Understanding Audio Production Practices of People with Vision Impairments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Learning to Build Natural Audio Production Interfaces
arts Article Learning to Build Natural Audio Production Interfaces Bryan Pardo 1,*, Mark Cartwright 2 , Prem Seetharaman 1 and Bongjun Kim 1 1 Department of Computer Science, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA 2 Department of Music and Performing Arts Professions, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY 10003, USA * Correspondence: [email protected] Received: 11 July 2019; Accepted: 20 August 2019; Published: 29 August 2019 Abstract: Improving audio production tools provides a great opportunity for meaningful enhancement of creative activities due to the disconnect between existing tools and the conceptual frameworks within which many people work. In our work, we focus on bridging the gap between the intentions of both amateur and professional musicians and the audio manipulation tools available through software. Rather than force nonintuitive interactions, or remove control altogether, we reframe the controls to work within the interaction paradigms identified by research done on how audio engineers and musicians communicate auditory concepts to each other: evaluative feedback, natural language, vocal imitation, and exploration. In this article, we provide an overview of our research on building audio production tools, such as mixers and equalizers, to support these kinds of interactions. We describe the learning algorithms, design approaches, and software that support these interaction paradigms in the context of music and audio production. We also discuss the strengths and weaknesses of the interaction approach we describe in comparison with existing control paradigms. Keywords: music; audio; creativity support; machine learning; human computer interaction 1. Introduction In recent years, the roles of producer, engineer, composer, and performer have merged for many forms of music (Moorefield 2010). -
TN Production Assistant – V1.0.2.X User Notes
TN Production Assistant – v1.0.2.x User Notes Introduction This software is designed to assist Talking Newspapers in the preparation of a ‘copy-ready’ image of a multi-track Talking Newspaper or Talking Magazine production from individual track recordings created during a preceding ‘studio session’ using a stand-alone digital recorder or other digital recording facility such as a PC with digital recording software. Prerequisites A PC running a Windows Operating System (XP or later). Sufficient hard drive capacity to accommodate the software, working and archive storage (recommended minimum of 1GB) Audio Editing Software (e.g. Adobe Audition, Goldwave or Audacity) installed ‘Microsoft .NET 4 Environment’ installed (this will be automatically installed during the installation procedure below providing an internet connection exists) Installing the software The application is installed from the Downloads Section of the Hamilton Sound website at http://hamiltonsound.co.uk . Please follow the instructions displayed on the website and as presented by the installer. In case of difficulty please contact Hamilton Sound at [email protected] for assistance and advice. Please also report any bugs detected in use or suggested improvements to the above email address. On first installation a welcome screen will be presented followed by the set-up screen. Check and adjust if required the set-up parameters from their pre-set values (see Set-Up below). Configuration Before first using this software it is important to ensure that the configuration parameters are set appropriately for your purposes. The default values of each parameter are shown in parenthesis. TIP – Hold mouse cursor over any field for tips on what to enter there. -
DMA Recording Project Guidelines (Fall 2011) Page 1 of 2
DMA – TMUS 8329 Major Project (4–6 cr.)* Guidelines for Recording Project In addition to the normal requirements of a recital, it is expected that the student will become involved in all aspects of the recording, in effect acting as producer from start to finish. Before undertaking the Recording Project: the student must submit a prospectus that is reviewed and approved by the faculty advisory committee and the Associate Dean of Graduate Studies. A copy of the prospectus must be kept in the student’s file. For a recording to fulfill the requirement, it must adhere to the following criteria. 1. Be comparable in length to a recital. 2. The student is responsible for coordinating all matters pertaining to the recording including: contracting of musicians, studio manager and recording engineer; CD printing or duplication, graphic art design layout, and recording label (optional). 3. The recording must be unique in some way that sets it apart from other recordings. Examples can include but are not limited to recordings that feature: original compositions and/or arrangements, collections of works that are less known and/or have not been readily available in recordings, and so on. This aspect of the project should reflect the student’s creativity and research skills. 4. The submitted recording must be of professional quality. 5. Post-recording work is an essential aspect of the project. The student must oversee the editing, mixing, and (optionally) the mastering of the recording. Refer to the definitions of these processes at the bottom of this document. a. Editing (if necessary) b. Mixing c. -
“Knowing Is Seeing”: the Digital Audio Workstation and the Visualization of Sound
“KNOWING IS SEEING”: THE DIGITAL AUDIO WORKSTATION AND THE VISUALIZATION OF SOUND IAN MACCHIUSI A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN MUSIC YORK UNIVERSITY TORONTO, ONTARIO September 2017 © Ian Macchiusi, 2017 ii Abstract The computer’s visual representation of sound has revolutionized the creation of music through the interface of the Digital Audio Workstation software (DAW). With the rise of DAW- based composition in popular music styles, many artists’ sole experience of musical creation is through the computer screen. I assert that the particular sonic visualizations of the DAW propagate certain assumptions about music, influencing aesthetics and adding new visually- based parameters to the creative process. I believe many of these new parameters are greatly indebted to the visual structures, interactional dictates and standardizations (such as the office metaphor depicted by operating systems such as Apple’s OS and Microsoft’s Windows) of the Graphical User Interface (GUI). Whether manipulating text, video or audio, a user’s interaction with the GUI is usually structured in the same manner—clicking on windows, icons and menus with a mouse-driven cursor. Focussing on the dialogs from the Reddit communities of Making hip-hop and EDM production, DAW user manuals, as well as interface design guidebooks, this dissertation will address the ways these visualizations and methods of working affect the workflow, composition style and musical conceptions of DAW-based producers. iii Dedication To Ba, Dadas and Mary, for all your love and support. iv Table of Contents Abstract .................................................................................................................. -
Thesis Table of Contents
A new sound mixing framework for enhanced emotive sound design within contemporary moving-picture audio production and post-production. Volume 1 of 3 Neil Martin Georges Hillman PhD University of York Theatre, Film and Television September 2017 2 Abstract This study comprises of an investigation into the relationship between the creative process of mixing moving-picture soundtracks and the emotions elicited by the final film. As research shows that listeners are able to infer a speaker’s emotion from auditory cues, independently from the meaning of the words uttered, it is possible that moving-picture soundtracks may be designed in such a way as to intentionally influence the emotional state and attitude of its listening-viewers, independently from the story and visuals of the film. This study sets out to determine whether certain aspects of audience emotions can be enhanced through specific ways of mix-balancing the soundtrack of a moving-picture production, primarily to intensify the viewing experience. Central to this thesis is the proposal that within a film soundtrack there are four distinct ‘sound areas’, described as the Narrative, Abstract, Temporal and Spatial; and these form a useful framework for both the consideration and the creation of emotional sound design. This research work evaluates to what extent the exploration of the Narrative, Abstract, Temporal and Spatial sound areas offers a new and useful framework for academics to better understand, and more easily communicate, emotive sound design theory and analysis; whilst providing practitioners with a framework to explore a new sound design approach within the bounds of contemporary workflow and methodology, to encourage an enhanced emotional engagement by the audience to the soundtrack. -
I/O of Sound with R
I/O of sound with R J´er^ome Sueur Mus´eum national d'Histoire naturelle CNRS UMR 7205 ISYEB, Paris, France July 14, 2021 This document shortly details how to import and export sound with Rusing the packages seewave, tuneR and audio1. Contents 1 In 2 1.1 Non specific classes...................................2 1.1.1 Vector......................................2 1.1.2 Matrix......................................2 1.2 Time series.......................................3 1.3 Specific sound classes..................................3 1.3.1 Wave class (package tuneR)..........................4 1.3.2 audioSample class (package audio)......................5 2 Out 5 2.1 .txt format.......................................5 2.2 .wav format.......................................6 2.3 .flac format.......................................6 3 Mono and stereo6 4 Play sound 7 4.1 Specific functions....................................7 4.1.1 Wave class...................................7 4.1.2 audioSample class...............................7 4.1.3 Other classes..................................7 4.2 System command....................................8 5 Summary 8 1The package sound is no more maintained. 1 Import and export of sound with R > options(warn=-1) 1 In The main functions of seewave (>1.5.0) can use different classes of objects to analyse sound: usual classes (numeric vector, numeric matrix), time series classes (ts, mts), sound-specific classes (Wave and audioSample). 1.1 Non specific classes 1.1.1 Vector Any muneric vector can be treated as a sound if a sampling frequency is provided in the f argument of seewave functions. For instance, a 440 Hz sine sound (A note) sampled at 8000 Hz during one second can be generated and plot following: > s1<-sin(2*pi*440*seq(0,1,length.out=8000)) > is.vector(s1) [1] TRUE > mode(s1) [1] "numeric" > library(seewave) > oscillo(s1,f=8000) 1.1.2 Matrix Any single column matrix can be read but the sampling frequency has to be specified in the seewave functions. -
Computerized Data Collection and Analysis
Computerized Data Collection & Analysis IASCL/SRCLD Bunta, Ingram, Ingram Madison, WI, 2002 Computerized Data Collection and Analysis Paper Presented at the Joint Conference of the IX International Congress for the Study of Child Language and the Symposium on Research in Child Language Disorders, Madison, WI, 2002 Ferenc Bunta, [email protected], http://www.public.asu.edu/~ferigabi/ David Ingram, [email protected] Kelly Ingram, [email protected] Arizona State University, Tempe, AZ, USA Why Diigiitiize • data storage (about 4 hours on 1 CD at 22 kHz, 16 bit, mono) • cost-effectiveness (computer, storage options, etc.) • flexibility & efficiency – transferability (CD, HD, zip, other), file sharing via e-mail or web posting – accessibility computer or even CD player – ability to revisit any portion of your original recordings quickly & easily; no painstaking searching for segments (visual information) – ease of transcribing and reliability checks – editing opportunities (extraction, noise reduction, amplification, etc.) – organizing, rearranging, & filing – acoustic analyses Diigiitiiziing & Hardware Considerations - digital sampling versus analog tapes - use appropriate specifications - directly onto the computer or using an external recording device (such as audio tape, DAT recorder, etc.) and then digitizing - find a balance based on recommendations and one’s needs - understand the consequences of your choices - consider pre-emphasis and low-pass filtering (if needed) System Recommendations (Hardware) Recording equipment (general): For the most part, you can use the equipment you have, or you may record directly onto the computer using your microphone. - microphone (use your preferred device; the one you have used in the past) - recording device (your own professional voice recorder (analog tape, DAT, etc.), use an external sound card, or record directly onto the computer) NOTE: Numerous recording devices (even most digital recorders, such as DAT, MiniDisc, etc.) require you to re-digitize (i.e., re-record the sample onto your computer). -
Recording: Processing Audio and the Modern Recording Studio
Chapter 7. Meeting 7, Recording: Processing Audio and the Modern Recording Studio 7.1. Announcements • Quiz next Thursday • Numerous listenings assignments for next week 7.2. Processing Audio • Contemporary processors take many physical forms: effects units, stomp-boxes © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 160 Photo courtesy of kernelslacker on Flickr. 161 Photo courtesy of michael morel on Flickr. Courtesy of George Massenburg Labs. Used with permission. 162 Original photo courtesy of eyeliam on Flickr; edited by Wikipedia User:Shoulder-synth. 163 • As software, most are implemented as plug-ins 164 © Avid Technology, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 165 © MOTU, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 7.3. Distortion • Pushing a signal beyond its dynamic range squares the waveform • Making round signals more square adds extra harmonics [demo/processorsDistortion.pd] 166 • Examples • Overdrive • Fuzz • Crunch 7.4. Dynamics Processors • Transform the amplitude of a signal in real-time • Amplitudes can be pushed down above or below a threshold to decrease or increase dynamic range • Examples 167 • Compressors and Limiters • Expanders and Gates 7.5. Dynamics Processors: Compression • Reduces a signal’s dynamic range • Makes the quiet sounds louder • Helps a track maintain its position in the mix • Two steps • Reduce dynamic range: turn amplitudes down if a above a specific level (the threshold) • Increase amplitude of entire signal so that new peaks are where the old were 168 To be compressed Uncompressed Peak Threshold Sound Energy Time Compression occurs Previous 0 VU Threshold Sound Energy Time 0 VU Sound Energy Boost overall level Time Figure by MIT OpenCourseWare. -
HANDOUT 205.02 Review Planning Technical Preparation
HANDOUT 205.02 Review REVIEW: PROCEDURES FOR PRODUCING AUDIO Planning 9 Plan Audio - Define target audience - Brainstorm – write down/sketch ideas - Coordinate location needs - Coordinate equipment needs Technical Preparation 9 Scriptwriting - Reason for the script o Commercial – What is the product? o Entertainment (movie, music, play, sports) – What is the story? o Information/educational - What needs to be conveyed? o News – What happened? o PSA – What is the message? - Write the script 9 Select Equipment (equipment considerations) - Location – Where will the microphones be used? - Type of audio recording – people, vocals, instruments? - Computer/software - Type of microphones o Is it loud and crowded? - cardioid o Is the audio source far way? – shotgun/hypercardioid o Are there many audio sources to capture simultaneously? – omnidirectional o Do the microphones need to be unseen? - visibility - Types of cables/connections o XLR o RCA o Mini o ¼’’ Page | 1 HANDOUT 205.02 Review - Audio board/mixer - Speakers Creating 9 Create Digital Audio - Record Audio o Connect proper equipment (microphone, audio boards, hard drive, MIDI) o Check audio levels – adjust as necessary o Record each person/instrument on a separate channel (if possible) o Make sure levels do not over modulate (distortion) o Begin recording and cue the talent - Edit Audio o After recording, save o Import any additional files needed o Cut, splice, trim, edit and assemble as necessary o Add effects (only if they do not detract from message) o Add background music o Adjust -
Approaches in Intelligent Music Production
arts Article Approaches in Intelligent Music Production David Moffat * and Mark B. Sandler School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK * Correspondence: [email protected]; Tel.: +44-(0)20-7882-5555 Received: 18 July 2019; Accepted: 10 September 2019; Published: 25 September 2019 Abstract: Music production technology has made few advancements over the past few decades. State-of-the-art approaches are based on traditional studio paradigms with new developments primarily focusing on digital modelling of analog equipment. Intelligent music production (IMP) is the approach of introducing some level of artificial intelligence into the space of music production, which has the ability to change the field considerably. There are a multitude of methods that intelligent systems can employ to analyse, interact with, and modify audio. Some systems interact and collaborate with human mix engineers, while others are purely black box autonomous systems, which are uninterpretable and challenging to work with. This article outlines a number of key decisions that need to be considered while producing an intelligent music production system, and identifies some of the assumptions and constraints of each of the various approaches. One of the key aspects to consider in any IMP system is how an individual will interact with the system, and to what extent they can consistently use any IMP tools. The other key aspects are how the target or goal of the system is created and defined, and the manner in which the system directly interacts with audio. The potential for IMP systems to produce new and interesting approaches for analysing and manipulating audio, both for the intended application and creative misappropriation, is considerable. -
Digital Transmit Audio Processing with Presonus Studio One Artist
Digital transmit audio processing with Presonus Studio One Artist ... Setup guide for a software based digital audio workstation (DAW) as an alternative to conventional hardware based audio processing techniques. Appendix A provides additional info for items high lighted in yellow … How this scheme works: A. Digital audio output from the Rode NT-USB microphone is routed to the computer via a type A/B USB cable. B. Digital audio is then processed within the computer by the software based system Presonus Studio One Artist. C. Digital transmit audio output from Studio One Artist is then routed via Type A/B USB cable to the Kenwood TS- 590 via a USB cable. Finally, it is converted from digital to analog and transmitted. D. 90 watts RF output from TS-590S transceiver. E. 800 watts RF output from Ameritron AL80B linear. F. 800 watts RF output from Palstar AT1500BAL to horizontal loop. G. Receive audio from the Kenwood 590S is routed via USB cable (C.) back to the computer and outputted to a pair of near field monitor speakers. Setup: Hardware: Kenwood TS-590S PC running Window’s 10 with internal Realtek sound card. Necessary interconnection cabling. Presonus Studio One Artist Digital Audio Workstation (DAW) software: Your best bet is to purchase Presonus AudioBox USB audio interface as described at http://www.sweetwater.com/store/detail/AudioBoxUSB . This interface includes a free copy of Studio One Artist. Note: Alternatively, you can use the AudioBox USB interface together with conventional analog cables for transceivers that are not equipped with USB connectivity. Kenwood 590 settings: 61 - 115200 62 - 115200 63 - USB 64 - 1 65 - 2 68 - off 69 - on (assuming you prefer to use VOX) 70 - 20 71 - 3 79 - 205 (for ptt via front panel "PFA' button) Note: Other Kenwood 590 settings include menu 25/27 at 100, menu 26/28 at 2900. -
Advanced Automatic Mixing Tools for Music Perez Gonzalez, Enrique
Advanced automatic mixing tools for music Perez Gonzalez, Enrique The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. https://qmro.qmul.ac.uk/jspui/handle/123456789/614 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Advanced Automatic Mixing Tools for Music Submitted by Enrique Perez Gonzalez For the Ph.D. degree of Queen Mary University Of London Mile End Road London E1 4NS September 30, 2010 2 I certify that this thesis, and the research to which it refers, are the product of our own work, and that any ideas or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance with the standard referencing practices of the discipline. I acknowledge the helpful guidance and support of our supervisor, Dr. Johua Daniel Reiss. 3 Abstract This thesis presents research on several independent systems that when combined together can generate an automatic sound mix out of an unknown set of multi‐channel inputs. The research explores the possibility of reproducing the mixing decisions of a skilled audio engineer with minimal or no human interaction. The research is restricted to non‐time varying mixes for large room acoustics. This research has applications in dynamic sound music concerts, remote mixing, recording and postproduction as well as live mixing for interactive scenes.