcurve .............................. 77 6.16 VariableV6lightcurve .............................. 78 6.17 VariableV7lightcurve .............................. 79 6.18 VariableV8lightcurve .............................. 80 6.19 VariableV9lightcurve .............................. 81 6.20 VariableV12lightcurve.............................. 82 6.21 VariablestarscomparedwithPSCS . 84 6.22 Light curve vs. Folded curve for RRLyrae . 85 6.23 Difference in periods for sample RRL . 85 6.24 Variable17lightcurve............................... 86 6.25 Variable18lightcurve............................... 87 6.26 Variable21lightcurve............................... 88 6.27 Variable22lightcurve............................... 89 6.28 Variable23lightcurve............................... 90 6.29 Variable26lightcurve............................... 91 6.30 Variable26lightcurvewithPSCSperiod . 91 6.31 Variable27lightcurve............................... 92 6.32 Variable28lightcurve............................... 93 6.33 Variable29lightcurve............................... 94 ix 6.34 Variable30lightcurve............................... 95 6.35 Variable31lightcurve............................... 96 6.36 Variable35lightcurve............................... 97 6.37 Variable36lightcurve............................... 98 6.38 Variable36foldedlightcurve . 99 6.39 Variable36lightcurve. 100 6.40 Variable49lightcurve. 101 6.41 Variable50lightcurve. 102 6.42 Variable51lightcurve. 103 6.43 Variable53lightcurve. 104 6.44 Variable53foldedlightcurve . 104 6.45 Variable55lightcurve. 105 6.46 SuspectedVariableSV2lightcurve. 107 6.47 SuspectedVariableSV5lightcurve. 108 6.48 VariableV59lightcurve. 109 6.49 VariableV67lightcurve. 110 6.50 VariableV68lightcurve. 111 6.51 VariableV69lightcurve. 112 6.52 VariableNV30lightcurve. 113 6.53 VariableNV7lightcurve ............................. 114 6.54 VariableNV14lightcurve. 115 6.55 VariableNV1lightcurve ............................. 116 6.56 VariableNV15lightcurve. 117 6.57 VariableNV10lightcurve. 118 6.58 VariableNV9lightcurve ............................. 119 6.59 VariableNV12lightcurve. 120 x 6.60 VariableNV22lightcurve. 121 6.61 VariableNV5lightcurve ............................. 122 6.62 VariableNV21lightcurve. 123 6.63 VariableNV18lightcurve. 124 6.64 VariableNV26lightcurve. 125 6.65 VariableNV28lightcurve. 126 6.66 VariableNV27lightcurve. 127 6.67 VariableNV4lightcurve ............................. 128 6.68 VariableNV16lightcurve. 129 6.69 VariableNV3lightcurve ............................. 130 6.70 VariableNV23lightcurve. 131 6.71 VariableNV25lightcurve. 132 6.72 VariableNV24lightcurve. 133 6.73 VariableNV2lightcurve ............................. 134 6.74 VariableNV17lightcurve. 135 6.75 VariableNV17lightcurve. 136 6.76 VariableNV20lightcurve. 137 6.77 VariableNV8lightcurve ............................. 138 6.78 VariableNV6lightcurve ............................. 139 6.79 VariableNV19lightcurve. 140 6.80 VariableNV11lightcurve. 141 7.1 Location of Rcore,Rhalf mass and Rtidal in our field ov view . 144 − 7.2 Isochrones over plotted CMD . 146 7.3 Isochrone over plotted CMD with LPV candidates . 148 8.1 Variable stars . 152 8.2 LPV stars compared using Isochrone . 153 xi 8.3 Classified variables in the CMD . 155 xii LIST OF TABLES Table Page 3.1 ALSfileoutput................................... 30 4.1 Standars stars in comparison datasets . ..
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
    Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses.
    [Show full text]
  • VI. the Chemical Composition of the Peculiar Bulge Globular Cluster NGC 6388,
    A&A 464, 967–981 (2007) Astronomy DOI: 10.1051/0004-6361:20066065 & c ESO 2007 Astrophysics Na-O anticorrelation and horizontal branches VI. The chemical composition of the peculiar bulge globular cluster NGC 6388, E. Carretta1, A. Bragaglia1, R. G. Gratton2,Y.Momany2, A. Recio-Blanco3, S. Cassisi4,P.François5,6, G. James5,6, S. Lucatello2,andS.Moehler7 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 3 Dpt. Cassiopée, UMR 6202, Observatoire de la Côte d’Azur, BP 4229, 06304 Nice Cedex 04, France 4 INAF – Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy 5 Observatoire de Paris, 61 avenue de l’Observatoire, 75014 Paris, France 6 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 7 European Southern Observatory, Karl-Schwarzchild-Strasse 2, 85748 Garching bei Munchen, Germany Received 19 July 2006 / Accepted 22 December 2006 ABSTRACT We present the LTE abundance analysis of high resolution spectra for red giant stars in the peculiar bulge globular cluster NGC 6388. Spectra of seven members were taken using the UVES spectrograph at the ESO VLT2 and the multiobject FLAMES facility. We exclude any intrinsic metallicity spread in this cluster: on average, [Fe/H] = −0.44 ± 0.01 ± 0.03 dex on the scale of the present series of papers, where the first error bar refers to individual star-to-star errors and the second is systematic, relative to the cluster. Elements involved in H-burning at high temperatures show large spreads, exceeding the estimated errors in the analysis.
    [Show full text]
  • Stars Using Data from the NASA TESS Spacecraft
    Characterizing Variability in Bright Metallic-Line A (Am) Stars Using Data from the NASA TESS Spacecraft Joyce Ann Guzik Los Alamos National Laboratory, MS T-082, Los Alamos, NM 87545 [email protected] Jason Jackiewicz Department of Astronomy, New Mexico State University, Las Cruces, NM Giovanni Catanzaro INAF--Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy Michael S. Soukup Los Alamos National Laboratory (retired), Albuquerque, NM 87111 Abstract Metallic-line A (Am) stars are main-sequence stars of around twice the mass of the Sun that show element abundance peculiarities in their spectra. The radiative levitation and diffusive settling processes responsible for these abundance anomalies should also deplete helium from the region of the envelope that drives d Scuti pulsations. Therefore, these stars are not expected to be d Scuti stars, which pulsate in multiple radial and nonradial modes with periods of around 2 hours. As part of the NASA TESS Guest Investigator Program, we proposed photometric observations in 2-minute cadence for samples of bright (visual magnitudes around 7-8) Am stars. Our 2020 SAS meeting paper reported on observations of 21 stars, finding one d Scuti star and two d Scuti / g Doradus hybrid candidates, as well as many stars with photometric variability possibly caused by rotation and starspots. Here we present an update including 34 additional stars observed up to February 2021, among them three d Sct stars and two d Sct / g Dor hybrid candidates. Confirming the pulsations in these stars requires further data analysis and follow-up observations, because of possible background stars or contamination in the TESS CCD pixels with scale 21 arc sec per pixel.
    [Show full text]
  • The Tarantula – Revealed by X-Rays (T-Rex) a Definitive Chandra
    TheTarantula{ Revealed byX-rays (T-ReX) A Definitive Chandra Investigation of 30 Doradus Our first impressions of spiral and irregular galaxies are defined by massive star-forming regions (MSFRs), signposts marking spiral arms, bars, and starbursts. They remind us that galaxies really are evolving, churned by the continuous injection of energy and processed material. MSFRs offer us a microcosm of starburst astrophysics, where winds from O and Wolf-Rayet (WR) stars combine with supernovae to carve up the neutral medium from which they formed, both triggering and suppressing new generations of stars. With X-ray observations we see the stars themselves|the engines that shape the larger view of a galaxy|along with the hot, shocked ISM created by massive star feedback, which in turn fills the superbubbles that define starburst clusters (Fig. 1). We propose the 2 Ms Chandra/ACIS-I X-ray Visionary Project T-ReX, an intensive study of 30 Doradus (The Tarantula Nebula) in the LMC, the most powerful MSFR in the Local Group. To date Chandra has invested just 114 ks in this iconic target|proportionally far less than other premier observatories (e.g. HST, VLT, Spitzer, VISTA)|revealing only the most massive stars and large-scale diffuse structures. This very deep observation is essential to engage the great power of Chandra's unparalleled spatial resolution, a unique resource that will remain unmatched for another decade. T-ReX will reveal the X-ray properties of hundreds of 30 Dor's low-metallicity massive stars [1], thousands of lower-mass pre-main sequence (pre-MS) stars that record its star formation history [2], and parsec-scale shocks from winds and supernovae that are shredding its ISM [3,4].
    [Show full text]
  • Magnetic Fields in Massive Stars, Their Winds, and Their Nebulae
    Noname manuscript No. (will be inserted by the editor) Magnetic Fields in Massive Stars, their Winds, and their Nebulae Rolf Walder · Doris Folini · Georges Meynet Received: date / Accepted: date Abstract Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives – ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment – fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non- thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30 kG (Ap / Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. R. Walder CRAL: Centre de Recherche Astrophysique de Lyon ENS-Lyon, 46, all´ee d’Italie 69364 Lyon Cedex 07, France UMR CNRS 5574, Universit´ede Lyon E-mail: [email protected] D.
    [Show full text]
  • Curriculum Vitae of You-Hua Chu
    Curriculum Vitae of You-Hua Chu Address and Telephone Number: Institute of Astronomy and Astrophysics, Academia Sinica 11F of Astronomy-Mathematics Building, AS/NTU No.1, Sec. 4, Roosevelt Rd, Taipei 10617 Taiwan, R.O.C. Tel: (886) 02 2366 5300 E-mail address: [email protected] Academic Degrees, Granting Institutions, and Dates Granted: B.S. Physics Dept., National Taiwan University 1975 Ph.D. Astronomy Dept., University of California at Berkeley 1981 Professional Employment History: 2014 Sep - present Director, Institute of Astronomy and Astrophysics, Academia Sinica 2014 Jul - present Distinguished Research Fellow, Institute of Astronomy and Astrophysics, Academia Sinica 2014 Jul - present Professor Emerita, University of Illinois at Urbana-Champaign 2005 Aug - 2011 Jul Chair of Astronomy Dept., University of Illinois at Urbana-Champaign 1997 Aug - 2014 Jun Professor, University of Illinois at Urbana-Champaign 1992 Aug - 1997 Jul Research Associate Professor, University of Illinois at Urbana-Champaign 1987 Jan - 1992 Aug Research Assistant Professor, University of Illinois at Urbana-Champaign 1985 Feb - 1986 Dec Graduate College Scholar, University of Illinois at Urbana-Champaign 1984 Sep - 1985 Jan Lindheimer Fellow, Northwestern University 1982 May - 1984 Jun Postdoctoral Research Associate, University of Wisconsin at Madison 1981 Oct - 1982 May Postdoctoral Research Associate, University of Illinois at Urbana-Champaign 1981 Jun - 1981 Aug Postdoctoral Research Associate, University of California at Berkeley Committees Served:
    [Show full text]
  • The VLT-FLAMES Tarantula Survey? XXIX
    A&A 618, A73 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833433 & c ESO 2018 Astrophysics The VLT-FLAMES Tarantula Survey? XXIX. Massive star formation in the local 30 Doradus starburst F. R. N. Schneider1, O. H. Ramírez-Agudelo2, F. Tramper3, J. M. Bestenlehner4,5, N. Castro6, H. Sana7, C. J. Evans2, C. Sabín-Sanjulián8, S. Simón-Díaz9,10, N. Langer11, L. Fossati12, G. Gräfener11, P. A. Crowther5, S. E. de Mink13, A. de Koter13,7, M. Gieles14, A. Herrero9,10, R. G. Izzard14,15, V. Kalari16, R. S. Klessen17, D. J. Lennon3, L. Mahy7, J. Maíz Apellániz18, N. Markova19, J. Th. van Loon20, J. S. Vink21, and N. R. Walborn22,?? 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK e-mail: [email protected] 2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3 European Space Astronomy Centre, Mission Operations Division, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH, UK 6 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA 7 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 8 Departamento de Física y Astronomía, Universidad de La Serena, Avda. Juan Cisternas 1200, Norte, La Serena, Chile 9 Instituto de Astrofísica de Canarias, 38205 La Laguna,
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. II
    This is a repository copy of The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166782/ Version: Accepted Version Article: Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Crowther, P.A., Caballero-Nieves, S.M. et al. (11 more authors) (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/staa2801 This is a pre-copyedited, author-produced version of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Joachim M Bestenlehner, Paul A Crowther, Saida M Caballero-Nieves, Fabian R N Schneider, Sergio Simón-Díaz, Sarah A Brands, Alex de Koter, Götz Gräfener, Artemio Herrero, Norbert Langer, Daniel J Lennon, Jesus Maíz Apellániz, Joachim Puls, Jorick S Vink, The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136, Monthly Notices of the Royal Astronomical Society, , staa2801] is available online at: https://doi.org/10.1093/mnras/staa2801 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version.
    [Show full text]
  • Implications for Stellar Evolution and Star Formation
    3 Jul 2003 22:16 AR AR194-AA41-02.tex AR194-AA41-02.sgm LaTeX2e(2002/01/18) P1: GJB 10.1146/annurev.astro.41.071601.170033 Annu. Rev. Astron. Astrophys. 2003. 41:15–56 doi: 10.1146/annurev.astro.41.071601.170033 Copyright c 2003 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 4, 2003 MASSIVE STARS IN THE LOCAL GROUP: Implications for Stellar Evolution and Star Formation Philip Massey Lowell Observatory, 1400 Mars Hill Road, Flagstaff, Arizona 86001; email: [email protected] Key Words stellar populations, Local Group galaxies, initial mass function ■ Abstract The galaxies of the Local Group serve as important laboratories for un- derstanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observa- tional data that will provide a benchmark against which new models can be evaluated. 1. INTRODUCTION by CAPES on 04/25/06. For personal use only. Massive stars are extremely rare: For every 20 star in the the Milky Way there are roughly a hundred thousand solar-type stars;M for every 100 star there should be over a million solar-type stars.
    [Show full text]
  • Arxiv:Astro-Ph/0105145V1 9 May 2001 Rmu.Wt Gsi H Re F10 of Distance Order the Same Stars in Kpc the Ages All with at 5 That Lie Us
    Hot Stars in Globular Clusters – A Spectroscopist’s View S. Moehler Dr. Remeis-Sternwarte, Astronomisches Institut der Universit¨at Erlangen-N¨urnberg, Sternwartstr. 7, D-96049 Bamberg, Germany (e-mail: [email protected] ABSTRACT Globular clusters are ideal laboratories to study the evolution of low-mass stars. In this work we concentrate on three types of hot stars observed in globular clusters: horizontal branch stars, UV bright stars, and white dwarfs. After providing some historical background and information on gaps and blue tails we discuss extensively hot horizontal branch stars in metal-poor globular clusters, esp. their abundance anomalies and the consequences for the determination of their atmospheric parameters and evolutionary status. Hot horizontal branch stars in metal-rich glob- ular clusters are found to form a small, but rather inhomogeneous group that cannot be explained by one evolutionary scenario. Hot UV bright stars show a lack of classic post-AGB stars that may explain the lack of planetary nebulae in globular clusters. Finally we discuss first results of spectroscopic observations of white dwarfs in globular clusters. Subject headings: (Galaxy:) globular clusters: general – stars: horizontal-branch – stars: post-AGB – (stars:) white dwarfs 1. Historical Background ters are old stellar systems people are often sur- prised by the presence of hot stars in these clus- Globular clusters are the closest approximation ters since hot stars are usually associated with to a physicist’s laboratory in astronomy. They are young stellar systems. The following paragraphs densely packed, gravitationally bound systems of will show that hot stars have been known to exist several thousands to about one million stars.
    [Show full text]