Skytools Chart

Total Page:16

File Type:pdf, Size:1020Kb

Skytools Chart 33 Dorado - Carina SkyTools 3 / Skyhound.com NGC 2546 ν α - ζ 40° σ α δ Puppis η2 Collinder 173 τ β 2 γ Canopus γ1 1433 NGC 2547 Horologium Pictor γ δ IC 2395 γ NGC 2670 χ α 1566 -5 0° ζ 1553 1549 ο NGC 2669 1672 IC 2391 δ ε α β 1261 Carina NGC 2516 ε Dorado ι α δ 2 γ η 1559 δ 1978 1866 1818 1783 NGC 1955 1805 Reticulum IC 2488 θ 2867 2164 κ ι NGC 1962 Large Magellanic Cloud β δ 2210 PK 278-06.1 Volans NGC 1874 NGC 1965 β NGC 1770 Tarantula Nebula NGC 1876 IC 2501 2031 β γ2 1313 ε -60° 2808 α NGC 3114 ζ Mensa ζ α υ PK 285-09.1 IC 2448 ε 1 β 0 -70° h 3211 h 0 02 8 52° x 34° 6h γ h 0 δ 06h00m00.0s -60°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 33 Dorado - Carina GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 1313 Ret 03h 18m 15s -66° 29' 51" +9,70 9',5x7',2 SBcd 13,5 Mly --- --- --- NGC 1433 Hor 03h 42m 02s -47° 13' 19" +10,80 6',2x3',6 Sba 43,0 Mly --- --- --- NGC 1549 Dor 04h 15m 45s -55° 35' 32" +10,70 5',0x4',3 E 42,0 Mly --- --- --- NGC 1553 Dor 04h 16m 10s -55° 46' 51" +10,30 6',2x4',1 S0 28,0 Mly --- --- --- NGC 1559 Ret 04h 17m 36s -62° 47' 01" +11,00 4',2x2',1 SBc 34,0 Mly --- --- --- NGC 1566 Dor 04h 20m 04s +54° 56' 16" +10,30 8',1 4',8 34,0 Mly --- --- --- NGC 1672 Dor 04h 45m 43s -59° 14' 51" +10,30 6',6x5',4 Sb 270,0 Mly --- --- --- PGC 17223 Large Magellanic Cloud Dor 05h 23m 35s -69° 45' 22" +0,80 648',0x552',0 SBm 0,2 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost. A.R. Dec. Mv. Dim. N° ä Distanza 200/4 80/11,5 20x60 NGC 2516 Car 07h 58m 04s -60° 45' 12" +3,30 30',0 80 1.300 ly --- --- --- Cr 173 Pup 08h 02m 49s -46° 23' 00" +0,60 372',0 --- 1.400 ly --- --- --- NGC 2547 Vel 08h 10m 09s -49° 12' 54" +5,00 25',0 80 1.500 ly --- --- --- IC 2391 Vel 08h 40m 32s -53° 02' 00" +2,60 60',0 --- 570 ly --- --- --- IC 2395 Vel 08h 42m 30s -48° 06' 48" +4,60 18',6 --- 2.600 ly --- --- --- NGC 2670 Vel 08h 45m 30s -48° 48' 00" +9,20 7',0 30 3.900 ly --- --- --- NGC 2669 Vel 08h 46m 22s -52° 56' 54" +6,00 20',0 40 3.400 ly --- --- --- IC 2488 Vel 09h 27m 38s -57° 00' 00" +7,40 18',0 --- 3.700 ly AMMASSI GLOBULARI Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 1261 Hor 03h 12m 16s -55° 13' 00" +8,30 6',8 II 95.000 ly --- --- --- NGC 1805 Dor 05h 02m 21s -66° 06' 44" +10,60 2',2 ? ? --- --- --- NGC 1978 Dor 05h 02m 22s -66° 06' 46" +10,70 0',5 V ? --- --- --- NGC 1818 Dor 05h 04m 15s -66° 26' 04" +9,70 2',5 ? ? --- --- --- NGC 1866 Dor 05h 13m 39s -65° 27' 54" +9,80 1',8 ? ? --- --- --- NGC 2031 Men 05h 33m 41s -70° 59' 12" +10,80 1',2 ? ? --- --- --- NGC 2164 Dor 05h 58m 56s -68° 31' 04" +10,30 1',7 ? ? --- --- --- NGC 2210 Dor 06h 11m 32s -69° 07' 15" +10,90 1',7 ? ? --- --- --- NGC 2808 Car 09h 12m 03s -64° 51' 48" +6,20 14',0 ? 26.000 ly --- --- --- NEBULOSE DIFFUSE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 1770 Dor 04h 57m 18s -68° 25' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1814 Dor 05h 03m 48s -67° 18' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1816 Dor 05h 03m 48s -67° 16' 00" +9,00 ? Diffuse in LMC --- --- --- --- 1/2 NEBULOSE DIFFUSE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 1829 Dor 05h 05m 00s -68° 03' 00" +8,50 ? Diffuse in LMC --- --- --- --- NGC 1874 Dor 05h 13m 12s -69° 23' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1876 Dor 05h 13m 18s -69° 22' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1955 Dor 05h 26m 12s -67° 30' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1962 Dor 05h 26m 18s -68° 50' 00" +8,50 13',0 Diffuse in LMC NGC 1965 Dor 05h 26m 30s -68° 48' 00" +8,50 ? Diffuse in LMC NGC 1966 Dor 05h 26m 48s -68° 49' 00" +8,50 13',0 Diffuse in LMC --- --- --- --- NGC 1970 Dor 05h 26m 54s -68° 50' 00" +8,50 ? Diffuse in LMC --- --- --- --- NGC 1968 Dor 05h 27m 24s -67° 28' 00" +9,00 ? Diffuse in LMC --- --- --- --- NGC 1983 Dor 05h 27m 42s -68° 59' 00" +8,50 ? Diffuse in LMC NGC 1974 Dor 05h 28m 00s -67° 25' 00" +9,00 ? Diffuse in LMC NGC 2011 Dor 05h 32m 18s -67° 31' 00" +9,50 ? Diffuse in LMC --- --- --- --- NGC 2014 Dor 05h 32m 18s -67° 41' 00" +8,50 ? Diffuse in LMC --- --- --- --- NGC 2070 Tarantula Neb. Dor 05h 38m 36s -69° 06' 00" +8,30 5',0 Diffuse in LMC NGC 2074 Dor 05h 39m 06s -69° 30' 00" +8,50 ? Diffuse in LMC NEBULOSE PLANETARIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 IC 2448 Car 09h 07m 06s -69° 56' 31" +11,50 8" --- 11.000 ly --- --- --- PK 278-06.1 Car 09h 19m 28s -59° 12' 00" +11,90 10" Stellar App. 8.300 ly --- --- --- NGC 2867 Car 09h 21m 25s -58° 18' 41" +9,70 12" Ring 6.100 ly --- --- --- IC 2501 Car 09h 38m 47s -60° 05' 31" +11,30 2" Stellar App. 12.000 ly --- --- --- PK 285-09.1 Car 09h 46m 19s -65° 43' 08" +9,90 --- Misclassified --- --- --- --- NGC 3211 Car 10h 17m 51s -62° 40' 15" +11,80 12" --- 9.300 ly --- --- --- 2/2.
Recommended publications
  • Skytools Chart
    38 Octans - Chamaleon SkyTools 3 / Skyhound.com β NGC 6025 NGC 2516 IC 2448 β β ε γ Chamaeleon Volans δ ε ε PK 315-13.1 Triangulum Australe β γ 12h δ2 α ε 3195 ζ PK 325-12.1 1 α ζ 6101 5h η θ δ α Apus 09h 2 IC 4499 γ δ1 β γ ζ 6362 η 2 2210 η 2164 18h 06h Large Magellanic Cloud Tarantula Nebulaδ Mensa 2031 NGC 2014 NGC 1962 NGC 1955 ζ NGC 1874 NGC 1829 θ 1866 κ NGC 1770 1805 Collinder 411 NGC 1814 1978 1818 1783 03h 6744 21h β ε ε γ Octans Pavo ν -80° 00h ν 1559 β α δ θ Hydrus Reticulum β γ ι δ 1313 β Small Magellanic Cloud 0° 52° x 34° -7 ε ζ κ 00h00m00.0s -90°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 38 Octans - Chamaleon GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 292 Small Magellanic Cloud Tuc 00h 52m 38s +72° 48' 01” +2,80 318',0x204',0 SBm 0,2 Mly --- --- --- NGC 1313 Ret 03h 18m 15s -66° 29' 51” +9,70 9',5x7',2 Sbcd 13,5 Mly --- --- --- NGC 1559 Ret 04h 17m 36s -62° 47' 01" +11,00 4',2x2',1 SBc 34,0 Mly --- --- --- PGC 17223 Large Magellanic Cloud Dor 05h 23m 35s -69° 45' 22" +0,80 648',0x552',0 SBm 0,2 Mly --- --- --- NGC 6744 Pav 19h 09m 46s -63° 51' 28" +9,10 17',0x10',7 SABb 21,0 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost.
    [Show full text]
  • Annual Report 2017
    Koninklijke Sterrenwacht van België Observatoire royal de Belgique Royal Observatory of Belgium Jaarverslag 2017 Rapport Annuel 2017 Annual Report 2017 Cover illustration: Above: One billion star map of our galaxy created with the optical telescope of the satellite Gaia (Credit: ESA/Gaia/DPAC). Below: Three armillary spheres designed by Jérôme de Lalande in 1775. Left: the spherical sphere; in the centre: the geocentric model of our solar system (with the Earth in the centre); right: the heliocentric model of our solar system (with the Sun in the centre). Royal Observatory of Belgium - Annual Report 2017 2 De activiteiten beschreven in dit verslag werden ondersteund door Les activités décrites dans ce rapport ont été soutenues par The activities described in this report were supported by De POD Wetenschapsbeleid De Nationale Loterij Le SPP Politique Scientifique La Loterie Nationale The Belgian Science Policy The National Lottery Het Europees Ruimtevaartagentschap De Europese Gemeenschap L’Agence Spatiale Européenne La Communauté Européenne The European Space Agency The European Community Het Fonds voor Wetenschappelijk Onderzoek – Le Fonds de la Recherche Scientifique Vlaanderen Royal Observatory of Belgium - Annual Report 2017 3 Table of contents Preface .................................................................................................................................................... 6 Reference Systems and Planetology ......................................................................................................
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • HST Public Lecture Series
    WelcomeWelcome toto thethe SpaceSpace TelescopeTelescope ScienceScience InstituteInstitute’’ss PublicPublic LectureLecture SeriesSeries zz YourYour host:host: MaxMax MutchlerMutchler zz LithographsLithographs onon tabletable z PleasePlease taketake oneone perper personperson TONIGHT TransNeptunianTransNeptunian BinariesBinaries andand CollisionCollision Families:Families: ProbesProbes ofof OurOur LocalLocal DustDust DiskDisk SusanSusan BenecchiBenecchi MayMay 5,5, 20092009 88 PMPM STScISTScI AuditoriumAuditorium UpcomingUpcoming TalksTalks zz JuneJune 2,2, 20092009 –– JasonJason TumlinsonTumlinson,, TheThe InvisibleInvisible Galaxy:Galaxy: NewNew ViewsViews ofof thethe MilkyMilky WayWay zz JulyJuly 7,7, 20092009 –– DouglasDouglas Long,Long, TheThe MysteryMystery ofof thethe ‘‘BeBe’’ StarsStars WebWeb SiteSite && WebcastWebcast • Google “hubble lecture” • http://hubblesite.org/go/talks • List of upcoming speakers • Link to current webcast • Links to previous webcasts Scientific Symposium May 4-7 Public Lecture May 8 at 7:00 PM at the Maryland Science Center: Dr. Steven Squyers (Cornell): Roving Mars Hubble Servicing Mission 4 Launch currently set for May 11, 2009 Two Space Shuttles sitting on the launch pad Hubble was deployed and is serviced by the Space Shuttle 1990 1993 1997 1999 2002 2009 5 days of spacewalking! Hubble mission milestones as chronicled by it’s workhorse: Wide Field Planetary Camera 2 (WFPC2, to be replaced with WFC3) “Top 10 reasons why the Hubble telescope isn’t working…” WFPC2 installed during servicing mission 1
    [Show full text]
  • Planetary Nebulae
    Southern Planetaries 6/27/04 9:20 PM Observatory Tents Nebula Filters by Andover Ngc 60 Meade NGC60 Premier online astronomy For viewing emission and Find, compare and buy Refractor Telescope $181 shop has a selection of planetary nebulae. Telescopes! Simply Fast Free Shipping. Affiliate. observatory dome tents Narrowband and O-III types Savings www.amazon.com www.telescopes.net www.andcorp.com www.Shopping.com Observing Down Under: Part II - Planetary Nebulae by Steve Gottlieb Shapley 1 - AAO This is the second part in a series based on my trip to Australia last summer, covering observations of a few southern showpiece objects. The other parts in the series are: Southern Globular Clusters Southern Galaxies Two Southern Galaxy Groups During the stay at the Magellan Observatory I had full access to an 18" f/4.5 JMI NGT-18, an innovative split-ring truss- tube equatorial with a rotating upper cage assembly. The scope was housed in a 4.5 meter dome (which came in very handy on windy nights) and outfitted with DSC's and it could be converted to use with a bino-viewer. Because I was trying to survey the full gamut of DSO's mostly below -50° (I easily could have spent the entire time just on the Large Magellanic Cloud!), I generally stuck to eye-candy -- and there was plenty to feast on! - and was really loafing it with an 18" on these brighter planetaries (everything below was immediately visible once in the field). Some of these were reobservations for me but from northern California I never had a really good look.
    [Show full text]
  • Stats2010 E Final.Pdf
    Imprint Publisher: Max-Planck-Institut für extraterrestrische Physik Editors and Layout: W. Collmar und J. Zanker-Smith Personnel 1 PERSONNEL 2010 Directors Min. Dir. J. Meyer, Section Head, Federal Ministry of Prof. Dr. R. Bender, Optical and Interpretative Astronomy, Economics and Technology also Professorship for Astronomy/Astrophysics at the Prof. Dr. E. Rohkamm, Thyssen Krupp AG, Düsseldorf Ludwig-Maximilians-University Munich Prof. Dr. R. Genzel, Infrared- and Submillimeter- Scientifi c Advisory Board Astronomy, also Prof. of Physics, University of California, Prof. Dr. R. Davies, Oxford University (UK) Berkeley (USA) (Managing Director) Prof. Dr. R. Ellis, CALTECH (USA) Prof. Dr. Kirpal Nandra, High-Energy Astrophysics Dr. N. Gehrels, NASA/GSFC (USA) Prof. Dr. G. Morfi ll, Theory, Non-linear Dynamics, Complex Prof. Dr. F. Harrison, CALTECH (USA) Plasmas Prof. Dr. O. Havnes, University of Tromsø (Norway) Prof. Dr. G. Haerendel (emeritus) Prof. Dr. P. Léna, Université Paris VII (France) Prof. Dr. R. Lüst (emeritus) Prof. Dr. R. McCray, University of Colorado (USA), Prof. Dr. K. Pinkau (emeritus) Chair of Board Prof. Dr. J. Trümper (emeritus) Prof. Dr. M. Salvati, Osservatorio Astrofi sico di Arcetri (Italy) Junior Research Groups and Minerva Fellows Dr. N.M. Förster Schreiber Humboldt Awardee Dr. S. Khochfar Prof. Dr. P. Henry, University of Hawaii (USA) Prof. Dr. H. Netzer, Tel Aviv University (Israel) MPG Fellow Prof. Dr. V. Tsytovich, Russian Academy of Sciences, Prof. Dr. A. Burkert (LMU) Moscow (Russia) Manager’s Assistant Prof. S. Veilleux, University of Maryland (USA) Dr. H. Scheingraber A. v. Humboldt Fellows Scientifi c Secretary Prof. Dr. D. Jaffe, University of Texas (USA) Dr.
    [Show full text]
  • 197 6Apjs. . .30. .451H the Astrophysical Journal Supplement Series, 30:451-490, 1976 April © 1976. the American Astronomical S
    .451H The Astrophysical Journal Supplement Series, 30:451-490, 1976 April .30. © 1976. The American Astronomical Society. All rights reserved. Printed in U.S.A. 6ApJS. 197 EVOLVED STARS IN OPEN CLUSTERS Gretchen L. H. Harris* David Dunlap Observatory, Richmond Hill, Ontario Received 1974 September 16; revised 1975 June 18 ABSTRACT Radial-velocity observations and MK classifications have been used to study evolved stars in 25 open clusters. Published data on stars in 72 additional clusters are rediscussed and com- bined with the observations friade in this investigation to yield positions in the Hertzsprung- Russell diagram for 559 evolved stars in 97 clusters. Ages for the parent clusters were estimated from the main-sequence turnoff points, earliest spectral types, and bluest stars in the clusters themselves. The evolved stars were sorted into six age groups ranging from 4 x 106 yr to 4 x 108 yr, and the composite H-R diagram for each age group was then used to study the evolutionary tracks for stars of various masses. The observational results were found to be in reasonably good agreement with recent theoretical computations. The composite color-magnitude diagrams were found to be strikingly different from those of the rich open clusters in the Magellanic Clouds. At a given age the red giants in the Small Magellanic Cloud and the Large Magellanic Cloud clusters are brighter and bluer than their galactic counterparts. It is suggested that these effects may be accounted for by differences in metal abundance. Subject headings: clusters: open — galaxies: Magellanic Clouds — radial velocities — stars : evolution — stars : late-type — stars : spectral classification 1.
    [Show full text]
  • The Messenger
    THE MESSENGER No, 40 - June 1985 Radial Veloeities of Stars in Globular Clusters: a Look into CD Cen and 47 Tue M. Mayor and G. Meylan, Geneva Observatory, Switzerland Subjected to dynamical investigations since the beginning photometry of several clusters reveals a cusp in the luminosity of the century, globular clusters still provide astrophysicists function of the central region, which could be the first evidence with theoretical and observational problems, wh ich so far have for collapsed cores. only been partly solved. The development of photoelectric cross-corelation tech­ If for a long time the star density projected on the sky was niques for the determination of stellar radial velocities opened fairly weil represented by simple dynamical models, recent the door to kinematical investigations (Gunn and Griffin, 1979, N .~- .", '. '.'., .' 1 '&307 w E ,. 1~ S Fig. 1: Left: 47 Tue (NGC 104) from the Deep Blue Survey - SRC-(J). Right: Centre of 47 Tue from a near-infrared photometrie study of Lioyd Evans. The diameter ofthe large eirele eorresponds to the disk ofthe left photograph. The maximum ofthe rotation appears inside the eircle; the linear part of the rotation eurve (solid-body rotation) affeets only stars inside one areminute of the eentre. 1 Rlre J 250r;.' .;r2' -i4.:...__.....;6;.;.. .;rB. ,;.;10::....--. Tentative Time-table of Council Sessions (J lkm/5] and Committee Meetings in 1985 (.) Gen x =2. November 12 Scientific Technical Committee November 13-14 Finance Committee December 11 -12 Observing Programmes Committee December 16 Committee of Council December 17 Council 10. All meetings will take place at ESO in Garching.
    [Show full text]
  • Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
    Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,
    [Show full text]
  • Download the 2016 Spring Deep-Sky Challenge
    Deep-sky Challenge 2016 Spring Southern Star Party Explore the Local Group Bonnievale, South Africa Hello! And thanks for taking up the challenge at this SSP! The theme for this Challenge is Galaxies of the Local Group. I’ve written up some notes about galaxies & galaxy clusters (pp 3 & 4 of this document). Johan Brink Peter Harvey Late-October is prime time for galaxy viewing, and you’ll be exploring the James Smith best the sky has to offer. All the objects are visible in binoculars, just make sure you’re properly dark adapted to get the best view. Galaxy viewing starts right after sunset, when the centre of our own Milky Way is visible low in the west. The edge of our spiral disk is draped along the horizon, from Carina in the south to Cygnus in the north. As the night progresses the action turns north- and east-ward as Orion rises, drawing the Milky Way up with it. Before daybreak, the Milky Way spans from Perseus and Auriga in the north to Crux in the South. Meanwhile, the Large and Small Magellanic Clouds are in pole position for observing. The SMC is perfectly placed at the start of the evening (it culminates at 21:00 on November 30), while the LMC rises throughout the course of the night. Many hundreds of deep-sky objects are on display in the two Clouds, so come prepared! Soon after nightfall, the rich galactic fields of Sculptor and Grus are in view. Gems like Caroline’s Galaxy (NGC 253), the Black-Bottomed Galaxy (NGC 247), the Sculptor Pinwheel (NGC 300), and the String of Pearls (NGC 55) are keen to be viewed.
    [Show full text]
  • Catalogue of Excitation Classes P for 750 Galactic Planetary Nebulae
    Catalogue of Excitation Classes p for 750 Galactic Planetary Nebulae Name p Name p Name p Name p NeC 40 1 Nee 6072 9 NeC 6881 10 IC 4663 11 NeC 246 12+ Nee 6153 3 NeC 6884 7 IC 4673 10 NeC 650-1 10 Nee 6210 4 NeC 6886 9 IC 4699 9 NeC 1360 12 Nee 6302 10 Nee 6891 4 IC 4732 5 NeC 1501 10 Nee 6309 10 NeC 6894 10 IC 4776 2 NeC 1514 8 NeC 6326 9 Nee 6905 11 IC 4846 3 NeC 1535 8 Nee 6337 11 Nee 7008 11 IC 4997 8 NeC 2022 12 Nee 6369 4 NeC 7009 7 IC 5117 6 NeC 2242 12+ NeC 6439 8 NeC 7026 9 IC 5148-50 6 NeC 2346 9 NeC 6445 10 Nee 7027 11 IC 5217 6 NeC 2371-2 12 Nee 6537 11 Nee 7048 11 Al 1 NeC 2392 10 NeC 6543 5 Nee 7094 12 A2 10 NeC 2438 10 NeC 6563 8 NeC 7139 9 A4 10 NeC 2440 10 NeC 6565 7 NeC 7293 7 A 12 4 NeC 2452 10 NeC 6567 4 Nee 7354 10 A 15 12+ NeC 2610 12 NeC 6572 7 NeC 7662 10 A 20 12+ NeC 2792 11 NeC 6578 2 Ie 289 12 A 21 1 NeC 2818 11 NeC 6620 8 IC 351 10 A 23 4 NeC 2867 9 NeC 6629 5 Ie 418 1 A 24 1 NeC 2899 10 Nee 6644 7 IC 972 10 A 30 12+ NeC 3132 9 NeC 6720 10 IC 1295 10 A 33 11 NeC 3195 9 NeC 6741 9 IC 1297 9 A 35 1 NeC 3211 10 NeC 6751 9 Ie 1454 10 A 36 12+ NeC 3242 9 Nee 6765 10 IC1747 9 A 40 2 NeC 3587 8 NeC 6772 9 IC 2003 10 A 41 1 NeC 3699 9 NeC 6778 9 IC 2149 2 A 43 2 NeC 3918 9 NeC 6781 8 IC 2165 10 A 46 2 NeC 4071 11 NeC 6790 4 IC 2448 9 A 49 4 NeC 4361 12+ NeC 6803 5 IC 2501 3 A 50 10 NeC 5189 10 NeC 6804 12 IC 2553 8 A 51 12 NeC 5307 9 NeC 6807 4 IC 2621 9 A 54 12 NeC 5315 2 NeC 6818 10 Ie 3568 3 A 55 4 NeC 5873 10 NeC 6826 11 Ie 4191 6 A 57 3 NeC 5882 6 NeC 6833 2 Ie 4406 4 A 60 2 NeC 5879 12 NeC 6842 2 IC 4593 6 A
    [Show full text]
  • 407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
    Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical
    [Show full text]