TCRP Report 7: Reducing the Visual Impact of Overhead Contact Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Republic of Kazakhstan Almaty Trolleybus Project
OFFICIAL USE REPUBLIC OF KAZAKHSTAN ALMATY TROLLEYBUS PROJECT FEASIBILITY AND DUE DILIGENCE STUDY TERMS OF REFERENCE 1. BACKGROUND The City of Almaty (the “City”) with population of 1.8 million is the country’s largest and most important business and financial centre, contributing around 25 per cent of the national GDP. As most of rapidly growing conglomerates, the city is experiencing deficit of convenient “green” public transportation aggravated by an increasing number of private cars. Almaty is the only city in Kazakhstan with trolleybus system. Current trolleybus fleet was purchased 10 years ago, and it is close to its full depreciation. Subsequently, the City approached the European Bank for Reconstruction and Development (the “EBRD” or the “Bank”) to finance renewal of the trolleybus fleet through the purchase of 200 new hybrid trolleybuses and associated depot equipment (the “Project”). EBRD loan would be provided for the benefit of Almatyelectrotrans LLP (the “Company” or “AET”). The City sees the Project as an important measure to improve the environmental situation via expanding electric transport. The Project will allow the Company to improve passenger services by replacing the existing deteriorating fleet and providing vehicles for new lines, should the City decide to expand the trolleybus network. Better public transport services will prevent further modal shift from public transport to personal cars. The City’s public transport carries over 450 million passengers annually. The bulk of passenger traffic (86 per cent) is carried by buses operated by private and municipal companies. Trolleybuses account for 11 per cent of traffic, and the metro for 3 per cent. -
Comparison Between Bus Rapid Transit and Light-Rail Transit Systems: a Multi-Criteria Decision Analysis Approach
Urban Transport XXIII 143 COMPARISON BETWEEN BUS RAPID TRANSIT AND LIGHT-RAIL TRANSIT SYSTEMS: A MULTI-CRITERIA DECISION ANALYSIS APPROACH MARÍA EUGENIA LÓPEZ LAMBAS1, NADIA GIUFFRIDA2, MATTEO IGNACCOLO2 & GIUSEPPE INTURRI2 1TRANSyT, Transport Research Centre, Universidad Politécnica de Madrid, Spain 2Department of Civil Engineering and Architecture (DICAR), University of Catania, Italy ABSTRACT The construction choice between two different transport systems in urban areas, as in the case of Light-Rail Transit (LRT) and Bus Rapid Transit (BRT) solutions, is often performed on the basis of cost-benefit analysis and geometrical constraints due to the available space for the infrastructure. Classical economic analysis techniques are often unable to take into account some of the non-monetary parameters which have a huge impact on the final result of the choice, since they often include social acceptance and sustainability aspects. The application of Multi-Criteria Decision Analysis (MCDA) techniques can aid decision makers in the selection process, with the possibility to compare non-homogeneous criteria, both qualitative and quantitative, and allowing the generation of an objective ranking of the different alternatives. The coupling of MCDA and Geographic Information System (GIS) environments also permits an easier and faster analysis of spatial parameters, and a clearer representation of indicator comparisons. Based on these assumptions, a LRT and BRT system will be analysed according to their own transportation, economic, social and environmental impacts as a hypothetical exercise; moreover, through the use of MCDA techniques a global score for both systems will be determined, in order to allow for a fully comprehensive comparison. Keywords: BHLS, urban transport, transit systems, TOPSIS. -
Feasibility Study on Introducing Trolleybus System in Hong Kong
Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS Page 1. STUDY OBJECTIVES AND SCOPE 1 1.1 Study Objectives and scope 1 1.2 Case Studies 1 2. TECHNICAL AND OPERATIONAL FEASIBILITY 1 2.1 What is a Trolleybus? 1 2.2 Components of Trolleybus Systems for Hong Kong 1 2.3 Trolley Vehicles 2 2.4 The Power Distribution System 3 2.5 Infrastructure and Planning Requirements 4 2.6 Operating a Trolleybus System 5 2.7 Network Planning 6 2.8 Conclusions 6 3. FINANCIAL VIABILITY 6 3.1 Introduction 6 3.2 South East Kowloon Development 6 3.3 Central and Wan Chai 7 3.4 Aberdeen 7 3.5 Conclusions on Financial Viability 8 3.6 Possible Means to Achieve Viability 8 4. ENVIRONMENTAL ASSESSMENT AND ISSUES 8 4.1 Air Quality Assessment Methodology 8 4.2 South East Kowloon Air Quality Assessment 9 4.3 Central and Wan Chai and Aberdeen Air Quality Assessments 9 4.4 Other Air Quality Issues 9 4.5 Noise Levels 9 4.6 Landscape and Visual Assessment 10 5. REGULATORY AND LEGISLATIVE FRAMEWORKS AND THEIR IMPLICATIONS 11 5.1 The Granting of Franchises 11 5.2 Legislative Requirements 11 Transport Department Atkins China Ltd. 3089/OR33/00/E427, May 2001 page i Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS (Continued) Page 6. THE WAY FORWARD 11 6.1 Introduction 11 6.2 On-road and off-road trials 11 6.3 Requirements of a Pilot Scheme 12 6.4 Locational Options for a Pilot Scheme 12 6.5 The Implementation Process 12 6.6 Additional Investigations 12 Transport Department Atkins China Ltd. -
Trolleybuses: Applicability of UN Regulation No
Submitted by the expert from OICA Informal document GRSG-110-08-Rev.1 (110th GRSG, 26-29 April 2016, agenda item 2(a)) Trolleybuses: Applicability of UN Regulation No. 100 (Electric Power Train Vehicle) vs. UN Regulation No. 107 Annex 12 (Construction of M2/M3 Vehicles) for Electrical Safety 1. At 110th session of GRSG Belgium proposes to amend UN R107 annex 12 by deleting the requirements for trolleybuses (see GRSG/2016/05) and transfer the requirements into UN R100 (see GRSP/2016/07), which will be on the agenda of upcoming GRSP session in May 2016. 2. Due to the design of a trolleybus and stated in UN Regulation No. 107, trolleybuses are dual- mode vehicles. They can operate either: (a) in trolley mode, when connected to the overhead contact line (OCL), or (b) in bus mode when not connected to the OCL. When not connected to the OCL, they can also be (c) in charging mode, where they are stationary and plugged into the power grid for battery charging. 3. The basic principles of the design of the electric powertrain of the trolleybus and the connection to the OCL is based on international standards developed for trams and trains and is implemented and well accepted in the market worldwide. 4. Due to the fact that the trolleybus is used on public roads the trolleybus has to fulfil the regulations under the umbrella of the UNECE regulatory framework due to the existing national regulations (e.g. European frame work directive). 5. Therefore the annex 12 in UN R107 was amended to align the additional safety prescriptions for trolleybuses with the corresponding electrical standards. -
Bus/Light Rail Integration Lynx Blue Line Extension Reference Effective March 19, 2018
2/18 www.ridetransit.org 704-336-RIDE (7433) | 866-779-CATS (2287) 866-779-CATS | (7433) 704-336-RIDE BUS/LIGHT RAIL INTEGRATION LYNX BLUE LINE EXTENSION REFERENCE EFFECTIVE MARCH 19, 2018 INTEGRACIÓN AUTOBÚS/FERROCARRIL LIGERO REFERENCIA DE LA EXTENSIÓN DE LA LÍNEA LYNX BLUE EN VIGOR A PARTIR DEL 19 DE MARZO DE 2018 On March 19, 2018, CATS will be introducing several bus service improvements to coincide with the opening of the LYNX Blue Line Light Rail Extension. These improvements will assist you with direct connections and improved travel time. Please review the following maps and service descriptions to learn more. El 19 de marzo de 2018 CATS introducirá varias mejoras al servicio de autobuses que coincidirán con la apertura de la extensión de ferrocarril ligero de la línea LYNX Blue. Estas mejoras lo ayudarán con conexiones directas y un mejor tiempo de viaje. Consulte los siguientes mapas y descripciones de servicios para obtener más información. TABLE OF CONTENTS ÍNDICE Discontinued Bus Routes ....................................1 Rutas de autobús discontinuadas ......................1 54X University Research Park | 80X Concord Express 54X University Research Park | 80X Concord Express 201 Garden City | 204 LaSalle | 232 Grier Heights 201 Garden City | 204 LaSalle | 232 Grier Heights Service Improvements .........................................2 Mejoras al servicio ...............................................2 LYNX Blue Line | 3 The Plaza | 9 Central Ave LYNX Blue Line | 3 The Plaza | 9 Central Ave 11 North Tryon | 13 Nevin -
Competitiveness of Trolleybus in Urban Transport
Transactions on the Built Environment vol 52, © 2001 WIT Press, www.witpress.com, ISSN 1743-3509 Competitiveness of trolleybus in urban transport G. ~sten~o',R. ~ozzo~, M. ~alaverna~ & G. sciutto2 'Sciro S.r. l., Genova, Italy ZDepart?nentof Electrical Engineering, University of Genova, Italy Abstract In the search for alternative transportation modes in urban public transport, this paper suggests a comparison between the competitiveness of trolleybus and diesel bus transport modes. This evaluation is based on the relevant life-cycle costs, highlighting that trolleybus transport has a starting high charge of vehicles and wiring purchase as well as the disadvantage arising, in Italy, from the higher price of electric energy compared with diesel oil. Because of these factors, the trolleybus is less competitive than the diesel bus for the Italian urban centres although more friendly for the environment. In the last part of the paper, a case study shows that energy prices and car purchase have a negative influence on the present competitiveness of the trolleybus. 1 Introduction After the Second World War, advanced technology and oil low price encouraged the employment of the diesel bus instead of the trolleybus, which was penalised by its overhead contact line that could not meet the requirements of the quick traffic growth in urban centres. Most trolleybus networks were dismantled between the 60's and 70's. Today, the urgent need to reduce air and acoustic pollution in urban areas as well as a greater environmental awareness, also backed by governmental policies, bring about a renewed interest for the trolleybus. As to the drive development, trolleybus vehicles followed, during the years, the same evolution achieved in the field of light rail EMUS. -
Electric Trolleybuses for the Lacmta's Bus System
ARIELI ASSOCIATES MANAGEMENT, OPERATIONS AND ENGINEERING CONSULTING Report No. 1302 ELECTRIC TROLLEYBUSES FOR THE LACMTA’S BUS SYSTEM PREPARED FOR THE ADVANCED TRANSIT VEHICLE CONSORTIUM UNDER CONTRACT NO. OP 3320661 - 2 - EXECUTIVE SUMMARY California Air Resources Board (CARB) Adopted Urban Bus Transit Rule for 2010 Emission Standards requires that MTA, starting in 2010, set aside 15% of all bus purchases to acquire Zero Emission Vehicles (ZEVs). Currently, none of the buses in the MTA’s inventory can be classified as ZEV, nor there are any transit buses [defined as propelled by an internal combustion engine (ICE) powered by either diesel or alternate fuels] available on the market that can be classified as ZEV. The California emission standards are well ahead of those for the rest of the United States and the manufacturers will not develop suitable vehicles on their own unless incentivized by large customers such as LACMTA. Failure to meet the 2010 Emission Standards will result in regulatory punitive fines and potentially litigation. It is important to note here that this is not the first time that the subject of incorporating electric trolleybuses into the MTA’s bus system comes before the MTA Board of Directors. In the 1992 30-Year Integrated Transportation Plan, electric trolleybuses were the preferred solution to meet CARB air regulations. The Plan provided for 18 routes, 300 miles of overhead wires and 400 peak electric trolleybuses by 2004 to be increased to 1,100 peak electric trolleybuses by 2010. Eventually, the Board voted to terminate the project. After reviewing the various technologies that might qualify as zero emissions under CARB rule, the report focuses on electric trolleybuses as the technology of choice. -
AGENCY PROFILE and FACTS RTD Services at a Glance
AGENCY PROFILE AND FACTS RTD Services at a Glance Buses & Rail SeniorRide SportsRides Buses and trains connect SeniorRide buses provide Take RTD to a local the metro area and offer an essential service to our sporting event, Eldora an easy RTDway to Denver services senior citizen at community. a glanceMountain Resort, or the International Airport. BolderBoulder. Buses and trains connect and the metro trainsarea and offer an easy way to Denver International Airport. Access-a-Ride Free MallRide Access-a-RideAccess-a-Ride helps meet the Freetravel MallRideneeds of passengers buses with disabilities.Park-n-Rides Access-a-RideFlexRide helps connect the entire length Make connections with meet theFlexRide travel needsbuses travel of within selectof downtown’s RTD service areas.16th Catch FlexRideour to connect buses toand other trains RTD at bus or passengerstrain with servies disabilities. or get direct accessStreet to shopping Mall. malls, schools, and more.89 Park-n-Rides. SeniorRide SeniorRide buses serve our senior community. Free MallRide FlexRideFree MallRide buses stop everyFree block onMetroRide downtown’s 16th Street Mall.Bike-n-Ride FlexRideFree buses MetroRide travel within Free MetroRide buses Bring your bike with you select RTDFree service MetroRide areas. buses offer convenientoffer convenient connections rush-hour for downtown commuterson the bus along and 18th train. and 19th Connectstreets. to other RTD connections for downtown SportsRides buses or trains or get direct commuters along 18th and Take RTD to a local sporting event, Eldora Mountain Resort, or the BolderBoulder. access toPark-n-Rides shopping malls, 19th streets. schools, Makeand more.connections with our buses and trains at more than 89 Park-n-Rides. -
What Light Rail Can Do for Cities
WHAT LIGHT RAIL CAN DO FOR CITIES A Review of the Evidence Final Report: Appendices January 2005 Prepared for: Prepared by: Steer Davies Gleave 28-32 Upper Ground London SE1 9PD [t] +44 (0)20 7919 8500 [i] www.steerdaviesgleave.com Passenger Transport Executive Group Wellington House 40-50 Wellington Street Leeds LS1 2DE What Light Rail Can Do For Cities: A Review of the Evidence Contents Page APPENDICES A Operation and Use of Light Rail Schemes in the UK B Overseas Experience C People Interviewed During the Study D Full Bibliography P:\projects\5700s\5748\Outputs\Reports\Final\What Light Rail Can Do for Cities - Appendices _ 01-05.doc Appendix What Light Rail Can Do For Cities: A Review Of The Evidence P:\projects\5700s\5748\Outputs\Reports\Final\What Light Rail Can Do for Cities - Appendices _ 01-05.doc Appendix What Light Rail Can Do For Cities: A Review of the Evidence APPENDIX A Operation and Use of Light Rail Schemes in the UK P:\projects\5700s\5748\Outputs\Reports\Final\What Light Rail Can Do for Cities - Appendices _ 01-05.doc Appendix What Light Rail Can Do For Cities: A Review Of The Evidence A1. TYNE & WEAR METRO A1.1 The Tyne and Wear Metro was the first modern light rail scheme opened in the UK, coming into service between 1980 and 1984. At a cost of £284 million, the scheme comprised the connection of former suburban rail alignments with new railway construction in tunnel under central Newcastle and over the Tyne. Further extensions to the system were opened to Newcastle Airport in 1991 and to Sunderland, sharing 14 km of existing Network Rail track, in March 2002. -
CSX Baltimore Division Timetable
NORTHERN REGION BALTIMORE DIVISION TIMETABLE NO. 4 EFFECTIVE SATURDAY, JANUARY 1, 2005 AT 0001 HOURS CSX STANDARD TIME C. M. Sanborn Division Manager BALTIMORE DIVISION TABLE OF CONTENTS GENERAL INFORMATION SPECIAL INSTRUCTIONS DESCRIPTION PAGE INST DESCRIPTION PAGE 1 Instructions Relating to CSX Operating Table of Contents Rules Timetable Legend 2 Instructions Relating to Safety Rules Legend – Sample Subdivision 3 Instructions Relating to Company Policies Region and Division Officers And Procedures Emergency Telephone Numbers 4 Instructions Relating to Equipment Train Dispatchers Handling Rules 5 Instructions Relating to Air Brake and Train SUBDIVISIONS Handling Rules 6 Instructions Relating to Equipment NAME CODE DISP PAGE Restrictions Baltimore Terminal BZ AV 7 Miscellaneous Bergen BG NJ Capital WS AU Cumberland CU CM Cumberland Terminal C3 CM Hanover HV AV Harrisburg HR NI Herbert HB NI Keystone MH CM Landover L0 NI Lurgan LR AV Metropolitan ME AU Mon M4 AS Old Main Line OM AU P&W PW AS Philadelphia PA AV Pittsburgh PI AS.AT Popes Creek P0 NI RF&P RR CQ S&C SC CN Shenandoah SJ CN Trenton TN NI W&P WP AT CSX Transportation Effective January 1, 2005 Albany Division Timetable No. 5 © Copyright 2005 TIMETABLE LEGEND GENERAL F. AUTH FOR MOVE (AUTHORITY FOR MOVEMENT) Unless otherwise indicated on subdivision pages, the The authority for movement rules applicable to the track segment Train Dispatcher controls all Main Tracks, Sidings, of the subdivision. Interlockings, Controlled Points and Yard Limits. G. NOTES STATION LISTING AND DIAGRAM PAGES Where station page information may need to be further defined, a note will refer to “STATION PAGE NOTES” 1– HEADING listed at the end of the diagram. -
Design of Pantograph-Catenary Systems by Simulation
Challenge E: Bringing the territories closer together at higher speeds Design of pantograph-catenary systems by simulation A. Bobillot*, J.-P. Massat+, J.-P. Mentel* *: Engineering Department, French Railways (SNCF), Paris, France +: Research Department, French Railways (SNCF), Paris, France Corresponding author: Adrien Bobillot ([email protected]), Direction de l’Ingénierie, 6 Av. François Mitterrand, 93574 La Plaine St Denis, FRANCE Abstract The proposed article deals with the pantograph-catenary interface, which represents one of the most critical interfaces of the railway system, especially when running with multiple pantographs. Indeed, the pantograph-catenary system is generally the first blocking point when increasing the train speed, due to the phenomenon known as the “catenary barrier” – in reference to the sound barrier – which refers to the fact that when the train speed reaches the propagation speed of the flexural waves in the contact wire a singularity emerges, creating particularly high level of fluctuations in the contact wire. When operating in a multiple unit configuration, the pantograph-catenary system is even more critical, since the trailing pantograph(s) experiences a catenary that is already swaying due to the passage of the leading pantograph. The article presents the mechanical specificities of the pantograph-catenary system and the way the OSCAR© software deals with them. The resonances of the system are then analysed, and a parametric study is performed on both the pantograph and the catenary. 1. Introduction The main aim of a catenary system is to ensure an optimum current collection for train traction. The commercial speed of trains is nowadays not limited by the engine power but one of the main challenges is to ensure a permanent contact between pantograph(s) and overhead line. -
TCQSM Part 8
Transit Capacity and Quality of Service Manual—2nd Edition PART 8 GLOSSARY This part of the manual presents definitions for the various transit terms discussed and referenced in the manual. Other important terms related to transit planning and operations are included so that this glossary can serve as a readily accessible and easily updated resource for transit applications beyond the evaluation of transit capacity and quality of service. As a result, this glossary includes local definitions and local terminology, even when these may be inconsistent with formal usage in the manual. Many systems have their own specific, historically derived, terminology: a motorman and guard on one system can be an operator and conductor on another. Modal definitions can be confusing. What is clearly light rail by definition may be termed streetcar, semi-metro, or rapid transit in a specific city. It is recommended that in these cases local usage should prevail. AADT — annual average daily ATP — automatic train protection. AADT—accessibility, transit traffic; see traffic, annual average ATS — automatic train supervision; daily. automatic train stop system. AAR — Association of ATU — Amalgamated Transit Union; see American Railroads; see union, transit. Aorganizations, Association of American Railroads. AVL — automatic vehicle location system. AASHTO — American Association of State AW0, AW1, AW2, AW3 — see car, weight Highway and Transportation Officials; see designations. organizations, American Association of State Highway and Transportation Officials. absolute block — see block, absolute. AAWDT — annual average weekday traffic; absolute permissive block — see block, see traffic, annual average weekday. absolute permissive. ABS — automatic block signal; see control acceleration — increase in velocity per unit system, automatic block signal.