HP Compaq Nc6120/Nx6120 Notebook Pcs Overview

Total Page:16

File Type:pdf, Size:1020Kb

HP Compaq Nc6120/Nx6120 Notebook Pcs Overview QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Presentation Mode Button 12. Fast Infrared Port 2. Wireless On/Off Button with LED 13. Wireless On/Off LED 3. HP Info Center Button 14. Power/Standby LED 4. Power Button with LED 15. Battery Charging LED 5. 2 USB 2.0 Ports 16 Hard Drive Activity LED 6. VGA/External Monitor Connector 17. Touchpad with Scroll Zone (or Pointstick, not pictured) 7. RJ-11 Port (Modem) 18. Stereo Speakers 8. RJ-45 Port (NIC) 19. 6-in-1 Media Reader 9. IEEE 1394 Port 20. Volume Up Button 10. PC Card Slots (and optional Smart Card Reader) 21. Volume Down Button 11. PC Card Eject Button 22. Volume Mute Button with LED DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 1 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview 1. Headphone Jack 6. Serial Port 2. Microphone Jack 7. Kensington Lock Slot 3. 2 USB 2.0 Ports 8. DC Power Connector 4. Optical Drive 9. Parallel Port 5. Optical Drive Button 10. S-Video TV Out At A Glance Genuine Windows XP Professional, Genuine Windows XP Home Edition (select countries), or FreeDOS Certified for Novell Linux Desktop 9 Intel® Pentium® M processors 730 to 770* or Intel Celeron® M processors 350J to 380* Sleek industrial design starting at 5.82 lb/2.64 kg and 1.2-inch/30.3 mm thin at front Mobile Intel 915GM Express Chipset 256-MB DDR SDRAM, upgradeable to 2048-MB maximum Up to 100-GB 5400 rpm hard drive Intel Graphics Media Accelerator 900 Optional Integrated 802.11a/b/g or 802.11b/g wireless LAN module Support for optional Intel Centrino™ mobile technology Optional integrated Bluetooth® 6-in-1 Media Reader NetXtreme Gigabit Ethernet Controller Choice of Touchpad with scroll zone or Pointstick Protected by one-year or three-year (depending on country and/or model) standard parts and labor warranty - certain restrictions and exclusions apply *Intel's numbering system is not a measurement of performance. DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 2 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Overview What's Special Security features: HP ProtectTools HP Drivelock Smart Card Reader (optional) Kensington lock slot Ease of use features HP Mobile Print Driver for on-the-go printing HP Wireless Assistant HP Info Center HP Fast Charge technology Up to 4 hours of battery life Integrated reliability features: HP Mobile Data Protection System HP Panel Protection System Scratch-resistant keyboard using In-mold Lamination HP spill-resistant keyboard with Mylar film Support for new HP docking solutions and HP Travel Battery. DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 3 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Standard Features Processors Intel Pentium M processor 770* (2.13-GHz, 533-MHz FSB, 2-MB L2 cache) Intel Pentium M processor 760* (2.0-GHz, 533-MHz FSB, 2-MB L2 cache) Intel Pentium M processor 750* (1.86-GHz, 533-MHz FSB, 2-MB L2 cache) Intel Pentium M processor 740* (1.73-GHz, 533-MHz FSB, 2-MB L2 cache) Intel Pentium M processor 730* (1.6-GHz, 533-MHz FSB, 2-MB L2 cache) Intel Celeron M processor 380* (1.6-GHz, 400-MHz FSB, 1-MB L2 cache) Intel Celeron M processor 370* (1.5-GHz, 400-MHz FSB, 1-MB L2 cache) Intel Celeron M processor 360J* (1.4-GHz, 400-MHz FSB, 1-MB L2 cache) Intel Celeron M processor 350J* (1.3-GHz, 400-MHz FSB, 1-MB L2 cache) * Intel's numbering is not a measurement of higher performance. NOTE: Intel Pentium M processors support enhanced Intel SpeedStep™ technology. Processor speed denotes maximum performance mode; Intel Pentium M processors will run at approximately 800 MHz in battery optimization mode. Operating System Preinstalled Genuine Windows XP Professional SP2 Genuine Windows XP Home Edition SP2 (select countries only) FreeDOS Supported Genuine Windows 2000 (drivers downloadable from http://www.hp.com) Certified Novell Linux Desktop 9 Windows Vista Capable Not all Windows Vista features are available for use on all Windows Vista Capable PCs. All Windows Vista Capable PCs will run the core experiences of Windows Vista, such as innovations in organizing and finding information, security, and reliability. Some features available in premium editions of Windows Vista -- like the new Windows Aero™ user interface -- require advanced or additional hardware. Check http://www.windowsvista.com/getready for details. Chipset Mobile Intel 915GM Express Chipset Graphics Intel Graphics Media Accelerator 900 with up to 128-MB shared system memory Display Internal 14.1-inch or 15.0-inch XGA (1024 x 768 resolution and 16 M colors) 15.0-inch XGA BrightView (1024 x 768 resolution and 16 M colors) 15.0-inch SXGA+ (1400 x 1050 resolution and 16 M colors) External Up to 32-bit per pixel color depth VGA port supports resolutions up to 2048 x 1536 at 75 Hz, and lower resolutions at up to 100 Hz NOTE: Resolutions are dependent upon monitor capability, and resolution and color depth settings. DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 4 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Standard Features Memory Standard 256-MB, 512-MB, or 1024-MB 333-MHz DDR SDRAM; two SODIMM slots Maximum Upgradeable to 2048-MB maximum (1024-MB SODIMM in slots 1 and 2) NOTE: Due to the non-industry standard nature of some third-party memory modules, we recommend HP branded memory to ensure compatibility. If you mix memory speeds, the system will perform at the lower memory speed. Communications NetXtreme Gigabit Ethernet Controller (10/100/1000 NIC)* 56K modem** with digital line guard * The term "10/100/1000" or "Gigabit" Ethernet indicates compliance with IEEE standard 802.3ab for Gigabit Ethernet, and does not connote actual operating speed of 1 Gb/s. For high-speed transmission, connection to a Gigabit Ethernet server and network infrastructure is required. ** Designed for downloads from 56K modem compliant sources. Maximum achievable download transmission rates currently do not reach 56 KB/s, and will vary with line conditions. Modem availability is subject to country regulatory approval. Wireless Devices Support for a broad range of secure, integrated wireless LAN options. Integrated Bluetooth is also an option (factory configurable only) and can be combined with any one of the supported wireless LAN options. All integrated wireless Wi-Fi certified LAN options Cisco Compatible Extensions support (Version 3.0) Wired Equivalent Privacy (WEP) support up to 128-bit keys Wi-Fi Protected Access (WPA) and WPA2 support 802.1x authentication support, including EAP-TLS, EAP-TTLS, PEAP-GTC, PEAP-MSCHAPv2, and LEAP Advanced Encryption Standard (AES) support WiFi certified for WPA2, WMM Dual antennas integrated in the display enclosure Broadcom 802.11b/g Integrated support for 802.11 b and g WLAN Up to 54-mbps data rate Broadcom 802.11a/b/g Integrated support for 802.11a, b and g WLAN Up to 54-mbps data rate Intel PRO/Wireless Intel Centrino mobile technology 2200BG 802.11 b/g Integrated support for 802.11b and g WLAN Up to 54-mbps data rate Intel PRO/Wireless Intel Centrino mobile technology 2915ABG 802.11 a/b/g Integrated support for 802.11a, b and g WLAN Up to 54-mbps data rate Integrated Bluetooth Bluetooth Specification v1.2 compliant Works with a wide range of Bluetooth devices Keyboard The 101/102-key compatible keyboard features an industry standard, full-pitch key layout with desktop keyboard features, such as the isolated inverted-T cursor control keys, editing keys, both left and right control and alt keys, and 12 function keys. US and International key layouts are available. Other features include an integrated numeric keypad, hotkeys for instant access to power conservation, brightness, and other features, 19-mm x 19-mm key pitch (center-to-center spacing), 2.5-mm stroke, comfort-dished keycaps, and bright key legends for improved visibility in low light conditions. DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 5 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Standard Features One-Touch Productivity Provide one-touch access to the following features: HP Info Center, Wireless On/Off, Presentation Buttons Mode, Volume Up, Volume Down, and Volume Mute Pointing Device Touchpad with scroll zone, two soft-touch buttons or Pointstick, two soft-touch buttons Expansion Card Slots Two Type I/II PC Card PC Card slots support 32-bit CardBus and 16-bit PC Cards slots or One Type III PC Card slot or One Type I/II PC Card slot and Optional Integrated Smart Compatible with ISO 7816 compliant Smart Cards Card Reader PC/SC interface support Media Slots 6-in-1 Media Reader Supports SD (Secure Digital), MMC (MultiMediaCard), Memory Stick, Memory Stick Pro, Smart Media, xD-Picture card CAUTION: This notebook PC does not support Memory Stick Duo Cards or Memory Stick Duo Adapters. Inserting one of these cards or adapters into your notebook can damage the memory card or adapter and/or the notebook PC. Storage Hard Drives 30-, 40-, 60-, 80-GB 4200 rpm SMART 40-, 60-, 80-, 100-GB 5400 rpm SMART NOTE: These hard drives are customer removable and will withstand multiple insertion/removal cycles. Optical Drives Integrated (12.7-mm) CD-ROM DVD-ROM DVD/CD-RW Combo DVD+/-RW DA - 12136 Worldwide — Version 26 — September 6, 2006 Page 6 QuickSpecs HP Compaq nc6120/nx6120 Notebook PCs Standard Features Interfaces PC Card Slot(s) Two Type I/II or One Type III and/or or Optional Integrated Smart One Type I/II with Smart Card Reader Card Reader External Monitor One – VGA IEEE 1394 Port One External Microphone One Headphone/Line out One Power Connector One RJ-11 (Modem) One RJ-45 (NIC) One Fast Infrared Port One (4-Mb/s support) IrDA 4-MB compliant; IR performance will vary depending on performance of IR peripherals and application used.
Recommended publications
  • Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa Chikkagoudar, Dr
    Design and Implementation of Pentium-M Based Floswitch for Intracluster Communication Veerappa chikkagoudar, Dr. U. N. Sinha, Prof. B. L. Desai. [email protected], [email protected], [email protected] Department of Electronics and Communication B. V. Bhoomaraddi college of Engg. And Tech. Hubli-580031 Abstract: aero dynamical problems, [1].Since 1986, six Flosolver MK6 is a Parallel processing system, generations of Flosolver machine have evolved based on distributed memory concept and built namely Flosolver MK-1, MK-2, MK-3, MK-4, MK-5 around Pentium-III processors, which acts as and MK-6. processing elements (PEs). Communication Flosolver MK-6 is the latest of the parallel between processing elements is very important, computer based on 128 Pentium III processors which is done through hardware switch called (which act as processing elements, PEs) in 64 dual Floswitch. Floswitch supports both message processor boards each with 1GB RAM and 80 GB passing as well as message processing. Message HDD. It is essentially a distributed memory system. processing is a unique feature of Floswitch. A group of four Dual processor boards with a Floswitch and an optical module is a natural cluster. In existing MK-6 system, communication 16 such clusters form the system. Processing between PEs is done through the Intel 486-based elements (PEs) communicate through Floswitch (a Floswitch, which operates at 32MHz and has 32- communication switch) using PCI-DPM interface bit wide data path. The data transfer rate and card. Clusters communicate through Optical module. floating point computation of existing switch need to be increased.
    [Show full text]
  • Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance
    White Paper Inside Intel® Core™ Microarchitecture Setting New Standards for Energy-Efficient Performance Ofri Wechsler Intel Fellow, Mobility Group Director, Mobility Microprocessor Architecture Intel Corporation White Paper Inside Intel®Core™ Microarchitecture Introduction Introduction 2 The Intel® Core™ microarchitecture is a new foundation for Intel®Core™ Microarchitecture Design Goals 3 Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art multi-core optimized Delivering Energy-Efficient Performance 4 and power-efficient microarchitecture is designed to deliver Intel®Core™ Microarchitecture Innovations 5 increased performance and performance-per-watt—thus increasing Intel® Wide Dynamic Execution 6 overall energy efficiency. This new microarchitecture extends the energy efficient philosophy first delivered in Intel's mobile Intel® Intelligent Power Capability 8 microarchitecture found in the Intel® Pentium® M processor, and Intel® Advanced Smart Cache 8 greatly enhances it with many new and leading edge microar- Intel® Smart Memory Access 9 chitectural innovations as well as existing Intel NetBurst® microarchitecture features. What’s more, it incorporates many Intel® Advanced Digital Media Boost 10 new and significant innovations designed to optimize the Intel®Core™ Microarchitecture and Software 11 power, performance, and scalability of multi-core processors. Summary 12 The Intel Core microarchitecture shows Intel’s continued Learn More 12 innovation by delivering both greater energy efficiency Author Biographies 12 and compute capability required for the new workloads and usage models now making their way across computing. With its higher performance and low power, the new Intel Core microarchitecture will be the basis for many new solutions and form factors. In the home, these include higher performing, ultra-quiet, sleek and low-power computer designs, and new advances in more sophisticated, user-friendly entertainment systems.
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing
    The Secret Processor Will Go to the Ball Benchmark Insider-Proof Encrypted Computing Peter T. Breuer Jonathan P. Bowen Esther Palomar Zhiming Liu Hecusys LLC London South Bank University Birmingham City University South West University Atlanta, GA London, UK Birmingham, UK Chongqing, China Abstract—Appropriately modifying the arithmetic in a pro- processor designs that depend on a modified arithmetic and cessor causes data to remain in encrypted form throughout encrypted working, where before they were only intuitively processing. That principle is the basis for the design re- safer. It was always probable from an engineering point of ported here, extending our initial reports in 2016. The design view, however, that such a processor would run fast or could aims to prevent insider attacks by the operator against the be made to with current technology. That is because, in user. Progress and practical experience with the prototype principle, only one piece of stateless logic, the arithmetic superscalar pipelined RISC processor and supporting software logic unit (ALU), needs to be changed from a conventional 1 infrastructure is reported. The privileged, operator mode of design – the rest remains the same. This paper provides the processor runs on unencrypted data and has full access to experimental data from our prototype to support that view. all registers and memory in the conventional way, facilitating If the reader is to take away one thing from this paper, 2 operating system and infrastructure development. The user it should be the understanding that in supervisor mode mode has restricted access rights, as is conventional, but the this processor runs unencrypted, while in user mode it runs security barrier that protects it is not based on access but on encrypted.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Enhanced Intel Speedstep Technology for the Intel Pentium M Processor
    Enhanced Intel® SpeedStep® Technology for the Intel® Pentium® M Processor White Paper March 2004 Order Number: 301170-001 ® ® ® ® Enhanced Intel SpeedStep Technology for the Intel Pentium M Processor INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. This document as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document.
    [Show full text]
  • Energy Per Instruction Trends in Intel® Microprocessors
    Energy per Instruction Trends in Intel® Microprocessors Ed Grochowski, Murali Annavaram Microarchitecture Research Lab, Intel Corporation 2200 Mission College Blvd, Santa Clara, CA 95054 [email protected], [email protected] Abstract where throughput performance is the primary objective. In order to deliver high throughput performance within a Energy per Instruction (EPI) is a measure of the amount fixed power budget, a microprocessor must achieve low of energy expended by a microprocessor for each EPI. instruction that the microprocessor executes. In this It is important to note that MIPS/watt and EPI do not paper, we present an overview of EPI, explain the consider the amount of time (latency) needed to process factors that affect a microprocessor’s EPI, and derive a an instruction from start to finish. Other metrics such as MIPS 2/watt (related to energy•delay) and MIPS 3/watt historical comparison of the trends in EPI over multiple 2 generations of Intel microprocessors. We show that the (related to energy•delay ) assign increasing importance recent Intel® Pentium® M and Intel® Core™ Duo to the time required to process instructions, and are thus microprocessors achieve significantly lower EPI than used in environments in which latency performance is what would be expected from a continuation of historical the primary objective. trends. 2. What Determines EPI? 1. Introduction Consider a capacitor that is charged and discharged With the power consumption of recent desktop by a CMOS inverter as shown in Figure 1. microprocessors having reached 130 watts, power has emerged at the forefront of challenges facing the V microprocessor designer [1, 2].
    [Show full text]
  • Intel® Itanium® Architecture Assembly Language Reference Guide
    Intel® Itanium® Architecture Assembly Language Reference Guide Copyright © 2000 - 2003 Intel Corporation. All rights reserved. Order Number: 248801-004 World Wide Web: http://developer.intel.com Intel(R) Itanium(R) Architecture Assembly Lanuage Reference Guide Page 2 Disclaimer and Legal Information Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Intel® Itanium® Architecture Assembly Language Reference Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.2
    The Intel x86 Microarchitectures Map Version 2.2 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • New instructions: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]
  • Pentium M Processor Micro-Architecture Yy Thethe Performanceperformance
    TheThe IntelIntel®® PentiumPentium®® MM processorprocessor PowerPower--AwarenessAwareness StoryStory FromFrom TheoryTheory toto PracticePractice Ronny Ronen Senior Principal Engineer Director of Architecture Research Intel Labs - Haifa Intel Corporation Technion EE, Haifa, June 2, 2003 BasedBased on…on… TheThe IntelIntel® PentiumPentium® MM Processor:Processor: MicroarchitectureMicroarchitecture andand PerformancePerformance By Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika Kurts, Alon Naveh, Ali Saeed, Zeev Sperber, Robert C. Valentine Intel Technology Journal Q2/2003 http://developer.intel.com/technology/itj/ Page 2 All dates, plans, and features are preliminary and subject to change without notice IDCIDC –– IsraelIsrael DevelopmentDevelopment CenterCenter Located on Israel's Mediterranean coast, Haifa is the home of Intel's Israel Development Center (IDC). IDC was established in 1974, and is Intel's first development center outside the US. The center is a multi- disciplinary team, with more than 1000 employees. Many of Intel's leading products were developed and originated at IDC. IDC's employees are currently working on Intel's future The Baha`i Shrine microprocessors, CAD tools, Haifa most known attraction advanced networking components and software technologies. Page 3 All dates, plans, and features are preliminary and subject to change without notice TheThe IntelIntel® CentrinoCentrinoTM MobileMobile technologytechnology Announcing Intel® Centrino™ mobile technology. Intel has expanded its history of innovation
    [Show full text]
  • Intel Mobile CPU Roadmap
    Intel Mobile CPU Roadmap 2004 2005 2006 2008 2009 2010 System Price 2007 TDP System CPU Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 2H Q4 Price Core2 Extreme Nehalem/Core 2 Clarksfield QX Quad-Core Quad core Boundary 2.xxGHz/ Calpella Extreme 4 cores/2 cores Penryn QC 8MB/PCIe 45W Extreme Boundary QX9300 (2.53GHz/ Montevina 4cores/PCIe x16 (55W) QC XE 12MB/FSB1066) $1000 Penryn 6M Merom 4M Core2 Extreme Core2 Quad Santa Rosa X9000(2.8GHz/ Penryn 6M Penryn QC Clarksfield 6MB/FSB800) 2.xxGHz/ X/Q Quad-Core Dual core 8MB/PCIe -45W Performance2 Extreme Yonah/Core 2 X7800 (2.6GHz/ X7900 (2.8GHz/ Q9100 (2.26GHz/ Calpella 2 cores/1 core Boundary 4MB/FSB800) 4MB/FSB800) X9100(3.06GHz/ 12MB/FSB1066) (55W) QC P2 Boundary Merom 4M Santa Rosa 6MB/FSB1066) Refresh $750 Montevina Napa Napa Refresh Merom 4M 2.xxGHz/ Clarksfield Quad-Core Dothan 533 Santa Rosa ?MB/PCIe 2.13GHz(770) 2.33GHz(T7600) Q9000 (2GHz/ Calpella Performance1 Yonah Dual-Core2M Core2 Duo 6MB/FSB1066) QC P1 T9500 (2.6GHz/ $34x Performance 2.16GHz(T2600) 2.33GHz(T2700) 6MB/FSB800) Penryn 6M Montevina 2.1GHz(765) T7700 (2.4GHz/ T7800 (2.6GHz/ T9600 (2.8GHz/ T9800 (2.93GHz/ T9900 (3.06GHz/ T Dual-Core 2.26GHz(780) 4MB/FSB800) 4MB/FSB800) 6MB/FSB1066) 6MB/FSB1066) 6MB/FSB1066) 35W Performance2 Core2 Duo (45W) DC P2 Core2 Duo $500 2GHz(760) 2GHz(T2500) Penryn 6M 35W Dual-Core Dothan 2.16GHz(T7400) 2GHz(755) Core Duo T9400 (2.53GHz/ T9550 (2.66GHz/ T9600 (2.8GHz/ Performance1 6MB/FSB1066) 6MB/FSB1066) 6MB/FSB1066) DC P1 2.13GHz(770) 2.16GHz(T2600) T9300 (2.5GHz/
    [Show full text]
  • New Low-Power Intel Pentium M and Intel Celeron M Processors 20 July 2004
    New Low-Power Intel Pentium M And Intel Celeron M Processors 20 July 2004 Intel Corporation today expanded the Intel® Pentium® M processor and Intel® Celeron® M processor families with products aimed at the mini- notebook, sub-notebook and tablet PC segments that represent small mobile PCs typically weighing around 3 pounds. Intel Corporation today expanded the Intel® Pentium® M processor and Intel® Celeron® M processor families with products aimed at the mini- notebook, sub-notebook and tablet PC segments that represent small mobile PCs typically weighing around 3 pounds. The Low Voltage and Ultra Low Voltage Intel Pentium M processors, in conjunction with the Intel 855 chipset family and the Intel PRO/Wireless network connection family, are key components of Intel Centrino mobile technology for mini- notebooks, sub-notebooks and tablet PCs. These new low voltage Intel Pentium M processors feature such architectural enhancements as a 2MB Level 2 cache, a power-optimized 400 MHz system bus, and enhanced data pre-fetcher and enhanced register access manager for fast execution of instructions at low power. These new processors also include Enhanced Intel Speedstep® Technology, which helps optimize application performance and power consumption to enable extended battery life. The Intel Celeron M processor Ultra Low Voltage 353 offers users a balanced level of mobile- optimized processor technology and exceptional value for small mobile PCs. Intel Celeron M processors are compatible with the Intel 855 chipset family as well as the Intel 852GM chipset to enable cost-effective, scalable platforms for system manufacturers. The original press release can be found here.
    [Show full text]