Taxonomy, Phylogeny and Distribution of Tamarins (Genus Saguinus, Hoffmannsegg 1807)

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy, Phylogeny and Distribution of Tamarins (Genus Saguinus, Hoffmannsegg 1807) Göttinger Zentrum für Biodiversitätsforschung und Ökologie ‐Göttingen Centre for Biodiversity and Ecology‐ TAXONOMY, PHYLOGENY AND DISTRIBUTION OF TAMARINS (GENUS SAGUINUS, HOFFMANNSEGG 1807) Dissertation zur Erlangung des Doktorgrades der Mathematisch‐Naturwissenschaftlichen Fakultäten der Georg‐August‐Universität zu Göttingen vorgelegt von Dipl.‐Biol. Christian Matauschek aus München Göttingen, Dezember 2010 Referent: Prof. Dr. Eckhard W. Heymann Koreferent: Prof. Dr. Peter M. Kappeler Tag der mündlichen Prüfung: i Contents 1 GENERAL INTRODUCTION.........................................................................................................1 1.1 THE TAMARINS OF THE GENUS SAGUINUS (HOFFMANNSEGG 1807)....................................................... 2 1.2 OVERVIEW OF THE CURRENT STATUS OF TAMARIN TAXONOMY ............................................................... 2 1.3 GEOGRAPHIC ORIGIN AND DISPERSAL OF SAGUINUS........................................................................... 10 1.4 SPECIFIC QUESTIONS .................................................................................................................... 13 2 COMPLETE MITOCHONDRIAL GENOME DATA REVEAL THE PHYLOGENY OF CALLITRICHINE PRIMATES AND A LATE MIOCENE DIVERGENCE OF TAMARIN SPECIES GROUPS ..............................15 2.1 INTRODUCTION ........................................................................................................................... 17 2.2 METHODS .................................................................................................................................. 18 2.2.1 Laboratory methods ........................................................................................................ 18 2.2.2 Phylogenetic analysis....................................................................................................... 20 2.2.3 Estimations of divergence ages ....................................................................................... 21 2.3 RESULTS..................................................................................................................................... 22 2.3.1 Phylogenetic reconstructions........................................................................................... 23 2.3.2 Estimates of divergence ages........................................................................................... 25 2.4 DISCUSSION................................................................................................................................26 2.4.1 Phylogenetic relationships within the Callitrichinae........................................................ 27 2.4.2 Phylogenetic relationships within the genus Saguinus.................................................... 27 2.4.3 Taxonomic implications for the different Saguinus species groups ................................. 29 2.4.4 Biogeographic implications.............................................................................................. 30 3 MITOCHONDRIAL PHYLOGENY OF TAMARINS (SAGUINUS, HOFFMANNSEGG 1807) WITH TAXONOMIC AND BIOGEOGRAPHIC IMPLICATIONS FOR THE S. NIGRICOLLIS SPECIES GROUP.........33 3.1 INTRODUCTION ........................................................................................................................... 35 3.2 METHODS .................................................................................................................................. 36 3.2.1 Sampling sites and sample collection .............................................................................. 36 3.2.2 Laboratory methods ........................................................................................................ 39 3.2.3 Statistical methods .......................................................................................................... 40 3.3 RESULTS..................................................................................................................................... 42 3.4 DISCUSSION................................................................................................................................48 3.4.1 The status of S. tripartitus................................................................................................ 48 3.4.2 The status of S. melanoleucus.......................................................................................... 49 3.4.3 The status of S. fuscicollis subspecies .............................................................................. 49 3.4.4 The status of S. n. nigricollis and S. graellsi ..................................................................... 50 3.4.5 Species concepts and general taxonomic implications .................................................... 51 3.4.6 Biogeographic implications.............................................................................................. 53 ii 4 THE RANGE OF THE GOLDEN‐MANTLE TAMARIN SAGUINUS TRIPARTITUS (MILNE EDWARDS, 1878): DISTRIBUTIONS AND SYMPATRY OF FOUR TAMARINS IN SOUTHERN COLOMBIA, ECUADOR AND NORTHERN PERU ...............................................................................................................55 4.1 INTRODUCTION ........................................................................................................................... 57 4.2 THE DISTRIBUTION OF SAGUINUS TRIPARTITUS.................................................................................. 57 4.3 SYMPATRY .................................................................................................................................. 64 4.3.1 Saguinus fuscicollis lagonotus (Jiménez de la Espada, 1870) .......................................... 64 4.3.2 Saguinus nigricollis nigricollis (Spix, 1823) ...................................................................... 68 4.3.3 Saguinus nigricollis graellsi (Jiménez de la Espada, 1870)............................................... 70 4.4 SYMPATRY, BODY SIZE AND ECOLOGICAL NICHES ............................................................................... 74 4.5 GEOGRAPHIC RANGES, SYMPATRY, AND THE TAXONOMY OF SAGUINUS NIGRICOLLIS AND S. FUSCICOLLIS .... 77 5 GENERAL DISCUSSION ............................................................................................................80 5.1 SUMMARY OF RESULTS ................................................................................................................. 80 5.2 THE IMPORTANCE OF EXTANT FIELD SAMPLING FOR PHYLOGENETIC STUDIES ........................................... 83 5.3 METHODICAL APPROACH: CAN MITOCHONDRIAL DNA SERVE AS A SUCCESSFUL TOOL IN TAMARIN TAXONOMY?.......................................................................................................................................... 84 5.4 SPECIES CONCEPTS AND SPECIES DELIMITATIONS AND THEIR EFFECT ON CONSERVATION ISSUES .................. 85 5.5 THE RELEVANCE OF MOLECULAR STUDIES FOR THE UNDERSTANDING OF AMAZONIA’S DIVERSITY AND BIOGEOGRAPHY...................................................................................................................................... 87 5.6 OUTLOOK................................................................................................................................... 88 SUMMARY ....................................................................................................................................89 ZUSAMMENFASSUNG....................................................................................................................91 BIBLIOGRAPHY ..............................................................................................................................93 APPENDIX ................................................................................................................................... 101 DANKSAGUNG............................................................................................................................. 109 CURRICULUM VITAE .................................................................................................................... 110 ERKLÄRUNG ÜBER EIGENE LEISTUNGEN ...................................................................................... 111 iii iv 1 General Introduction Primates are one of the most diverse orders within the mammals. About 634 taxa are known to science so far (Mittermeier et al., 2009). But the taxonomy of primates is still a field of great discussion and dynamics. Many new species have been described in recent years, oth‐ ers lumped together, because new molecular methods offer new possibilities to review mor‐ phological similar taxa on a molecular basis and new species concepts prevailed (Groves, 2004). As well as the number of newly described primate species increased, the number of primates appearing on the IUCN red list of threatened species increased over the past years. 47.8 % were listed as threatened in the 2008 red list (Mittermeier et al., 2009) Some even face ex‐ tinction within the near future. The need for space of the exploding human population causes a rapid loss of habitat for primates and other animals and plants as well. In many re‐ gions of the tropics hunting for meat is a major threat for the declining numbers of primates (Strier, 2007). So the research on primate diversity more and more gets important in conser‐ vation issues. To contribute to the illumination of primate taxonomy and diversity five research projects have been established by the German
Recommended publications
  • Species of the Day: Pied Tamarin
    © Gregory Guida Species of the Day: Pied Tamarin The Pied Tamarin or Brazilian Bare-faced Tamarin, Saguinus bicolor, is a small monkey endemic to the Brazilian Amazon, and is classified as ‘Endangered’ on the IUCN Red List of Threatened SpeciesTM. It occurs largely within and around the city of Manaus, in the heart of the Amazon basin, and has one of the smallest ranges of any primate. The expansion of Manaus has reduced much of the species’ habitat to mere fragments which Geographical range are disappearing rapidly, destroyed by people in search of land and by land-use planning www.iucnredlist.org that fails to take environmental needs into account. Tamarins migrating from one tiny patch of www.durrell.org forest to another are often electrocuted by power cables or are run over whilst crossing roads. Help Save Species www.arkive.org Translocation of these primates to safer patches of forest is now being implemented to help conserve this species. Seven potential conservation areas for Pied Tamarins have been identified. These areas require protection, as well as the creation of forest corridors to connect them, in order to secure the future of this species in the wild. On 18-29 October, officials will gather at the tenth meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD COP10), in Nagoya, Japan, to agree how to tackle biodiversity loss. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership: Species of the Day IUCN (including the Species Survival Commission), BirdLife is sponsored by International, Conservation International, NatureServe and Zoological Society of London..
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Table 7: Species Changing IUCN Red List Status (2018-2019)
    IUCN Red List version 2019-3: Table 7 Last Updated: 10 December 2019 Table 7: Species changing IUCN Red List Status (2018-2019) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2018 (IUCN Red List version 2018-2) and 2019 (IUCN Red List version 2019-3) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2018) List (2019) change version Category
    [Show full text]
  • An Extinct Monkey from Haiti and the Origins of the Greater Antillean Primates
    An extinct monkey from Haiti and the origins of the Greater Antillean primates Siobhán B. Cookea,b,c,1, Alfred L. Rosenbergera,b,d,e, and Samuel Turveyf aGraduate Center, City University of New York, New York, NY 10016; bNew York Consortium in Evolutionary Primatology, New York, NY 10016; cDepartment of Evolutionary Anthropology, Duke University, Durham, NC 27708; dDepartment of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210; eDepartment of Mammalogy, American Museum of Natural History, New York, NY 10024; and fInstitute of Zoology, Zoological Society of London, London NW1 4RY, United Kingdom Edited* by Elwyn L. Simons, Duke University, Durham, NC, and approved December 30, 2010 (received for review June 29, 2010) A new extinct Late Quaternary platyrrhine from Haiti, Insulacebus fragment (Fig. 2 and Table 1). The latter preserves alveoli from toussaintiana, is described here from the most complete Caribbean left P4 to the right canine. subfossil primate dentition yet recorded, demonstrating the likely coexistence of two primate species on Hispaniola. Like other Carib- Etymology bean platyrrhines, I. toussaintiana exhibits primitive features resem- Insula (L.) means island, and cebus (Gr.) means monkey; The bling early Middle Miocene Patagonian fossils, reflecting an early species name, toussaintiana, is in honor of Toussainte Louverture derivation before the Amazonian community of modern New World (1743–1803), a Haitian hero and a founding father of the nation. anthropoids was configured. This, in combination with the young age of the fossils, provides a unique opportunity to examine a different Type Locality and Site Description parallel radiation of platyrrhines that survived into modern times, but The material was recovered in June 1984 from Late Quaternary ′ ′ is only distantly related to extant mainland forms.
    [Show full text]
  • Characteristics of Geoffroyâ•Žs Tamarin (Saguinus Geoffroyi
    SIT Graduate Institute/SIT Study Abroad SIT Digital Collections Independent Study Project (ISP) Collection SIT Study Abroad Fall 2015 Characteristics of Geoffroy’s tamarin (Saguinus geoffroyi) population, demographics, and territory sizes in urban park habitat (Parque Natural Metropolitano, Panama City, Panama) Caitlin McNaughton Follow this and additional works at: https://digitalcollections.sit.edu/isp_collection Part of the Animal Sciences Commons, Environmental Indicators and Impact Assessment Commons, and the Natural Resources and Conservation Commons Recommended Citation McNaughton, Caitlin, "Characteristics of Geoffroy’s tamarin (Saguinus geoffroyi) population, demographics, and territory sizes in urban park habitat (Parque Natural Metropolitano, Panama City, Panama)" (2015). Independent Study Project (ISP) Collection. 2276. https://digitalcollections.sit.edu/isp_collection/2276 This Unpublished Paper is brought to you for free and open access by the SIT Study Abroad at SIT Digital Collections. It has been accepted for inclusion in Independent Study Project (ISP) Collection by an authorized administrator of SIT Digital Collections. For more information, please contact [email protected]. Characteristics of Geoffroy’s tamarin (Saguinus geoffroyi) population, demographics, and territory sizes in urban park habitat (Parque Natural Metropolitano, Panama City, Panama) Caitlin McNaughton Ohio Wesleyan University School for International Training: Panamá Fall 2015 Abstract Metropolitan parks are an important refuge for wildlife in developed areas. In the tropics, land conversion threatens rainforest habitat that holds some of the highest levels of biodiversity in the world. This study aims to investigate the characteristics of Geoffroy’s tamarin (Saguinus geoffroyi) population, demographics, and territory size in a highly urbanized forest habitat (Parque Natural Metropolitano (PNM), Panama City, Republic of Panamá).
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 RAPID PHYSICAL DEVELOPMENT AND MATURATION, DELAYED BEHAVIORAL MATURATION, AND SINGLE BIRTH IN YOUNG ADULT CALLTMICO: A REPRODUCTIVE STRATEGY DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Philosophy in the Graduate School of The Ohio State University By Donald P.
    [Show full text]
  • Foraging Behavior and Microhabitats Used by Black Lion Tamarins, Leontopithecus Chrysopyqus (Mikan) (Primates, Callitrichidae)
    Foraging behavior and microhabitats used by black lion tamarins, Leontopithecus chrysopyqus (Mikan) (Primates, Callitrichidae) Fernando de Camargo Passos 2 Alexine Keuroghlian 3 ABSTRACT. Foraging in the Black Lion Tamarin (L. chrysopygus Mikan, 1823) was observed in the Caetetus Ecological Station, São Paulo, southeastern Brazil, during 83 days between November 1988 to October 1990. These tamarins use manipuJative, specitic-site foraging behavior. When searching for animal prey items, they examine a variety ofmicrohabitats (dry palm leaves, twigs, under loose bark, in tree cavities). These microhabitats were spatially dispersed among different forest macrohabitats such as swamp torests and dry forested areas. These data indicated that the prey foraging behavior of L. chrysopygus was quite variable, and they used a wide variety ofmicrohabitats, different ofthe other lion tall1arin species. KEY WORDS. Callitrichidae, Leontopithecus chrysopygus, black lion tamarin, ani­ mai prey, foraging behavior, diet, microhabitats Lion tamarins, Leontopithecus Lesson, 1840, are considered primarily in­ sectivores and frugivores (COIMBRA-FILHO & MITTERMEIER 1973), or omnivores (KLElMAN et aI. 1988) because of the diversity of their diet. ln the wild, they consume mostly fruits, exudates, nectar, and animal prey. ln comparison to fruits, animal prey make up a relatively small proportion ofthe diet and are costly to obtain, but its nutritional vai ue make it an essential component of their diet. The prey of black lion tamarins (L. chrysopygus) may include a variety ofinvertebrates (insects, spiders, and other arthropods) and small vertebrates, such as anuran frogs (CARVA­ LHO et aI. 1989; PASSOS 1999). ln this note, we present our observations on prey foraging. We then compare them with studies of other lion tamarin species and discuss some of the unique aspects ofblack lion tamarin foraging in re\ation to the microhabitats they use.
    [Show full text]
  • Reverse the Red Australia Bushfire Crisis Introducing New WAZA
    2020 02 NEWS Introducing New Reverse Australia WAZA CEO the Red Bushfire Crisis 1 WAZA Executive Office Staff Chief Executive Officer Martín Zordan [email protected] Chief Operating Officer Christina Morbin [email protected] Director of Communications Gavrielle Kirk-Cohen [email protected] Director of Membership Janet Ho [email protected] Animal Welfare Intern Paula Cerdán [email protected] Imprint WAZA Executive Office Contacts Postal Address WAZA Executive Office Editor: Carrer de Roger de Llúria 2, 2-2 Gavrielle Kirk-Cohen 08010 Barcelona Spain Reviewer: Phone +34 936638811 Paula Cerdán Email [email protected] Website www.waza.org Proofreader: Facebook @officialWAZA Laurie Clinton Instagram @wazaglobal Linkedin @World Association Zoos & Aquariums Layout and design: @waza Smith&Brown.eu Twitter This edition of WAZA News is WAZA Membership also available at: www.waza.org WAZA members as of 14 April 2020 Printed on FSC-certified paper Affiliates 10 Associations 24 Corporates 18 Institutions 282 Future Events Cover Photo: A koala receives treatment 2020: Virtual Conference, October for burns sustained in the Australian 2021: Moscow Zoo, Moscow, Russia bushfires. Credit:© Zoos Victoria 2022: Loro Parque, Tenerife, Spain 2 President’s Letter Prof Theo B. Pagel President of WAZA Dear colleagues, The year so far has been incredibly challenging. We find ourselves in a surreal situation of continuing to operate institutions that are now closed to the public as a result of COVID-19. This places an enormous personal and organisational strain but our future potential is undiminished and we learn as we progress. It is now clear to everyone that we live in one global and interconnected world and society.
    [Show full text]
  • Evidence for a Convergent Slowdown in Primate Molecular Rates and Its Implications for the Timing of Early Primate Evolution
    Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution Michael E. Steipera,b,c,d,1 and Erik R. Seifferte aDepartment of Anthropology, Hunter College of the City University of New York (CUNY), New York, NY 10065; Programs in bAnthropology and cBiology, The Graduate Center, CUNY, New York, NY 10016; dNew York Consortium in Evolutionary Primatology, New York, NY; and eDepartment of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved February 28, 2012 (received for review November 29, 2011) A long-standing problem in primate evolution is the discord divergences—that molecular rates were exceptionally rapid in between paleontological and molecular clock estimates for the the earliest primates, and that these rates have convergently time of crown primate origins: the earliest crown primate fossils slowed over the course of primate evolution. Indeed, a conver- are ∼56 million y (Ma) old, whereas molecular estimates for the gent rate slowdown has been suggested as an explanation for the haplorhine-strepsirrhine split are often deep in the Late Creta- large differences between the molecular and fossil evidence for ceous. One explanation for this phenomenon is that crown pri- the timing of placental mammalian evolution generally (18, 19). mates existed in the Cretaceous but that their fossil remains However, this hypothesis has not been directly tested within have not yet been found. Here we provide strong evidence that a particular mammalian group. this discordance is better-explained by a convergent molecular Here we test this “convergent rate slowdown” hypothesis in rate slowdown in early primate evolution.
    [Show full text]
  • Science Journals — AAAS
    SCIENCE ADVANCES | REVIEW PRIMATOLOGY 2017 © The Authors, some rights reserved; Impending extinction crisis of the world’s primates: exclusive licensee American Association Why primates matter for the Advancement of Science. Distributed 1 2 3 4 under a Creative Alejandro Estrada, * Paul A. Garber, * Anthony B. Rylands, Christian Roos, Commons Attribution 5 6 7 7 Eduardo Fernandez-Duque, Anthony Di Fiore, K. Anne-Isola Nekaris, Vincent Nijman, NonCommercial 8 9 10 10 Eckhard W. Heymann, Joanna E. Lambert, Francesco Rovero, Claudia Barelli, License 4.0 (CC BY-NC). Joanna M. Setchell,11 Thomas R. Gillespie,12 Russell A. Mittermeier,3 Luis Verde Arregoitia,13 Miguel de Guinea,7 Sidney Gouveia,14 Ricardo Dobrovolski,15 Sam Shanee,16,17 Noga Shanee,16,17 Sarah A. Boyle,18 Agustin Fuentes,19 Katherine C. MacKinnon,20 Katherine R. Amato,21 Andreas L. S. Meyer,22 Serge Wich,23,24 Robert W. Sussman,25 Ruliang Pan,26 27 28 Inza Kone, Baoguo Li Downloaded from Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have de- clining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats— mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agri- http://advances.sciencemag.org/ culture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions.
    [Show full text]
  • Decreto N? 76.623, De 17 De Novembro De 1975
    Decreto n? 76.623/75 Decreto n? 76.623, de 17 de novembro de 1975 Promulga a convencao sobre comercio internacional das especies da flora e fauna selvagem em perigo de extincao o Presidente da Republica, Havendo 0 Congresso Nacional aprovado, pelo Decreto Legislativo n? 54, de 24 dejunho de 1975, a Convencao sobre Comercio Internacional das Especies da Flora e Fauna Selvagens em Perigo de Extincao, concluf­ da em Washington, a 3 de marco de 1973; E havendo a referida convencao entrado em vigor, para 0 Brasil, em 4 de novembro de 1975; Decreta que a Convencao, apensa por c6pia ao presente Decreto, seja executada e cumprida tao inteiramente como nela se contern '. Ernesto Geisel Antonio Francisco Azeredo da Silveira (DOD de 19.11.75 - RET. 28.11.75) ! Ancxos I c 2 das cspccics conslanlc da rcfcrida convcncao. 372 Decreto n? 76.623175 BRAZIL - Annex 1 / Anexo 1 Native CITES Species / Especies Nativas CITES Common Name / Nombrc Cormin Scientific Name / Nombrc Cicntifico English / Ingles Portuguese / Portugucs Appendix I/ Apcndicc I: Mammals / Mamiferos: Balaenoptera glaeialis Black right whale Balaenoplera edeni Brydc's whale Balaenoptera physalus Fin whale Blastoccrus diehotomus Marsh deer Cervo do pantanal Braehyteles araehnoides Woolly spider monkey Mono, miriqui, muriqui, mono car­ vociro Caeajao ealvus White uakari Uacari braneo Caeajao mclanocephalus Black-headed uakari Uacari-dc-cabcca-prcta Callimico gocldii Gocldi's marmoset Calimico CalJithrix aurita White-cared marmoset Sagiii Call ithrix Ilaviccps Bully headed marmoset Sagiii
    [Show full text]
  • Cotton-Top Tamarin Neotropical Region
    Neotropical Region Cotton-top Tamarin Saguinus oedipus (Linnaeus, 1758) Colombia (2008) Anne Savage, Luis Soto, Iader Lamilla & Rosamira Guillen Cotton-top tamarins are Critically Endangered and found only in northwestern Colombia. They have an extremely limited distribution, occurring in northwestern Colombia between the Río Atrato and the lower Río Cauca (west of the Río Cauca and the Isla de Mompos) and Rio Magdalena, in the departments of Atlántico, Sucre, Córdoba, western Bolívar, northwestern Antioquia (from the Uraba region, west of the Río Cauca), and northeastern Chocó east of the Río Atrato, from sea level up to 1,500 m (Hernández- Camacho and Cooper 1976; Hershkovitz 1977; Mast et al. 1993). The southwestern boundary of the cotton- top’s range has not been clearly identified. Mast et al. (1993) suggested that it may extend to Villa Arteaga on the Río Sucio (Hershkovitz 1977), which included reports of cotton-top tamarins in Los Katios National Park. Barbosa et al. (1988), however, were unable to find any evidence of cotton-top tamarins in this area or in Los Katios, where they saw only Saguinus geoffroyi. Groups have been seen in the Islas del Rosario and Tayrona National Park in the Sierra Nevada de Santa Marta (Mast et al. 1993; A. Savage and L. H. Giraldo pers. obs.). However, these populations were founded by captive animals that were released into the area (Mast et al. 1993), and we believe to be outside the and their long-term survival, buffering agricultural historic range of the species. zones, is constantly threatened. Colombia is among the top ten countries suffering The extraction and exploitation of natural deforestation, losing more than 4,000 km2 annually resources is constant in Colombia’s Pacific coastal (Myers 1989; Mast et al.
    [Show full text]