Waterfowl and Wing ID
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tinamiformes – Falconiformes
LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma -
A 2010 Supplement to Ducks, Geese, and Swans of the World
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible. -
References.Qxd 12/14/2004 10:35 AM Page 771
Ducks_References.qxd 12/14/2004 10:35 AM Page 771 References Aarvak, T. and Øien, I.J. 1994. Dverggås Anser Adams, J.S. 1971. Black Swan at Lake Ellesmere. erythropus—en truet art i Norge. Vår Fuglefauna 17: 70–80. Wildl. Rev. 3: 23–25. Aarvak, T. and Øien, I.J. 2003. Moult and autumn Adams, P.A., Robertson, G.J. and Jones, I.L. 2000. migration of non-breeding Fennoscandian Lesser White- Time-activity budgets of Harlequin Ducks molting in fronted Geese Anser erythropus mapped by satellite the Gannet Islands, Labrador. Condor 102: 703–08. telemetry. Bird Conservation International 13: 213–226. Adrian, W.L., Spraker, T.R. and Davies, R.B. 1978. Aarvak, T., Øien, I.J. and Nagy, S. 1996. The Lesser Epornitics of aspergillosis in Mallards Anas platyrhynchos White-fronted Goose monitoring programme,Ann. Rept. in north central Colorado. J. Wildl. Dis. 14: 212–17. 1996, NOF Rappportserie, No. 7. Norwegian Ornitho- AEWA 2000. Report on the conservation status of logical Society, Klaebu. migratory waterbirds in the agreement area. Technical Series Aarvak, T., Øien, I.J., Syroechkovski Jr., E.E. and No. 1.Wetlands International,Wageningen, Netherlands. Kostadinova, I. 1997. The Lesser White-fronted Goose Afton, A.D. 1983. Male and female strategies for Monitoring Programme.Annual Report 1997. Klæbu, reproduction in Lesser Scaup. Unpubl. Ph.D. thesis. Norwegian Ornithological Society. NOF Raportserie, Univ. North Dakota, Grand Forks, US. Report no. 5-1997. Afton, A.D. 1984. Influence of age and time on Abbott, C.C. 1861. Notes on the birds of the Falkland reproductive performance of female Lesser Scaup. -
Sea Duck Curriculum Revised
Sea Ducks of Alaska Activity Guide Acknowledgments Contact Information: Project Coordinator: Marilyn Sigman, Center for Alaskan Coastal Studies Education: Written By: Sea Duck Activity Guide, Teaching Kit and Display: Elizabeth Trowbridge, Center for Alaskan Coastal Marilyn Sigman Center for Alaskan Coastal Studies Studies P.O. Box 2225 Homer, AK 99603 Illustrations by: (907) 235-6667 Bill Kitzmiller, Conrad Field and Fineline Graphics [email protected] (Alaska Wildlife Curriculum Illustrations), Elizabeth Alaska Wildlife Curricula Trowbridge Robin Dublin Wildlife Education Coordinator Reviewers: Alaska Dept. of Fish & Game Marilyn Sigman, Bree Murphy, Lisa Ellington, Tim Division of Wildlife Conservation Bowman, Tom Rothe 333 Raspberry Rd. Anchorage, AK 99518-1599 (907)267-2168 Funded By: [email protected] U.S. Fish and Wildlife Service, Alaska Coastal Program and Scientific/technical Information: The Alaska Department of Fish and Game, State Duck Tim Bowman Stamp Program Sea Duck Joint Venture Coordinator (Pacific) The Center for Alaskan Coastal Studies would like to thank U.S. Fish & Wildlife Service the following people for their time and commitment to sea 1011 E. Tudor Rd. duck education: Tim Bowman, U.S. Fish and Wildlife Anchorage, AK 99503 Service, Sea Duck Joint Venture Project, for providing (907) 786-3569 background technical information, photographs and [email protected] support for this activity guide and the sea duck traveling SEADUCKJV.ORG display; Tom Rothe and Dan Rosenberg of the Alaska Department of Fish and Game for technical information, Tom Rothe presentations and photographs for both the sea duck Waterfowl Coordinator traveling display and the activity guide species identifica- Alaska Dept. of Fish & Game tion cards; John DeLapp, U.S. -
Birds on San Clemente Island, As Part of Our Work Toward the Recovery of the Island’S Endangered Species
WESTERN BIRDS Volume 36, Number 3, 2005 THE BIRDS OF SAN CLEMENTE ISLAND BRIAN L. SULLIVAN, PRBO Conservation Science, 4990 Shoreline Hwy., Stinson Beach, California 94970-9701 (current address: Cornell Laboratory of Ornithology, 159 Sapsucker Woods Rd., Ithaca, New York 14850) ERIC L. KERSHNER, Institute for Wildlife Studies, 2515 Camino del Rio South, Suite 334, San Diego, California 92108 With contributing authors JONATHAN J. DUNN, ROBB S. A. KALER, SUELLEN LYNN, NICOLE M. MUNKWITZ, and JONATHAN H. PLISSNER ABSTRACT: From 1992 to 2004, we observed birds on San Clemente Island, as part of our work toward the recovery of the island’s endangered species. We increased the island’s bird list to 317 species, by recording many additional vagrants and seabirds. The list includes 20 regular extant breeding species, 6 species extirpated as breeders, 5 nonnative introduced species, and 9 sporadic or newly colonizing breeding species. For decades San Clemente Island had been ravaged by overgrazing, especially by goats, which were removed completely in 1993. Since then, the island’s vegetation has begun recovering, and the island’s avifauna will likely change again as a result. We document here the status of that avifauna during this transitional period of re- growth, between the island’s being largely denuded of vegetation and a more natural state. It is still too early to evaluate the effects of the vegetation’s still partial recovery on birds, but the beginnings of recovery may have enabled the recent colonization of small numbers of Grasshopper Sparrows and Lazuli Buntings. Sponsored by the U. S. Navy, efforts to restore the island’s endangered species continue—among birds these are the Loggerhead Shrike and Sage Sparrow. -
Mitogenomics Supports an Unexpected Taxonomic Relationship for the Extinct Diving Duck Chendytes Lawi and Definitively Places the Extinct Labrador Duck ⁎ Janet C
Buckner, et al. Published in Molecular Phylogeny and Evolution, 122:102-109. 2018 Mitogenomics supports an unexpected taxonomic relationship for the extinct diving duck Chendytes lawi and definitively places the extinct Labrador Duck ⁎ Janet C. Bucknera, Ryan Ellingsona, David A. Goldb, Terry L. Jonesc, David K. Jacobsa, a Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States b Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States c Department of Social Sciences, California Polytechnic State University, San Luis Obispo, CA 9340, United States ARTICLE INFO ABSTRACT Keywords: Chendytes lawi, an extinct flightless diving anseriform from coastal California, was traditionally classified as a sea Biodiversity duck, tribe Mergini, based on similarities in osteological characters. We recover and analyze mitochondrial Anatidae genomes of C. lawi and five additional Mergini species, including the extinct Labrador Duck, Camptorhynchus Ancient DNA labradorius. Despite its diving morphology, C. lawi is reconstructed as an ancient relictual lineage basal to the Labrador duck dabbling ducks (tribe Anatini), revealing an additional example of convergent evolution of characters related to Mitochondrial genome feeding behavior among ducks. The Labrador Duck is sister to Steller’s Eider which may provide insights into the California paleontology Duck evolution evolution and ecology of this poorly known extinct species. Our results demonstrate that inclusion of full length mitogenomes, from taxonomically distributed ancient and modern sources can improve phylogeny reconstruc- tion of groups previously assessed with shorter single-gene mitochondrial sequences. 1. Introduction an extended study by Livezey (1993) suggested placement in the eider genus Somateria. -
Energy-Based Carrying Capacities of Bufflehead Bucephala Albeola Wintering Habitats Richard A
University of Rhode Island DigitalCommons@URI Natural Resources Science Faculty Publications Natural Resources Science 2012 Energy-Based Carrying Capacities of Bufflehead Bucephala albeola Wintering Habitats Richard A. McKinney Scott R. McWilliams University of Rhode Island, [email protected] Creative Commons License Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs Citation/Publisher Attribution McKinney, R. A., & McWilliams, S. R. (2012). Energy-Based Carrying Capacities of Bufflehead Bucephala albeola Wintering Habitats. The Open Ornithology Journal, 5, 5-17. doi: 10.2174/1874453201205010005 Available at: http://dx.doi.org/10.2174/1874453201205010005 This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. The Open Ornithology Journal, 2012, 5, 5-17 5 Open Access Energy-Based Carrying Capacities of Bufflehead Bucephala albeola Wintering Habitats Richard A. McKinney*,1 and Scott R. McWilliams2 1US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA 2Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA Abstract: We present a model for calculating energy-based carrying capacities for bufflehead (Bucephala albeola), a small North American sea duck wintering in coastal and estuarine habitats. Our model uses estimates of the seasonal energy expenditures that incorporate site-specific energetic costs of thermoregulation, along with available prey energy densities to calculate carrying capacities in numbers of birds per winter. -
Common Birds of the Estero Bay Area
Common Birds of the Estero Bay Area Jeremy Beaulieu Lisa Andreano Michael Walgren Introduction The following is a guide to the common birds of the Estero Bay Area. Brief descriptions are provided as well as active months and status listings. Photos are primarily courtesy of Greg Smith. Species are arranged by family according to the Sibley Guide to Birds (2000). Gaviidae Red-throated Loon Gavia stellata Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: A small loon seldom seen far from salt water. In the non-breeding season they have a grey face and red throat. They have a long slender dark bill and white speckling on their dark back. Information: These birds are winter residents to the Central Coast. Wintering Red- throated Loons can gather in large numbers in Morro Bay if food is abundant. They are common on salt water of all depths but frequently forage in shallow bays and estuaries rather than far out at sea. Because their legs are located so far back, loons have difficulty walking on land and are rarely found far from water. Most loons must paddle furiously across the surface of the water before becoming airborne, but these small loons can practically spring directly into the air from land, a useful ability on its artic tundra breeding grounds. Pacific Loon Gavia pacifica Occurrence: Common Active Months: November-April Federal Status: None State/Audubon Status: None Description: The Pacific Loon has a shorter neck than the Red-throated Loon. The bill is very straight and the head is very smoothly rounded. -
Appendix, French Names, Supplement
685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U. -
The Function and Evolution of the Supraorbital Process in Ducks
THE FUNCTION AND EVOLUTION OF THE SUPRAORBITAL PROCESS IN DUCKS ROBERTJ. RAIKOW THE anteriormargin of the orbit in ducksis formedby the lacrimalbone, which articulateswith the anterolateralmargin of the frontal boneand the posterodorsalcorner of the maxillary processof the nasal bone. The evolu- tion of this bone in birds generally has been dealt with recently by Cracraft (Amer. Midl. Naturalist, 80: 316, 1968), whoseterminology for the parts of the lacrimal bone is followedhere. In many ducksthe postero- dorsalcorner of the lacrimal is marked by a small tubercle,which serves as the site of attachment of the anterior end of the orbital membrane,a sheetof connectivetissue that coversand protectsthe dorsalaspect of the eyeball. In some forms this tubercle has become elongated to form a stout, finger-like projection, the supraorbitalprocess. This appears to provide mechanicalprotection to the eyeball and salt gland (Figure 1). Table 1 lists the occurrenceand degree of developmentof this process in the skulls of all living generaof ducks. CORRELATION WITH FEEDING AND LOCOMOTOR HABITS In the following discussion,data on feeding habits are from Delacour (The waterfowlof the world,vols. 1-3, London,Country Life Ltd., 1954, 1956, 1959). Table 1 showsthat the supraorbital processis developed significantlyonly in certain groupsof ducks that feed underwater. It is absentor rudimentaryin the Tadornini, Cairinini, and Anatini, which are primarily surfacefeeders, but also in Merganetta arma.ta,the Torrent Duck, which feedsunderwater. In the Aythyini it is fairly well-developed in severalspecies of Aythya, which are excellentdivers, but is rudimentary in Netta peposaca,which is moreof a surfacefeeder. It is alsorudimentary in the Canvasback,Aythya valisineria,which dives for vegetation.Among the Mergini the supraorbitalprocess is highly developedin eiders (Poly- sticta, Somateria) , scoters( M elanitta) , and Long-tailed Duck ( Clangula byemalls), all of which feed mainly on invertebratestaken from the bottom. -
Lista Das Aves Do Brasil
90 Annotated checklist of the birds of Brazil by the Brazilian Ornithological Records Committee / Lista comentada das aves do Brasil pelo Comitê Brasileiro de Registros Ornitológicos content / conteÚDO Abstract ............................. 91 Charadriiformes ......................121 Scleruridae .............187 Charadriidae .........121 Dendrocolaptidae ...188 Introduction ........................ 92 Haematopodidae ...121 Xenopidae .............. 195 Methods ................................ 92 Recurvirostridae ....122 Furnariidae ............. 195 Burhinidae ............122 Tyrannides .......................203 Results ................................... 94 Chionidae .............122 Pipridae ..................203 Scolopacidae .........122 Oxyruncidae ..........206 Discussion ............................. 94 Thinocoridae .........124 Onychorhynchidae 206 Checklist of birds of Brazil 96 Jacanidae ...............124 Tityridae ................207 Rheiformes .............................. 96 Rostratulidae .........124 Cotingidae .............209 Tinamiformes .......................... 96 Glareolidae ............124 Pipritidae ............... 211 Anseriformes ........................... 98 Stercorariidae ........125 Platyrinchidae......... 211 Anhimidae ............ 98 Laridae ..................125 Tachurisidae ...........212 Anatidae ................ 98 Sternidae ...............126 Rhynchocyclidae ....212 Galliformes ..............................100 Rynchopidae .........127 Tyrannidae ............. 218 Cracidae ................100 Columbiformes -
Phylogeny and Comparative Ecology of Stiff-Tailed Ducks (Anatidae: Oxyurini)
Wilson Bull., 107(2), 1995, pp. 214-234 PHYLOGENY AND COMPARATIVE ECOLOGY OF STIFF-TAILED DUCKS (ANATIDAE: OXYURINI) BRADLEY C. LIVEZEY’ ABSTRACT.-A cladistic analysis of the stiff-tailed ducks (Anatidae: Oxyurini) was con- ducted using 92 morphological characters. The analysis produced one minimum-length, completely dichotomous phylogenetic tree of high consistency (consistency index for infor- mative characters, 0.74). Monophyly of the tribe was supported by 17 unambiguous syna- pomorphies. Within the tribe, Heteronetta (1 species) is the sister-group of other members; within the latter clade (supported by 2 1 unambiguous synapomorphies), Nomonyx (1 species) is the sister-group of Oxyura (6 species) + Biziura (I species). The latter clade is supported by 10 unambiguous synapomorphies. Monophyly of Oxyuru proper is supported by three unambiguous synapomorphies. All branches in the shortest tree except that uniting Oxyuva, exclusive of jumaicensis, were conserved in a majority-rule consensus tree of 1000 boot- strapped replicates. Biziuru and (to a lesser extent) Heteronetta were highly autapomorphic. Modest evolutionary patterns in body mass, reproductive parameters, and sexual dimorphism are evident, with the most marked, correlated changes occurring in Heteronetta and (es- pecially) Biziura. The implications of these evolutionary trends for reproductive ecology and biogeographic patterns are discussed, and a phylogenetic classification of the tribe is presented. Received 27 April 1994, accepted 10 Nov. 1994. The stiff-tailed ducks (Anatidae: Oxyurini) include some of the most distinctive species of waterfowl; among its members are the only obligate nest-parasite (Black-headed Duck; Heteronetta atricapilla) and the spe- cies showing the greatest sexual size dimorphism (Musk Duck; Biziuru lob&z) in the order Anseriformes (Delacour 1959; Johnsgard 1962, 1978; Weller 1968; Livezey 1986).