Tram Vs Trolleybus: They Can't Be Seen As Enemies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Republic of Kazakhstan Almaty Trolleybus Project
OFFICIAL USE REPUBLIC OF KAZAKHSTAN ALMATY TROLLEYBUS PROJECT FEASIBILITY AND DUE DILIGENCE STUDY TERMS OF REFERENCE 1. BACKGROUND The City of Almaty (the “City”) with population of 1.8 million is the country’s largest and most important business and financial centre, contributing around 25 per cent of the national GDP. As most of rapidly growing conglomerates, the city is experiencing deficit of convenient “green” public transportation aggravated by an increasing number of private cars. Almaty is the only city in Kazakhstan with trolleybus system. Current trolleybus fleet was purchased 10 years ago, and it is close to its full depreciation. Subsequently, the City approached the European Bank for Reconstruction and Development (the “EBRD” or the “Bank”) to finance renewal of the trolleybus fleet through the purchase of 200 new hybrid trolleybuses and associated depot equipment (the “Project”). EBRD loan would be provided for the benefit of Almatyelectrotrans LLP (the “Company” or “AET”). The City sees the Project as an important measure to improve the environmental situation via expanding electric transport. The Project will allow the Company to improve passenger services by replacing the existing deteriorating fleet and providing vehicles for new lines, should the City decide to expand the trolleybus network. Better public transport services will prevent further modal shift from public transport to personal cars. The City’s public transport carries over 450 million passengers annually. The bulk of passenger traffic (86 per cent) is carried by buses operated by private and municipal companies. Trolleybuses account for 11 per cent of traffic, and the metro for 3 per cent. -
Interstate Commerce Commission in Re
INTERSTATE COMMERCE COMMISSION IN RE INVESTIGATION OF AM" ACCIDENT WHICH OCCURRED ON THE DENVER & INTERURBAN RAILROAD, NEAR GLOBEVILLE, COLO , ON SEPTEMBER 6, 1920 November 17, 1920 To the Commission On September G, 1920, there was a hoad-end collision between two passenger tiams on the Denvei & Intemiban Railioad neai Globe ville, Colo , which lesulted m the death of 11 passengeis and 2 em ployees, and the injury of 209 passengers and 5 employees This accident was investigated jointly with the Public Utilities Commis sion of Coloiado, and as a result of this investigation I lespectfully submit the following lepoit The Dem ei & Interurban Railioacl is a bianch of the Coloiado & Southern Railway, the rules of which govern Denver & Interurban trains Donvei & Intemiban tiains aie opeiated between Denvei and Bouldei, 31 miles noith of Denvei, over the Denvei Tiamway Co's tiacks between Denvei and Globeville and ovei Denvei & In temiban tiacks between Globeville and Denver & Inteiuiban Junc tion, at which point the line blanches, one line extending to Louis ville Junction and the othei to Webb Junction, and between these two junctions and Bouldei the trains of the Denvei & Inteiuiban j.»,ailroad opeiate over the tiacks of the Colorado & Southern Kail- way From Marshall, between Louisville Junction and Bouldei, a bianch line .extends to Eldorado Spimgs, this is also used jointly by the tiams of the two laihoads On this line Denvei & Intel urban employees aie ordinarily re lieved by Denver Tiamway employees at Globeville, the tiamway employees -
From the 1832 Horse Pulled Tramway to 21Th Century Light Rail Transit/Light Metro Rail - a Short History of the Evolution in Pictures
From the 1832 Horse pulled Tramway to 21th Century Light Rail Transit/Light Metro Rail - a short History of the Evolution in Pictures By Dr. F.A. Wingler, September 2019 Animation of Light Rail Transit/ Light Metro Rail INTRODUCTION: Light Rail Transit (LRT) or Light Metro Rail (LMR) Systems operates with Light Rail Vehicles (LRV). Those Light Rail Vehicles run in urban region on Streets on reserved or unreserved rail tracks as City Trams, elevated as Right-of-Way Trams or Underground as Metros, and they can run also suburban and interurban on dedicated or reserved rail tracks or on main railway lines as Commuter Rail. The invest costs for LRT/LMR are less than for Metro Rail, the diversity is higher and the adjustment to local conditions and environment is less complicated. Whereas Metro Rail serves only certain corridors, LRT/LRM can be installed with dense and branched networks to serve wider areas. 1 In India the new buzzword for LRT/LMR is “METROLIGHT” or “METROLITE”. The Indian Central Government proposes to run light urban metro rail ‘Metrolight’ or Metrolite” for smaller towns of various states. These transits will operate in places, where the density of people is not so high and a lower ridership is expected. The Light Rail Vehicles will have three coaches, and the speed will be not much more than 25 kmph. The Metrolight will run along the ground as well as above on elevated structures. Metrolight will also work as a metro feeder system. Its cost is less compared to the metro rail installations. -
Feasibility Study on Introducing Trolleybus System in Hong Kong
Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS Page 1. STUDY OBJECTIVES AND SCOPE 1 1.1 Study Objectives and scope 1 1.2 Case Studies 1 2. TECHNICAL AND OPERATIONAL FEASIBILITY 1 2.1 What is a Trolleybus? 1 2.2 Components of Trolleybus Systems for Hong Kong 1 2.3 Trolley Vehicles 2 2.4 The Power Distribution System 3 2.5 Infrastructure and Planning Requirements 4 2.6 Operating a Trolleybus System 5 2.7 Network Planning 6 2.8 Conclusions 6 3. FINANCIAL VIABILITY 6 3.1 Introduction 6 3.2 South East Kowloon Development 6 3.3 Central and Wan Chai 7 3.4 Aberdeen 7 3.5 Conclusions on Financial Viability 8 3.6 Possible Means to Achieve Viability 8 4. ENVIRONMENTAL ASSESSMENT AND ISSUES 8 4.1 Air Quality Assessment Methodology 8 4.2 South East Kowloon Air Quality Assessment 9 4.3 Central and Wan Chai and Aberdeen Air Quality Assessments 9 4.4 Other Air Quality Issues 9 4.5 Noise Levels 9 4.6 Landscape and Visual Assessment 10 5. REGULATORY AND LEGISLATIVE FRAMEWORKS AND THEIR IMPLICATIONS 11 5.1 The Granting of Franchises 11 5.2 Legislative Requirements 11 Transport Department Atkins China Ltd. 3089/OR33/00/E427, May 2001 page i Agreement No. CE 72/99 Feasibility Study of Introducing a Trolleybus System in Hong Kong LIST OF CONTENTS (Continued) Page 6. THE WAY FORWARD 11 6.1 Introduction 11 6.2 On-road and off-road trials 11 6.3 Requirements of a Pilot Scheme 12 6.4 Locational Options for a Pilot Scheme 12 6.5 The Implementation Process 12 6.6 Additional Investigations 12 Transport Department Atkins China Ltd. -
Trolleybuses: Applicability of UN Regulation No
Submitted by the expert from OICA Informal document GRSG-110-08-Rev.1 (110th GRSG, 26-29 April 2016, agenda item 2(a)) Trolleybuses: Applicability of UN Regulation No. 100 (Electric Power Train Vehicle) vs. UN Regulation No. 107 Annex 12 (Construction of M2/M3 Vehicles) for Electrical Safety 1. At 110th session of GRSG Belgium proposes to amend UN R107 annex 12 by deleting the requirements for trolleybuses (see GRSG/2016/05) and transfer the requirements into UN R100 (see GRSP/2016/07), which will be on the agenda of upcoming GRSP session in May 2016. 2. Due to the design of a trolleybus and stated in UN Regulation No. 107, trolleybuses are dual- mode vehicles. They can operate either: (a) in trolley mode, when connected to the overhead contact line (OCL), or (b) in bus mode when not connected to the OCL. When not connected to the OCL, they can also be (c) in charging mode, where they are stationary and plugged into the power grid for battery charging. 3. The basic principles of the design of the electric powertrain of the trolleybus and the connection to the OCL is based on international standards developed for trams and trains and is implemented and well accepted in the market worldwide. 4. Due to the fact that the trolleybus is used on public roads the trolleybus has to fulfil the regulations under the umbrella of the UNECE regulatory framework due to the existing national regulations (e.g. European frame work directive). 5. Therefore the annex 12 in UN R107 was amended to align the additional safety prescriptions for trolleybuses with the corresponding electrical standards. -
Competitiveness of Trolleybus in Urban Transport
Transactions on the Built Environment vol 52, © 2001 WIT Press, www.witpress.com, ISSN 1743-3509 Competitiveness of trolleybus in urban transport G. ~sten~o',R. ~ozzo~, M. ~alaverna~ & G. sciutto2 'Sciro S.r. l., Genova, Italy ZDepart?nentof Electrical Engineering, University of Genova, Italy Abstract In the search for alternative transportation modes in urban public transport, this paper suggests a comparison between the competitiveness of trolleybus and diesel bus transport modes. This evaluation is based on the relevant life-cycle costs, highlighting that trolleybus transport has a starting high charge of vehicles and wiring purchase as well as the disadvantage arising, in Italy, from the higher price of electric energy compared with diesel oil. Because of these factors, the trolleybus is less competitive than the diesel bus for the Italian urban centres although more friendly for the environment. In the last part of the paper, a case study shows that energy prices and car purchase have a negative influence on the present competitiveness of the trolleybus. 1 Introduction After the Second World War, advanced technology and oil low price encouraged the employment of the diesel bus instead of the trolleybus, which was penalised by its overhead contact line that could not meet the requirements of the quick traffic growth in urban centres. Most trolleybus networks were dismantled between the 60's and 70's. Today, the urgent need to reduce air and acoustic pollution in urban areas as well as a greater environmental awareness, also backed by governmental policies, bring about a renewed interest for the trolleybus. As to the drive development, trolleybus vehicles followed, during the years, the same evolution achieved in the field of light rail EMUS. -
Electric Trolleybuses for the Lacmta's Bus System
ARIELI ASSOCIATES MANAGEMENT, OPERATIONS AND ENGINEERING CONSULTING Report No. 1302 ELECTRIC TROLLEYBUSES FOR THE LACMTA’S BUS SYSTEM PREPARED FOR THE ADVANCED TRANSIT VEHICLE CONSORTIUM UNDER CONTRACT NO. OP 3320661 - 2 - EXECUTIVE SUMMARY California Air Resources Board (CARB) Adopted Urban Bus Transit Rule for 2010 Emission Standards requires that MTA, starting in 2010, set aside 15% of all bus purchases to acquire Zero Emission Vehicles (ZEVs). Currently, none of the buses in the MTA’s inventory can be classified as ZEV, nor there are any transit buses [defined as propelled by an internal combustion engine (ICE) powered by either diesel or alternate fuels] available on the market that can be classified as ZEV. The California emission standards are well ahead of those for the rest of the United States and the manufacturers will not develop suitable vehicles on their own unless incentivized by large customers such as LACMTA. Failure to meet the 2010 Emission Standards will result in regulatory punitive fines and potentially litigation. It is important to note here that this is not the first time that the subject of incorporating electric trolleybuses into the MTA’s bus system comes before the MTA Board of Directors. In the 1992 30-Year Integrated Transportation Plan, electric trolleybuses were the preferred solution to meet CARB air regulations. The Plan provided for 18 routes, 300 miles of overhead wires and 400 peak electric trolleybuses by 2004 to be increased to 1,100 peak electric trolleybuses by 2010. Eventually, the Board voted to terminate the project. After reviewing the various technologies that might qualify as zero emissions under CARB rule, the report focuses on electric trolleybuses as the technology of choice. -
Tychy Trolleybuses Electromobility Since 1982
Photo Arkadiusz ŁawrywianiecPhoto Tychy Trolleybuses Electromobility Since 1982 Text ARTUR CYWIŃSKI, ZBIGNIEW BRUD Poland is a country, in which trolleybuses are very seldom used in the urban public transport. Now only three cities have a trolleybus traction in the country with anearly forty-million population: Tychy, Gdynia, and Lublin. What is interesting, the history of this means of public transport started in Poland in ... 1930. ill 1999 trolleybuses were running in 12 cit- fuels, resulted in gradual liquidation of this means ies: Dębica (1988-1993), Gdynia (from of urban transport in most of 12 cities, where it was 1943), Legnica (1943-1956), Lublin (from operating. Three centres remained, in which trolley- T 1953), Olsztyn (1939-1971), Poznań buses won the fight for survival. Now, when people (1930-1970), Słupsk (1985-1999), Tychy (from talk louder and louder about the necessity to reduce 1982), Wałbrzych (1944-1973), Warsaw (1946- pollution and the CO2 emission, and also due to the 1973), and Piaseczno (1983-1995) [1]. Unfortu- support under projects co-financed by the European nately, high costs of the traction network operation, Union, they have found their opportunity for fur- do that? do they how the lack of modern vehicles and the lack of ecological ther development. awareness and responsibility for the natural environ- Tychy is an example of a city, where the fate ment confronted with the cheaper and more avail- of the trolleybus network and the ecological public able bus transport, operating based on oil-derivative transport is inseparably related to the latest history 55 Streszczenie Summary Przedstawiony poniżej tekst opisuje historię powstania, rozbudo- Tychy trolleybuses – electric vehicle network since 1982 /2017 wę oraz modernizację sieci trakcyjnej tyskich linii trolejbusowych. -
Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter?
sustainability Article Transformation of Trolleybus Transport in Poland. Does In-Motion Charging (Technology) Matter? Marcin Wołek 1,* , Agnieszka Szmelter-Jarosz 1 , Marcin Koniak 2 and Anna Golejewska 1 1 Faculty of Economics, University of Gda´nsk,Armii Krajowej 119/121, 81-824 Sopot, Poland; [email protected] (A.S.-J.); [email protected] (A.G.) 2 Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland; [email protected] * Correspondence: [email protected] Received: 5 November 2020; Accepted: 19 November 2020; Published: 22 November 2020 Abstract: Transport in cities is one of the most important sources of emissions. Electromobility is an essential element in the catalogue of activities of local authorities aimed at combating climate change. Over the years trolleybus transport has been characterised by both phases of development and regression and is still an essential component of zero-emission urban transport in about 300 cities worldwide. The development of electricity storage technology, especially in the form of a battery, has opened up new prospects for this mode of transport. A trolleybus equipped with a battery (in-motion charging technology) gains unique characteristics for operation independent of the catenary. This study presents the approach for assessing the development of in-motion charging for trolleybuses in all Polish cities operating this means of transport. A set of KPIs has therefore, been set and analysed. The analysis covers a comparison between 2014 and 2019, aimed at showing the development of technological innovations in this field. The results clearly show that in-motion charging technology leads to the development of trolleybus transport, although this development has mainly a qualitative dimension. -
Santa Monica Smiley Sand Tram
Santa Monica Smiley Sand Tram TRANSFORMING BEACH PARKING, TRANSPORTATION AND ACCESS Prepared by Santa Monica Pier Restoration Corporation, February 2006 Concept History In the fall of 2004 a long-term event was staged in the 1550 parking lot occupying over 70% of the lot. The event producer was required to implement shuttle service from the south beach parking lots up to the Pier. A local business man offered the use of an open air propane powered tram and on October 5, 2004 at 8pm, the tram was dropped off in the 2030 Barnard Way parking lot for an initial trial run. The tram was an instant hit. Tram use in Santa Monica is not a new concept. A Santa Monica ordinance adopted in 1971 allows for the operation of trams along Ocean Front Walk and electric trams were operated between Santa Monica and Venice throughout the 1920’s. Electric trams took passengers between the Venice and Santa Monica Piers. - 1920 In 2004, due to pedestrian traffic concerns, Ocean Front Walk was not utilized for the tram. Instead, the official route for the tram was established along the streets running one block east of the beach. This route required extensive traffic management and, while providing effective transportation, provided limited access to the world-class beach. At a late-night brainstorming session on how to improve the route SMPD Sergeant Greg Smiley suggested that the tram run on the sand. With the emerging vision of the “Beach Tram”, the Santa Monica Pier Restoration Corporation began the process of research, prototype design and consideration of the issues this concept would raise. -
Benchmarking Presentation
City Services Benchmarking: Public Transportation CITY & COUNTY OF SAN FRANCISCO Office of the Controller City Services Auditor Peg Stevenson | Joe Lapka 06.03.2014 Performance Measurement Mandate 2 Appendix F, Section 101 of the City Charter The Controller shall… • Monitor the level and effectiveness of services provided to the people of San Francisco, • Review performance and cost benchmarks, and • Conduct comparisons of the cost and performance of City government with other cities, counties, and public agencies that perform similar functions Prescribed Service Areas (areas covered by previous benchmarking reports) Condition of urban environment Transportation Human resources Public health & human services Criminal justice City management Parks, cultural & recreational facilities Fire and paramedic services Public works March 2014 Benchmarking Report – Public Transportation 3 Purpose Compare the cost and performance of directly-operated light rail, bus, and trolleybus service provided by SFMTA with similar services in metropolitan areas Peer Selection Methodology • Followed methodology outlined in Transit Cooperative Research Program Report 141 – A Methodology for Performance Measurement and Peer Comparison in the Public Transportation Industry • Designed to provide a robust, practical, and transparent process for selecting peer agencies based on uniformly defined and readily available data • Underwent multiple rounds of review and testing by numerous transit agencies, regional transportation authorities, and state departments of transportation -
The Urban Rail Development Handbook
DEVELOPMENT THE “ The Urban Rail Development Handbook offers both planners and political decision makers a comprehensive view of one of the largest, if not the largest, investment a city can undertake: an urban rail system. The handbook properly recognizes that urban rail is only one part of a hierarchically integrated transport system, and it provides practical guidance on how urban rail projects can be implemented and operated RAIL URBAN THE URBAN RAIL in a multimodal way that maximizes benefits far beyond mobility. The handbook is a must-read for any person involved in the planning and decision making for an urban rail line.” —Arturo Ardila-Gómez, Global Lead, Urban Mobility and Lead Transport Economist, World Bank DEVELOPMENT “ The Urban Rail Development Handbook tackles the social and technical challenges of planning, designing, financing, procuring, constructing, and operating rail projects in urban areas. It is a great complement HANDBOOK to more technical publications on rail technology, infrastructure, and project delivery. This handbook provides practical advice for delivering urban megaprojects, taking account of their social, institutional, and economic context.” —Martha Lawrence, Lead, Railway Community of Practice and Senior Railway Specialist, World Bank HANDBOOK “ Among the many options a city can consider to improve access to opportunities and mobility, urban rail stands out by its potential impact, as well as its high cost. Getting it right is a complex and multifaceted challenge that this handbook addresses beautifully through an in-depth and practical sharing of hard lessons learned in planning, implementing, and operating such urban rail lines, while ensuring their transformational role for urban development.” —Gerald Ollivier, Lead, Transit-Oriented Development Community of Practice, World Bank “ Public transport, as the backbone of mobility in cities, supports more inclusive communities, economic development, higher standards of living and health, and active lifestyles of inhabitants, while improving air quality and liveability.