Intel Mobile CPU Roadmap

Total Page:16

File Type:pdf, Size:1020Kb

Intel Mobile CPU Roadmap Intel Mobile CPU Roadmap 2004 2005 2006 2008 2009 2010 System Price 2007 TDP System CPU Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 2H Q4 Price Core2 Extreme Nehalem/Core 2 Clarksfield QX Quad-Core Quad core Boundary 2.xxGHz/ Calpella Extreme 4 cores/2 cores Penryn QC 8MB/PCIe 45W Extreme Boundary QX9300 (2.53GHz/ Montevina 4cores/PCIe x16 (55W) QC XE 12MB/FSB1066) $1000 Penryn 6M Merom 4M Core2 Extreme Core2 Quad Santa Rosa X9000(2.8GHz/ Penryn 6M Penryn QC Clarksfield 6MB/FSB800) 2.xxGHz/ X/Q Quad-Core Dual core 8MB/PCIe -45W Performance2 Extreme Yonah/Core 2 X7800 (2.6GHz/ X7900 (2.8GHz/ Q9100 (2.26GHz/ Calpella 2 cores/1 core Boundary 4MB/FSB800) 4MB/FSB800) X9100(3.06GHz/ 12MB/FSB1066) (55W) QC P2 Boundary Merom 4M Santa Rosa 6MB/FSB1066) Refresh $750 Montevina Napa Napa Refresh Merom 4M 2.xxGHz/ Clarksfield Quad-Core Dothan 533 Santa Rosa ?MB/PCIe 2.13GHz(770) 2.33GHz(T7600) Q9000 (2GHz/ Calpella Performance1 Yonah Dual-Core2M Core2 Duo 6MB/FSB1066) QC P1 T9500 (2.6GHz/ $34x Performance 2.16GHz(T2600) 2.33GHz(T2700) 6MB/FSB800) Penryn 6M Montevina 2.1GHz(765) T7700 (2.4GHz/ T7800 (2.6GHz/ T9600 (2.8GHz/ T9800 (2.93GHz/ T9900 (3.06GHz/ T Dual-Core 2.26GHz(780) 4MB/FSB800) 4MB/FSB800) 6MB/FSB1066) 6MB/FSB1066) 6MB/FSB1066) 35W Performance2 Core2 Duo (45W) DC P2 Core2 Duo $500 2GHz(760) 2GHz(T2500) Penryn 6M 35W Dual-Core Dothan 2.16GHz(T7400) 2GHz(755) Core Duo T9400 (2.53GHz/ T9550 (2.66GHz/ T9600 (2.8GHz/ Performance1 6MB/FSB1066) 6MB/FSB1066) 6MB/FSB1066) DC P1 2.13GHz(770) 2.16GHz(T2600) T9300 (2.5GHz/ $31x Mainstream 3 6MB/FSB800) PCIe x16 T7500 (2.2GHz/ T7700 (2.4GHz/ P9500 (2.53GHz/ P9600 (2.8GHz/ P9700 (2.8GHz/ Arrandale /Graphics core Pentium M Yonah Dual-Core2M Merom 4M 4MB/FSB800) 4MB/FSB800) 6MB/FSB1066) 6MB/FSB1066) 6MB/FSB1066) Power Optimized 1.83GHz(T2400) 2GHz(T7200) Penryn 6M 25W Arrandale Performance 3 1.86GHz(750) POP3 2GHz(760) Core2 Duo 1.8GHz(745) 2GHz(T2500) Penryn 3M $34x 2GHz(760) Calpella T8300 (2.4GHz/ P8600 (2.4GHz/ P8700 (2.53GHz/ P8800 (2.66GHz/ Mainstream 2 3MB/FSB800) 3MB/FSB1066) 3MB/FSB1066) 3MB/FSB1066) Arrandale Power Optimized Merom 2M T7500 (2.2GHz/ P Performance 2 1.86GHz(750) Arrandale 1.73GHz(740) 1.83GHz(T5600) 4MB/FSB800) Penryn 3M 25W POP2 T7300 (2GHz Montevina (35W) $240 1.7GHz(735) 1.66GHz(T2300) 1.83GHz(T2400) 4MB/FSB800) T8100 (2.1GHz/ Arrandale 1.6GHz(730) 1.73GHz(740) 1.66GHz(T5500) 3MB/FSB800) P8400 (2.26GHz/ P8600(2.4GHz/ P8700 (2.53GHz/ Power Optimized T7200 (2GHz/ 3MB/FSB1066) 3MB/FSB1066) 3MB/FSB1066) Arrandale Mainstream 1 Core Solo 1.66GHz(T2300E) T7100 (1.8GHz/ 2MB/FSB800) Performance 1 1.6GHz(725) 2MB/FSB800) POP1 1.66GHz(T1300) 1.83GHz(T1400) Core2 Duo $200 Yonah Single-Core2M SP9400 (2.4GHz/ SP9600 (2.53GHz/ 6MB/FSB1066) 6MB/FSB1066) SP 25W Power Optimized 2 cores/1 core SP9300 (2.26GHz/ SP9400 (2.4GHz/ Performance SFF Boundary 6MB/FSB1066) 6MB/FSB1066) (35W) Penryn 6M 25W Montevina $2xx Merom-L Santa Rosa Merom-L Celeron M Celeron M (Yonah) Celeron M 540 (1.86GHz/ 550 (2GHz/ 560 (2.13GHz/ 570 (2.26GHz/ SC Value 3 Napa Refresh 1MB/FSB533) 1MB/FSB533) 1MB/FSB533) 1MB/FSB533) T1700 (1.86GHz/ Penryn Core DC Value 2 1.4GHz(360) 1.5GHz(370) 1.6GHz(380) 1.7GHz(390) 1.73GHz(430) 2GHz(450) 1.6GHz(520) 1.73GHz(530) 1MB/FSB667) Celeron Celeron (Dual-core) $130 Dothan Yonah Single-core 1M 540 (1.86GHz/ 570(2.26GHz/ 1MB/FSB533) 550 (2GHz/ 560 (2.13GHz/ 1MB/FSB533) T1600 (1.66GHz/ SC Value 2 Value 1.3GHz(350) 1.4GHz(360) 1.5GHz(370) 1.6GHz(380) 1.6GHz(420) 1.86GHz(440) 1.6GHz(520) Penryn Core 31W 1.73GHz(530) 1MB/FSB533) 1MB/FSB533) 585(2.16GHz/ Merom-L 1MB/FSB667) DC Value 1 1MB/FSB667) $100 Celeron 530 (1.73GHz/ 1.3GHz(350) 1.4GHz(360) 1.5GHz(370) 1.46GHz(410) 1.73GHz(430) 560(2.13GHz/ 1.5GHz(340) 1.86GHz(440) 1MB/FSB533) 540 (1.86GHz/ 550 (2GHz/ Montevina 1MB/FSB533) 1MB/FSB533) 1MB/FSB533) 585(2.16GHz/ 900(2.2GHz/ Value 1 Banias 1.6GHz(520) 575(2GHz/ 1MB/FSB667) 1MB/FSB800) 1MB/FSB667) $80 Core Duo LV Core2 Duo LV L7700 (1.8GHz/ Santa Rosa 4MB/FSB800) Penryn 6MMontevina Arrandale Pentium M LV SL9400 (1.86GHz/ SL9600 (2.13GHz/ 1.66GHz(L2400) 1.83GHz(L2500) 1.5GHz(L7400) Arrandale Performance 6MB/FSB1066) 6MB/FSB1066) L Performance Dothan Yonah Dual-Core2M Merom LV L7500 (1.6GHz/ Core2 Duo SL $3xx Low Voltage 4MB/FSB800) Low Voltage 1.4GHz(738) 1.5GHz(758) 17W 1.5GHz(L2300) 1.66GHz(L2400) 1.33GHz(L7200) SL9300 (1.6GHz/ SL9400 (1.86GHz/ L7300 (1.4GHz/ 6MB/FSB1066) 6MB/FSB1066) Arrandale 1.6GHz(778) Napa Refresh 4MB/FSB800) 2 cores/1 core Napa Refresh Santa Rosa U7700 (1.33GHz/ Penryn 3MMontevina Arrandale Boundary 1.2GHz(U2500) 2MB/FSB533) SU9600 (1.6GHz/ Merom ULV Core2 Duo ULV SU9400 (1.4GHz/ 3MB/FSB800) Arrandale U Core Solo ULV U7600 (1.2GHz 3MB/FSB800) Core Duo ULV Yonah Dual-Core2M 1.2GHz(U7600) 2MB/FSB533) SU Pentium M ULV SU9400 (1.4GHz/ U7500 (1.06GHz/ SU9300 (1.2GHz/ 10W Dothan 1.3GHz(773) 1.06GHz(U2400) 1.06GHz(U7500) 3MB/FSB800) Arrandale Performance 2MB/FSB533) 3MB/FSB800) Performance Ultra Low Voltage 1.1GHz(713) 1.2GHz(753) Ultra Low Voltage 1.2GHz(U1400) 1.33GHz(U1500) U2200 (1.2GHz/ Core2 Solo 1MB/FSB533) SU3500 (1.3GHz/ U 1.1GHz(733) Core Solo ULV Core2 Solo ULV SU3300 (1.2GHz/ 3MB/FSB800) Yonah Single-Core2M 3MB/FSB800) 5.5W U2100 (1.06GHz/ 1GHz(723) 1.06GHz(U1300) 1.2GHz(U1400) Penryn SC 3M Montevina 1MB/FSB533) $2xx Napa Refresh 10W Celeron M ULV Celeron M ULV (Yonah) Merom-L 723 (1.2GHz/ Value Dothan 1.2GHz(443) 1MB/FSB800) 10W Value Ultra Low Voltage 900MHz(353) 1GHz(373) 1GHz(383) 1MB L2 1.06GHz(423) 523 (0.93GHz/ Penryn SC 3M 5W Ultra Low Voltage Yonah Single-core 1M 1MB/FSB533) 5.5W Montevina Atom/Core 2 Atom Pine Trail-M Yonah/Core 2 Boundary N270 (1.6GHz/ Boundary 512KB/FSB533) Pineview N 4W Basic Mobile Diamondville SC Pineview-M $4x Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 2H Q4 2004 2005 2006 2007 2008 2009 2010 Dual Core Celeron M(Banias) 512KB L2, FSB 400MHz Pentium M(Dothan) 2MB L2, FSB 533MHz Yonah Dual-Core2MB L2, FSB667/533 Merom Dual-core 4/2MB L2 FSB667 Penryn (Santa Rosa) Penryn Quad core Clarksfield Single Core Celeron M(Dothan) 1MB L2, FSB 400MHz Pentium M(Dothan) 2MB L2, FSB 400MHz Yonah Single-Core2MB L2, FSB667/533 Merom Dual-core 4/2MB L2 FSB800 Penryn (Montevina) Diamondville SC Arrandale Celeron M(Dothan) 512KB L2, FSB 400MHz Pentium M(Banias) 1MB L2, FSB 400MHz Yonah Single-core 1MB L2, FSB533 Merom-L (Santa Rosa) Penryn (Montevina) Pineview SC Merom-L (Montevina) Copyright (c) 2009 Hiroshige Goto All rights reserved..
Recommended publications
  • Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa Chikkagoudar, Dr
    Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa chikkagoudar, Dr. U. N. Sinha, Prof. B. L. Desai. [email protected], [email protected], [email protected] Department of Electronics and Communication B. V. Bhoomaraddi college of Engg. And Tech. Hubli-580031 Abstract: aero dynamical problems, [1].Since 1986, six Flosolver MK6 is a Parallel processing system, generations of Flosolver machine have evolved based on distributed memory concept and built namely Flosolver MK-1, MK-2, MK-3, MK-4, MK-5 around Pentium-III processors, which acts as and MK-6. processing elements (PEs). Communication Flosolver MK-6 is the latest of the parallel between processing elements is very important, computer based on 128 Pentium III processors which is done through hardware switch called (which act as processing elements, PEs) in 64 dual Floswitch. Floswitch supports both message processor boards each with 1GB RAM and 80 GB passing as well as message processing. Message HDD. It is essentially a distributed memory system. processing is a unique feature of Floswitch. A group of four Dual processor boards with a Floswitch and an optical module is a natural cluster. In existing MK-6 system, communication 16 such clusters form the system. Processing between PEs is done through the Intel 486-based elements (PEs) communicate through Floswitch (a Floswitch, which operates at 32MHz and has 32- communication switch) using PCI-DPM interface bit wide data path. The data transfer rate and card. Clusters communicate through Optical module. floating point computation of existing switch need to be increased.
    [Show full text]
  • Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
    White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems.
    [Show full text]
  • HP Compaq Nc6120/Nx6120 Notebook Pcs Overview
    QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Presentation Mode Button 12. Fast Infrared Port 2. Wireless On/Off Button with LED 13. Wireless On/Off LED 3. HP Info Center Button 14. Power/Standby LED 4. Power Button with LED 15. Battery Charging LED 5. 2 USB 2.0 Ports 16 Hard Drive Activity LED 6. VGA/External Monitor Connector 17. Touchpad with Scroll Zone (or Pointstick, not pictured) 7. RJ-11 Port (Modem) 18. Stereo Speakers 8. RJ-45 Port (NIC) 19. 6-in-1 Media Reader 9. IEEE 1394 Port 20. Volume Up Button 10. PC Card Slots (and optional Smart Card Reader) 21. Volume Down Button 11. PC Card Eject Button 22. Volume Mute Button with LED DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 1 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Headphone Jack 6. Serial Port 2. Microphone Jack 7. Kensington Lock Slot 3. 2 USB 2.0 Ports 8. DC Power Connector 4. Optical Drive 9. Parallel Port 5. Optical Drive Button 10. S-Video TV Out At A Glance Genuine Windows XP Professional, Genuine Windows XP Home Edition (select countries), or FreeDOS Certified for Novell Linux Desktop 9 Intel® Pentium® M processors 730 to 770* or Intel Celeron® M processors 350J to 380* Sleek industrial design starting at 5.82 lb/2.64 kg and 1.2-inch/30.3 mm thin at front Mobile Intel 915GM Express Chipset 256-MB DDR SDRAM, upgradeable to 2048-MB maximum Up to 100-GB 5400 rpm hard drive Intel Graphics Media Accelerator 900 Optional Integrated 802.11a/b/g or 802.11b/g wireless LAN module Support for optional Intel Centrino™ mobile technology Optional integrated Bluetooth® 6-in-1 Media Reader NetXtreme Gigabit Ethernet Controller Choice of Touchpad with scroll zone or Pointstick Protected by one-year or three-year (depending on country and/or model) standard parts and labor warranty - certain restrictions and exclusions apply *Intel's numbering system is not a measurement of performance.
    [Show full text]
  • Evolution of Microprocessor Performance
    EvolutionEvolution ofof MicroprocessorMicroprocessor PerformancePerformance So far we examined static & dynamic techniques to improve the performance of single-issue (scalar) pipelined CPU designs including: static & dynamic scheduling, static & dynamic branch predication. Even with these improvements, the restriction of issuing a single instruction per cycle still limits the ideal CPI = 1 Multiple Issue (CPI <1) Multi-cycle Pipelined T = I x CPI x C (single issue) Superscalar/VLIW/SMT Original (2002) Intel Predictions 1 GHz ? 15 GHz to ???? GHz IPC CPI > 10 1.1-10 0.5 - 1.1 .35 - .5 (?) Source: John P. Chen, Intel Labs We next examine the two approaches to achieve a CPI < 1 by issuing multiple instructions per cycle: 4th Edition: Chapter 2.6-2.8 (3rd Edition: Chapter 3.6, 3.7, 4.3 • Superscalar CPUs • Very Long Instruction Word (VLIW) CPUs. Single-issue Processor = Scalar Processor EECC551 - Shaaban Instructions Per Cycle (IPC) = 1/CPI EECC551 - Shaaban #1 lec # 6 Fall 2007 10-2-2007 ParallelismParallelism inin MicroprocessorMicroprocessor VLSIVLSI GenerationsGenerations Bit-level parallelism Instruction-level Thread-level (?) (TLP) 100,000,000 (ILP) Multiple micro-operations Superscalar /VLIW per cycle Simultaneous Single-issue CPI <1 u Multithreading SMT: (multi-cycle non-pipelined) Pipelined e.g. Intel’s Hyper-threading 10,000,000 CPI =1 u uuu u u Chip-Multiprocessors (CMPs) u Not Pipelined R10000 e.g IBM Power 4, 5 CPI >> 1 uuuuuuu u AMD Athlon64 X2 u uuuuu Intel Pentium D u uuuuuuuu u u 1,000,000 u uu uPentium u u uu i80386 u i80286
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing
    The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing Peter T. Breuer Jonathan P. Bowen Esther Palomar Zhiming Liu Hecusys LLC London South Bank University Birmingham City University South West University Atlanta, GA London, UK Birmingham, UK Chongqing, China Abstract—Appropriately modifying the arithmetic in a pro- processor designs that depend on a modified arithmetic and cessor causes data to remain in encrypted form throughout encrypted working, where before they were only intuitively processing. That principle is the basis for the design re- safer. It was always probable from an engineering point of ported here, extending our initial reports in 2016. The design view, however, that such a processor would run fast or could aims to prevent insider attacks by the operator against the be made to with current technology. That is because, in user. Progress and practical experience with the prototype principle, only one piece of stateless logic, the arithmetic superscalar pipelined RISC processor and supporting software logic unit (ALU), needs to be changed from a conventional 1 infrastructure is reported. The privileged, operator mode of design – the rest remains the same. This paper provides the processor runs on unencrypted data and has full access to experimental data from our prototype to support that view. all registers and memory in the conventional way, facilitating If the reader is to take away one thing from this paper, 2 operating system and infrastructure development. The user it should be the understanding that in supervisor mode mode has restricted access rights, as is conventional, but the this processor runs unencrypted, while in user mode it runs security barrier that protects it is not based on access but on encrypted.
    [Show full text]
  • Intel® Core™ Microarchitecture • Wrap Up
    EW N IntelIntel®® CoreCore™™ MicroarchitectureMicroarchitecture MarchMarch 8,8, 20062006 Stephen L. Smith Bob Valentine Vice President Architect Digital Enterprise Group Intel Architecture Group Agenda • Multi-core Update and New Microarchitecture Level Set • New Intel® Core™ Microarchitecture • Wrap Up 2 Intel Multi-core Roadmap – Updates since Fall IDF 3 Ramping Multi-core Everywhere 4 All products and dates are preliminary and subject to change without notice. Refresher: What is Multi-Core? Two or more independent execution cores in the same processor Specific implementations will vary over time - driven by product implementation and manufacturing efficiencies • Best mix of product architecture and volume mfg capabilities – Architecture: Shared Caches vs. Independent Caches – Mfg capabilities: volume packaging technology • Designed to deliver performance, OEM and end user experience Single die (Monolithic) based processor Multi-Chip Processor Example: 90nm Pentium® D Example: Intel Core™ Duo Example: 65nm Pentium D Processor (Smithfield) Processor (Yonah) Processor (Presler) Core0 Core1 Core0 Core1 Core0 Core1 Front Side Bus Front Side Bus Front Side Bus *Not representative of actual die photos or relative size 5 Intel® Core™ Micro-architecture *Not representative of actual die photo or relative size 6 Intel Multi-core Roadmap 7 Intel Multi-core Roadmap 8 Intel® Core™ Microarchitecture Based Platforms Platform 2006 20072007 Caneland Platform (2007) MP Servers Tigerton (QC) (2007) Bensley Platform (Q2’06)/ Glidewell Platform (Q2’06) ) DP Servers/ Woodcrest (Q3’06) DP Workstation Clovertown (QC) (Q1’07) Kaylo Platform (Q3’06)/ Wyloway Platform (Q3 ’06) UP Servers/ Conroe (Q3’06) UP Workstation Kentsfield (QC) (Q1’07) Bridge Creek Platform (Mid’06) Desktop -Home Conroe (Q3’06) Kentsfield (QC) (Q1’07) Desktop -Office Averill Platform (Mid’06) Conroe (Q3’06) Mobile Client Napa Platform (Q1’06) Merom (2H’06) All products and dates are preliminary 9 Note: only Intel® Core™ microarchitecture QC refers to Quad-Core and subject to change without notice.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Enhanced Intel Speedstep Technology for the Intel Pentium M Processor
    Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M Processor White Paper March 2004 Order Number: 301170-001 ® ® ® ® Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. This document as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.
    [Show full text]
  • Energy Per Instruction Trends in Intel® Microprocessors
    Energy per Instruction Trends in Intel® Microprocessors Ed Grochowski, Murali Annavaram Microarchitecture Research Lab, Intel Corporation 2200 Mission College Blvd, Santa Clara, CA 95054 [email protected], [email protected] Abstract where throughput performance is the primary objective. In order to deliver high throughput performance within a Energy per Instruction (EPI) is a measure of the amount fixed power budget, a microprocessor must achieve low of energy expended by a microprocessor for each EPI. instruction that the microprocessor executes. In this It is important to note that MIPS/watt and EPI do not paper, we present an overview of EPI, explain the consider the amount of time (latency) needed to process factors that affect a microprocessor’s EPI, and derive a an instruction from start to finish. Other metrics such as MIPS 2/watt (related to energy•delay) and MIPS 3/watt historical comparison of the trends in EPI over multiple 2 generations of Intel microprocessors. We show that the (related to energy•delay ) assign increasing importance recent Intel® Pentium® M and Intel® Core™ Duo to the time required to process instructions, and are thus microprocessors achieve significantly lower EPI than used in environments in which latency performance is what would be expected from a continuation of historical the primary objective. trends. 2. What Determines EPI? 1. Introduction Consider a capacitor that is charged and discharged With the power consumption of recent desktop by a CMOS inverter as shown in Figure 1. microprocessors having reached 130 watts, power has emerged at the forefront of challenges facing the V microprocessor designer [1, 2].
    [Show full text]
  • Intel® Itanium® Architecture Assembly Language Reference Guide
    Intel® Itanium® Architecture Assembly Language Reference Guide Copyright © 2000 - 2003 Intel Corporation. All rights reserved. Order Number: 248801-004 World Wide Web: http://developer.intel.com Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide Page 2 Disclaimer and Legal Information Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Intel® Itanium® Architecture Assembly Language Reference Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
    [Show full text]
  • 5 Microprocessors
    Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 5 Microprocessors “MEGAHERTZ: This is a really, really big hertz.” —DAVE BARRY In this chapter, you will learn or all practical purposes, the terms microprocessor and central processing how to Funit (CPU) mean the same thing: it’s that big chip inside your computer ■ Identify the core components of a that many people often describe as the brain of the system. You know that CPU CPU makers name their microprocessors in a fashion similar to the automobile ■ Describe the relationship of CPUs and memory industry: CPU names get a make and a model, such as Intel Core i7 or AMD ■ Explain the varieties of modern Phenom II X4. But what’s happening inside the CPU to make it able to do the CPUs amazing things asked of it every time you step up to the keyboard? ■ Install and upgrade CPUs 124 P:\010Comp\BaseTech\380-8\ch05.vp Friday, December 18, 2009 4:59:24 PM Color profile: Disabled Composite Default screen BaseTech / Mike Meyers’ CompTIA A+ Guide to Managing and Troubleshooting PCs / Mike Meyers / 380-8 / Chapter 5 Historical/Conceptual ■ CPU Core Components Although the computer might seem to act quite intelligently, comparing the CPU to a human brain hugely overstates its capabilities. A CPU functions more like a very powerful calculator than like a brain—but, oh, what a cal- culator! Today’s CPUs add, subtract, multiply, divide, and move billions of numbers per second.
    [Show full text]