Randomized Comparison of Pramlintide Or Mealtime Insulin Added to Basal Insulin Treatment for Patients with Type 2 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Randomized Comparison of Pramlintide Or Mealtime Insulin Added to Basal Insulin Treatment for Patients with Type 2 Diabetes Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Randomized Comparison of Pramlintide or Mealtime Insulin Added to Basal Insulin Treatment for Patients With Type 2 Diabetes 1 2 MATTHEW RIDDLE, MD KAREN LUTZ, PHD limit postmeal hyperglycemia. Amylin 2 2 RICHARD PENCEK, PHD KEN WILHELM, MD deficiency accelerates gastric emptying, 2 2 SUPOAT CHARENKAVANICH, PHD LISA PORTER, MD increases glucagon secretion, and alters satiety mechanisms (10,11). Pramlintide, an injectable synthetic OBJECTIVE — To compare the efficacy and safety of adding mealtime pramlintide or rapid- analog of amylin, slows gastric emptying, acting insulin analogs (RAIAs) to basal insulin for patients with inadequately controlled type 2 attenuates postprandial glucagon secre- diabetes. tion, enhances satiety, and reduces food intake (12–14). Pramlintide is approved RESEARCH DESIGN AND METHODS — In a 24-week open-label, multicenter study, ␮ as adjunctive treatment for patients with 113 patients were randomly assigned 1:1 to addition of mealtime pramlintide (120 g) or a diabetes who use mealtime insulin with or titrated RAIA to basal insulin and prior oral antihyperglycemic drugs (OADs). At screening, patients were insulin naive or had been receiving Ͻ50 units/day basal insulin for Ͻ6 months. without oral antihyperglycemic drugs The basal insulin dosage was titrated from day 1, seeking fasting plasma glucose (FPG) Ն70– (OADs) and have not achieved desired Ͻ100 mg/dl. Pramlintide and an RAIA were initiated on day 1 and week 4, respectively. The glucose control. Recently, a 16-week, proportion of patients achieving A1C Յ7.0% without weight gain or severe hypoglycemia at double-blind, placebo-controlled study week 24 was the primary end point. of patients with type 2 diabetes showed that pramlintide reduces A1C and weight RESULTS — More pramlintide- than RAIA-treated patients achieved the primary end point without increasing insulin-induced hypo- (30 vs. 11%, P ϭ 0.018) with a similar dose of basal insulin. Pramlintide and an RAIA yielded glycemia when added to basal insulin Ϯ similar mean Ϯ SEM values for FPG and A1C at 24 weeks (122 Ϯ 7 vs. 123 Ϯ 5 mg/dl and 7.2 Ϯ Ϯ OADs without mealtime insulin (15). 0.2 vs. 7.0 0.1%, respectively) and similar least squares mean reductions from baseline to end Pramlintide may offer an additional point (Ϫ31 Ϯ 6 vs. Ϫ34 Ϯ 6 mg/dl and Ϫ1.1 Ϯ 0.2 vs. Ϫ1.3 Ϯ 0.2%, respectively). RAIAs but not pramlintide caused weight gain (ϩ4.7 Ϯ 0.7 vs. ϩ0.0 Ϯ 0.7 kg, P Ͻ 0.0001). Fewer patients therapeutic option for mealtime use by reported mild to moderate hypoglycemia with pramlintide than with the RAIA (55 vs. 82%), but patients with type 2 diabetes already us- more patients reported nausea (21 vs. 0%). No severe hypoglycemia occurred in either group. ing basal insulin. Rapid-acting insulin an- alogs (RAIAs) and pramlintide have CONCLUSIONS — In patients taking basal insulin and OADs, premeal fixed-dose pram- different mechanisms of action and differ- lintide improved glycemic control as effectively as titrated RAIAs. The pramlintide regimen ent patterns of desired and unwanted ef- sometimes caused nausea but no weight gain and less hypoglycemia. fects. Although both can limit after-meal hyperglycemia, RAIAs often cause weight Diabetes Care 32:1577–1582, 2009 gain and hypoglycemia (6), whereas pramlintide is associated with weight loss dding basal insulin therapy to oral Previous studies have shown that de- and nausea (15,16). This study was de- agents improves glycemic control fects in addition to insulin deficiency con- signed to compare the efficacy and side A for many patients with type 2 dia- tribute to after-meal hyperglycemia. Both effects of pramlintide versus RAIAs when betes, but up to 50% of patients continue insulin and amylin are secreted by ␤-cells, added to basal insulin to intensify treat- to have A1C values Ͼ7% (1–5). Persistent and, in individuals with abnormal ␤-cell ment of type 2 diabetes. after-meal hyperglycemia is generally ob- function, glucose- and mixed meal– served in such patients (6). The usual next stimulated secretion of both hormones is RESEARCH DESIGN AND step in treatment is addition of mealtime delayed and reduced (7–9). Insulin defi- METHODS — Patients enrolled were insulin injections, but this approach in- ciency impairs suppression of hepatic aged 18–75 years, had a clinical diagnosis creases risks of weight gain and hypogly- glucose production and enhancement of of type 2 diabetes, and had A1C Ͼ7% and cemia (4,6). glucose uptake by tissues that normally Յ10% with or without use of any combi- ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● nation of metformin, thiazolidinedione, From the 1Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine, Oregon or sulfonylurea OADs. Study participants 2 Health & Science University, Portland, Oregon; and Amylin Pharmaceuticals, San Diego, California. were pramlintide naive and either insulin Corresponding author: Ken Wilhelm, [email protected]. naive or had used Ͻ50 units/day of basal Received 2 March 2009 and accepted 23 May 2009. Ͻ Published ahead of print at http://care.diabetesjournals.org on 5 June 2009. DOI: 10.2337/dc09-0395. insulin for 6 months. Inclusion criteria Clinical trial reg. no. NCT00467649, clinicaltrials.gov. included BMI Ն25 and Յ50 kg/m2. Fe- © 2009 by the American Diabetes Association. Readers may use this article as long as the work is properly male patients were neither pregnant nor lac- cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons. tating and were postmenopausal or using org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby birth control. Candidates were excluded if marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. they adhered poorly to diabetes manage- DIABETES CARE, VOLUME 32, NUMBER 9, SEPTEMBER 2009 1577 Pramlintide versus mealtime insulin ment recommendations, had recurrent nificant nausea. Patients randomly as- signed patients receiving at least one dose severe hypoglycemia within the last 6 signed to an RAIA received only titrated of study medication. Missing individual months, or had a history of hypoglycemia basal insulin therapy for 4 weeks to avoid data were imputed from the last sched- unawareness. Patients with gastroparesis the hypoglycemia risk associated with titrat- uled visit (last observation carried for- or those who required medications to al- ing basal insulin and an RAIA simulta- ward). Insulin dose was analyzed in the ter gastric motility were excluded, as were neously. After 4 weeks, RAIA-randomized ITT observed population. Measured val- patients using exenatide or sitagliptin, patients started RAIA therapy with 5 units ues for insulin dose, A1C, FPG, and any antiobesity agents, systemic glu- of lispro, aspart, or glulisine before each glucose increments are presented as arith- cocorticoid agents, or investigational meal. Mealtime insulin doses were ad- metic mean Ϯ SEM. medications. Patients with eating disor- justed with investigator guidance by 1–2 Fisher’s exact test was used to com- ders, a history of bariatric surgery, or plans units every 3–7 days with the aim of pare the proportion of patients achieving to lose weight were excluded, as were pa- maintaining glucose concentrations at the primary end point. The Cochran- tients with any significant medical condi- Ն70 and Ͻ100 mg/dl before the subse- Mantel-Haenszel test that controlled for tions or advanced diabetes complications. quent meal or (for the dinnertime dose) at A1C at screening was used as a confirma- bedtime. Patients self-monitored blood tory test. Intergroup comparisons of con- Ethical considerations glucose daily according to individualized tinuous changes from baseline were The study protocol was approved by ap- advice from site investigators. A seven- assessed with ANOVA models including plicable institutional review boards and point glucose profile consisting of mea- treatment group, A1C at screening conducted in accordance with the Decla- surements taken 15 min before and 1.5–2 (Յ9.0% or Ͼ9.0%), insulin treatment be- ration of Helsinki. All patients provided h after the start of each of the three meals fore screening, and baseline value (for pa- written informed consent before study and at bedtime was completed during the rameters other than A1C). Data were initiation. week before each visit. At each visit, reported as least squares mean change Ϯ weight, body circumference, and vital SEM. Study design and interventions signs were measured and blood glucose This was a randomized, open-label, par- values were reviewed. Participants were RESULTS allel-group, multicenter 24-week study counseled on adjustment of basal and conducted at 29 centers throughout the mealtime insulin dosage (RAIA group) at Patient disposition, baseline U.S. between April 2007 and May 2008 (a each visit. A1C was measured at all study demographics, and therapies complete list of the participating investi- visits, and FPG was measured at screen- Of 113 patients randomly assigned, 48 gators can be found in the APPENDIX). After ing, baseline, and weeks 4, 12, and 24. No (84%) pramlintide-treated and 50 (89%) the screening visit, eligible patients visited specific lifestyle modification was ad- RAIA-treated patients completed the the study center on day 1 (baseline) and at vised; patients were asked to maintain study (Table 1). One patient in the pram- weeks 4, 8, 12, 18, and 24. Scheduled usual diet and exercise patterns. lintide group withdrew consent before in- telephone visits to review self-monitored jecting study medication, resulting in an glucose measurements and direct insulin Study end points ITT population of 56 patients per treat- adjustment occurred between visits. Ran- The primary end point was the propor- ment group.
Recommended publications
  • The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands
    The Activation of the Glucagon-Like Peptide-1 (GLP-1) Receptor by Peptide and Non-Peptide Ligands Clare Louise Wishart Submitted in accordance with the requirements for the degree of Doctor of Philosophy of Science University of Leeds School of Biomedical Sciences Faculty of Biological Sciences September 2013 I Intellectual Property and Publication Statements The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Clare Louise Wishart to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2013 The University of Leeds and Clare Louise Wishart. II Acknowledgments Firstly I would like to offer my sincerest thanks and gratitude to my supervisor, Dr. Dan Donnelly, who has been nothing but encouraging and engaging from day one. I have thoroughly enjoyed every moment of working alongside him and learning from his guidance and wisdom. My thanks go to my academic assessor Professor Paul Milner whom I have known for several years, and during my time at the University of Leeds he has offered me invaluable advice and inspiration. Additionally I would like to thank my academic project advisor Dr. Michael Harrison for his friendship, help and advice. I would like to thank Dr. Rosalind Mann and Dr. Elsayed Nasr for welcoming me into the lab as a new PhD student and sharing their experimental techniques with me, these techniques have helped me no end in my time as a research student.
    [Show full text]
  • Combining a Glucagon-Like Peptide-1 Receptor Agonist with Basal Insulin: the Why and How
    Combining a Glucagon-like Peptide-1 Receptor Agonist with Basal Insulin: The Why and How Case Study Mary is a 61 year-old female diagnosed with type 2 diabetes mellitus (T2DM) 8 years ago. She was initially managed with the combination of lifestyle modification and metformin. Since that time she was treated with a sulfonylurea, but it was discontinued due to symptomatic hypoglycemia. She was also treated with pioglitazone, but significant fluid retention led to it discontinuation. A year-and-a- half ago, basal insulin was added to her lifestyle and metformin management. She now administers 52 units (0.62 units/kg) once daily at bedtime. Since starting basal insulin, she has experienced 3 episodes of mild hypoglycemia. Since her diagnosis, Mary’s HbA1c has never been <7.0%; her current HbA1c is 7.9%. Over the past month, her fasting plasma glucose (FPG) has ranged from 103 mg/dL to 136 mg/dL and her postprandial glucose (PPG) from 164 mg/dL to 213 mg/dL. She has gained 2.6 kg since starting basal insulin and her body mass index is now 31 kg/m2. Her blood pressure is 134/82 mmHg. She experiences occasional tingling in her feet. Eye examination reveals grade 1 retinopathy. Current medications are: metformin 1000mg twice daily, basal insulin 52 units once daily at bedtime, and hydrochlorothiazide 25 mg once daily. Her family physician notes that Mary’s FPG is reasonably well-controlled, yet her HbA1c and PPG remain elevated. He is also concerned about her episodes of hypoglycemia and weight gain and the evidence indicating microvascular damage.
    [Show full text]
  • A Critical Appraisal of the Role of Insulin Analogues in the Management of Diabetes Mellitus Ralph Oiknine, Marla Bernbaum and Arshag D
    Drugs 2005; 65 (3): 325-340 REVIEW ARTICLE 0012-6667/05/0003-0325/$39.95/0 2005 Adis Data Information BV. All rights reserved. A Critical Appraisal of the Role of Insulin Analogues in the Management of Diabetes Mellitus Ralph Oiknine, Marla Bernbaum and Arshag D. Mooradian Division of Endocrinology, Department of Internal Medicine, Diabetes, and Metabolism, St Louis University School of Medicine, St Louis, Missouri, USA Contents Abstract ....................................................................................325 1. Physiology of Insulin Secretion .............................................................326 2. Conventional Insulin Preparations ..........................................................327 3. Insulin Analogues ........................................................................328 3.1 Rapid-Acting Insulin Analogues .......................................................328 3.1.1 Insulin Lispro ...................................................................328 3.1.2 Insulin Aspart ..................................................................329 3.1.3 Insulin Glulisine .................................................................329 3.1.4 Clinical Utility of Rapid-Acting Insulin Analogues ...................................330 3.2 Premixed Insulins and Insulin Analogues ................................................331 3.3 Basal Insulin Analogues ...............................................................331 3.3.1 Insulin Glargine ................................................................331
    [Show full text]
  • (Pram) and Insulin A21G Improves Post-Prandial Glucose Vs Novolog
    ADO09, A Co-Formulation Of Pramlintide (Pram) and Insulin A21G improves Post-Prandial Glucose Vs Novolog® in Type 1 Diabetes (T1DM) G.Meiffren¹, G.Andersen², R.Eloy¹, C.Seroussi¹, C.Mégret¹, S.Famulla², Y.-P Chan¹, M.Gaudier¹, O.Soula¹, J.H. DeVries²,T.Heise² (1 Adocia, Lyon, France ; 2 Profil, Neuss, Germany) Introduction & Background Overall safety Outpatient period results - CGM metrics o ADO09 (M1Pram) is a co-formulation of pramlintide and insulin A21G o Both treatments were well tolerated without any treatment-related serious adverse events o Most of the CGM metrics (TiR [70-180], TiR [80-140], mean blood glucose per day), were significantly improved developed to leverage the beneficial effects of pramlintide on post-prandial (Table 2). As expected M1Pram had numerically more, mostly gastrointestinal adverse events with M1Pram (Table 4). Postprandial and mean 24-hour glucose profiles were improved with M1Pram (Fig. 3) glucose without additional injections than insulin aspart Table 4: CGM metrics, all days. Significant differences are marked in bold Objective and design o No severe hypoglycemia were seen, slightly more hypoglycemic events occurred with M1Pram Ratio of LSMean* o To compare the effect of M1Pram and insulin aspart (Novolog®, Novo than with aspart (Table 3) Difference Parameter Treatment LS Mean M1Pram / Aspart P-value Nordisk) on post-prandial glucose control, glycemic control assessed by Table 2: Incidence of adverse events throughout the trial (M1Pram-Aspart) (95% CI) CGM and safety/tolerability M1Pram Aspart M1Pram
    [Show full text]
  • Type 2 Diabetes Adult Outpatient Insulin Guidelines
    Diabetes Coalition of California TYPE 2 DIABETES ADULT OUTPATIENT INSULIN GUIDELINES GENERAL RECOMMENDATIONS Start insulin if A1C and glucose levels are above goal despite optimal use of other diabetes 6,7,8 medications. (Consider insulin as initial therapy if A1C very high, such as > 10.0%) 6,7,8 Start with BASAL INSULIN for most patients 1,6 Consider the following goals ADA A1C Goals: A1C < 7.0 for most patients A1C > 7.0 (consider 7.0-7.9) for higher risk patients 1. History of severe hypoglycemia 2. Multiple co-morbid conditions 3. Long standing diabetes 4. Limited life expectancy 5. Advanced complications or 6. Difficult to control despite use of insulin ADA Glucose Goals*: Fasting and premeal glucose < 130 Peak post-meal glucose (1-2 hours after meal) < 180 Difference between premeal and post-meal glucose < 50 *for higher risk patients individualize glucose goals in order to avoid hypoglycemia BASAL INSULIN Intermediate-acting: NPH Note: NPH insulin has elevated risk of hypoglycemia so use with extra caution6,8,15,17,25,32 Long-acting: Glargine (Lantus®) Detemir (Levemir®) 6,7,8 Basal insulin is best starting insulin choice for most patients (if fasting glucose above goal). 6,7 8 Start one of the intermediate-acting or long-acting insulins listed above. Start insulin at night. When starting basal insulin: Continue secretagogues. Continue metformin. 7,8,20,29 Note: if NPH causes nocturnal hypoglycemia, consider switching NPH to long-acting insulin. 17,25,32 STARTING DOSE: Start dose: 10 units6,7,8,11,12,13,14,16,19,20,21,22,25 Consider using a lower starting dose (such as 0.1 units/kg/day32) especially if 17,19 patient is thin or has a fasting glucose only minimally above goal.
    [Show full text]
  • Byetta (Injection Pen) Usage & Safety Guide
    Byetta (Injection Pen) Usage & Safety Guide - Drugs.com 04/07/2015 Tubeless Insulin Pump Tubeless, Reliable, Safe. Try The OmniPod®. Sign-Up For A Demo Kit! Browse all medications A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Advanced Search Phonetic Search Drugs A-Z Pill Identifier Interactions Checker News Health Professionals Q & A Mednotes Apps Home → Conditions → Diabetes, Type 2 → Byetta Print Share Sign In or Register Byetta Related Information Availability Pregnancy Category Generic Name: exenatide (Byetta) (ex EN a tide) Prescription only Risk cannot be ruled out Brand Names: Byetta Prefilled Pen CSA Schedule Approval History Not a controlled drug FDA approved 2009 Overview Side Effects Dosage Interactions For Professionals More Reviews Average User Rating Prostate Cancer Stages 64 User Reviews 8.3 Rate it! See the Progression of Stages for Prostate Cancer. Get Expert Info Drug Class Incretin mimetics What is Byetta? Tubeless Byetta (exenatide) is an injectable diabetes Related Drugs medicine that helps control blood sugar levels . This medication helps Diabetes, Type 2 Insulin metformin your pancreas produce insulin more efficiently. insulin aspart Byetta is a short-acting form of exenatide. Januvia Pump Byetta is used to treat type 2 diabetes. Other glipizide Tubeless, diabetes medicines are sometimes used in glimepiride combination with Byetta if needed. Lantus Reliable, Invokana This medication guide provides information Victoza Safe. Try about the Byetta brand of exenatide. Bydureon glyburide is another brand of exenatide that is not Levemir The covered in this medication guide.
    [Show full text]
  • Diabetes Recommendations and Tier Coverage Chart
    DIABETES RECOMMENDATIONS AND TIER COVERAGE CHART The American Diabetes Association guidelines for 2020, recommend metformin as the preferred initial treatment for type 2 diabetes (T2DM) along with weight management and physical activity. In patients who have established ASVD or at high risk, CKD, or HF, a SGLT2i or GLP-1 receptor with proven efficacy is recommended independent of A1C. • ASCVD dominates: o GLP-1RA with proven CVD benefit (dulaglutide, liraglutide, injectable semaglutide) OR o SGLT2i with proven CVD benefit (canagliflozin, empagliflozin) if adequate eGFR • HF or CKD dominates: o SGLT2i with evidence of reducing HF and/or CKD progression (empagliflozin, canagliflozin, dapagliflozin) if adequate eGFR OR o If SGLT2i intolerant/contraindicated or eGFR is inadequate, then GLP-1RA with proven CVD benefit In individuals without established cardiovascular disease, pharmacological treatment should be patient-centered taking into account side-effects, cost, impact on weight, risk of hypoglycemia, and other patient preferences. For more detailed information regarding ADA recommendations for pharmacological agents to treat T2DM click here. The following chart is a list of oral and injectable diabetes medications listed by class with their respective A1C reduction and insurance coverage and/or coverage requirements for BCBS, HPHC, Tufts, TMP, and MassHealth. Tufts Medicare Medications BCBSMA HPHC Tufts Preferred MassHealth Biguanides A1C reduction: 1-1.5% metformin Tier 1 Tier 1;2 Tier 1 Tier 1 Covered Glucoghage (metformin) NC NC NC;Tier
    [Show full text]
  • Effective Switch from Twice-Daily Pre-Mixed Insulin 50/50 to Liraglutide to Achieve a Good Glycemic Control in Type 2 Diabetes
    Elmer ress Case Report J Med Cases • 2011;2(2):76-80 Effective Switch From Twice-Daily Pre-Mixed Insulin 50/50 to Liraglutide to Achieve a Good Glycemic Control in Type 2 Diabetes Hidekatsu Yanaia, c, Taro Yoshimia, Ritsuko Hondab such gastrointestinal hormones. GLP-1 is produced mainly Abstract by L-cells in the ileum. GLP-1 is released into the blood from intestinal L-cells in response to meal ingestion, and GLP-1 The glucagon-like peptide 1 (GLP-1) stimulates insulin secretion stimulates insulin secretion from pancreatic β-cells in a glu- from pancreatic β-cells in a glucose-dependent manner. Therapeu- cose-dependent manner [1]. GLP-1 slows gastric emptying, tic strategies for type 2 diabetes mellitus are focused on the use which may aid weight loss, and inhibits glucagon release of GLP-1 analogues. Liraglutide, an acylated analogue of human from the pancreatic α-cells [1], improving insulin sensitivity. GLP-1, has been introduced in Japan in 2010. We will show a Therefore, therapeutic strategies for type 2 diabetes mel- 70-year-old woman with type 2 diabetes mellitus achieving a good litus are focused on the use of GLP-1 analogues. Exenatide glycemic control by switching from twice-daily pre-mixed insulin 50/50 to liraglutide. Measurements of plasma glucose and serum was introduced to the market in the United States in 2005 C-peptide levels before and after each meal ingestion and daily uri- and in Europe in 2007. Liraglutide has been introduced to nary C-peptide levels suggested that liraglutide ameliorates glucose the market in Europe in 2009 and in the United States and metabolism mainly not by the glucose-dependent insulinotropic Japan in 2010 [2].
    [Show full text]
  • Tresiba-Product-Monograph.Pdf
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION TRESIBA® insulin degludec injection TRESIBA® FlexTouch® 100 U/mL, Solution for injection in a pre-filled pen TRESIBA® FlexTouch® 200 U/mL, Solution for injection in a pre-filled pen Subcutaneous Antidiabetic Agent Long-Acting Basal Insulin Analogue ATC Code: A10AE06 Novo Nordisk Canada Inc. Date of Initial Authorization: AUG 25, 2017 101-2476 Argentia Road Date of Revision: Mississauga, Ontario JUL 23, 2021 Canada L5N 6M1 Submission Control Number: 250276 Product Monograph Master Template Template Date: September 2020 TRESIBA® (insulin degludec injection) Page 1 of 2 RECENT MAJOR LABEL CHANGES 7 Warnings and Precautions 03/2021 TABLE OF CONTENTS Sections or subsections that are not applicable at the time of authorization are not listed. TABLE OF CONTENTS ..............................................................................................................2 1 INDICATIONS ..................................................................................................................4 1.1 Pediatrics ................................................................................................................4 1.2 Geriatrics ................................................................................................................4 2 CONTRAINDICATIONS ..................................................................................................4 3 SERIOUS WARNINGS AND PRECAUTIONS BOX .......................................................4 4 DOSAGE AND ADMINISTRATION
    [Show full text]
  • Study Protocol
    CLINICAL TRIAL REPORT ZP4207-17086 (ZEA-DNK-02170) 16.1 TRIAL INFORMATION 16.1.1 PROTOCOL AND PROTOCOL AMENDMENTS This appendix includes Document Date, Version Clinical trial protocol Version 1.0, 08 June 2018 (valid in Slovenia and the USA) Version 3.0, 08 January 2019 (valid in Germany) Section 16.1.1: Protocol and Protocol Amendments Clinical Trial Protocol, final version 1.0 ZP4207-17086 (ZEA-DNK-02170) Clinical Trial Protocol A phase 3, randomized, double-blind, placebo- and active-controlled, parallel-arm trial to assess the efficacy, safety, and pharmacokinetics of dasiglucagon relative to placebo and GlucaGen® when administered as a rescue therapy for severe hypoglycemia in children with T1DM treated with insulin Sponsor code: ZP4207-17086 Synteract: ZEA-DNK-02170 EudraCT number: 2018-000892-33 Coordinating investigator: Prof. Dr. med. Thomas Danne Allgemeine Kinderheilkunde Diabetologie, Endokrinologie, Klinische Forschung Diabeteszentrum für Kinder und Jugendliche AUF DER BULT Kinder- und Jugendkrankenhaus Janusz-Korczak-Allee 12 30173 Hannover Germany Sponsor: Zealand Pharma A/S Smedeland 36 2600 Glostrup, Copenhagen Denmark Version: final version 1.0 Date: 08 June 2018 GCP statement This trial will be performed in compliance with Good Clinical Practice, the Declaration of Helsinki (with amendments) and local legal and regulatory requirements. 08 June 2018 CONFIDENTIAL Page 1/55 Zealand Pharma A/S ClinicalTrial Prolocol, final ve¡sion 1.0 zP 42A7 -1 7 A 86 (ZEA-DN K-02 1 L Slgnature¡ and agreoment wlth protocot Tltle: phase A 3, ¡andomized, double-blind, placebo- and aclivg-controlled, parallel-arm trial to assess the efficac¡ safety, and pharmacoítinetics of dasiglucagon rela¡ve to placebo and GlucaGeno when edministered as a rescue thêrapy for sevãre triposivcemia ¡n children w¡th TlDM treated with insulin we, the undersigned, agroe to conduct lhls trlal according to lhe Trlal protocol.
    [Show full text]
  • Prior Authorization Protocol NATL
    Prior Authorization Protocol BYDUREON™ (exenatide extended-release for injectable suspension), BYETTA TM (exenatide), SYMLIN PEN (pramlintide acetate), TANZEUM TM (albiglutide) TRULICITY™ (dulaglutide), VICTOZA ® (liraglutide) NATL Coverage of drugs is first determined by the member`s pharmacy or medical benefit. Please consult with or refer to the Evidence of Coverage document. I. FDA Approved Indications: • Bydureon, Byetta, Tanzeum, Trulicity, Victoza: An adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus • Symlin: Adjunctive treatment in patients with type 1 or type 2 diabetes who use mealtime insulin therapy and who have failed to achieve desired glucose control despite optimal insulin therapy. II. Health Net Approved Indications and Usage Guidelines: Bydureon/ Byetta/Tanzeum/Trulicity/Victoza: • Diagnosis of type 2 diabetes AND • Documentation of baseline A1C AND • Failure or clinically significant adverse effects to at least a 3 month trial of metformin (unless contraindicated) REAUTHORIZATION REQUESTS: If inadequate response to GLP-1 receptor agonist ( i.e. <0.5% reduction in A1c) at the end of initial authorization period, either a switch to insulin therapy, addition of insulin(s) to Victoza or a referral to an endocrinologist will be required. Reauthorization requests require documentation of continued metformin therapy (unless contraindicated). Symlin: • Diagnosis of Diabetes Mellitus Type 1 or 2 AND • Failure to achieve desired blood glucose level despite 3 months of three or more daily mealtime insulin (e.g. Humalog ®, Humulin ® R) injections or use of an insulin pump Confidential & Proprietary Page 1 Draft Prepared: 06.17.05 JP Approved by Health Net Pharmacy & Therapeutics Committee: 11.16.05, 04.06, 5.21.08, 11.19.08, 11.19.09, 8.25.10, 11.9.11, 11.14.12, 11.20.13, 11.19.14, 11.18.15 Updated: 04.07.06.
    [Show full text]
  • Inpatient Care | Lantus (Insulin Glargine Injection) 100 Units/Ml
    For noncritically ill hospitalized patients with diabetes Lantus® as part of a basal-prandial dosing regimen ARA basal-prandialBBIT 2 BASAL-PRA dosing NDoptionIAL forDOS nonintensiveING care inpatients with type 2 diabetes from the RABBIT 2 Study1,a A basal-prandial dosing option for inpatients with type 2 diabetes from the RABBIT 2 Study 31 Calculate total daily dose based Total daily dose on BG and weight at the time of • For BG 140-200 mg/dL, use 0.4 Units/kg admission • For BG 201-400 mg/dL, use 0.5 Units/kg Dose administration Divide the calculated dose into basal and prandial components • Administer 50% of daily dose as basal insulin • Administer the other 50% as rapid-acting prandial 50:50 insulin divided into 3 mealtime injections basal prandial Dose administration Monitor BG, add supplemental • If fasting or mean BG during the day >140 mg/dL, increase basal insulin dose by 20% rapid-acting insulin, and adjust doses as needed • If fasting and premeal BG >140 mg/dL, add supplemental rapid-acting insulin • If BG <70 mg/dL, reduce basal insulin dose by 20% • Hold prandial insulin doses in patients not eating RABBIT 2 was a multicenter, prospective, open-label, randomized study (N=130) to compare the efficacy of a basal-prandial regimen of insulin glargine + insulin glulisine with SSI monotherapy (regular human insulin) in insulin-naive nonsurgical patients aged 18 to 80 years with type 2 diabetes. Patients in the basal-prandial group received glargine once daily and glulisine before meals. SSI was given 4 times per Aday basal-prandialfor BG >140 mg/dL.
    [Show full text]